Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis

Long-Yun Ye1,2, Wei Chen1, Xue-Li Bai1,2, Xing-Yuan Xu1,2, Qi Zhang1,2, Xue-Feng Xia1, Xu Sun1, Guo-Gang Li1, Qi-Da Hu1, Qi-Han Fu1, and Ting-Bo Liang1,2,3

Abstract

Portal vein tumor thrombosis (PVTT) is a significant risk factor for metastasis in hepatocellular carcinoma (HCC) patients and is therefore associated with poor prognosis. The presence of PVTT frequently accompanies substantial hypoxia within the tumor microenvironment, which is suggested to accelerate tumor metastasis, but it is unclear how this occurs. Recent evidence has shown that the hypoxia-inducible factor HIF-1α induces epithelial-to-mesenchymal transition (EMT) in tumor cells to facilitate metastasis. In this study, we investigated whether hypoxia-induced EMT in cancer cells also affects immune cells in the tumor microenvironment to promote immunosuppression. We found that hypoxia-induced EMT increased the expression of the CCL20 cytokine in hepatoma cells. Furthermore, coculture of monocyte-derived macrophages with hypoxic hepatoma cells revealed that the expression of indoleamine 2, 3-dioxygenase (IDO) was induced in monocyte-derived macrophages in a CCL20-dependent manner. In turn, these IDO-expressing monocyte-derived macrophages suppressed T-cell proliferation and promoted the expansion of immunosuppressive regulatory T cells. Moreover, high CCL20 expression in HCC specimens was associated with PVTT and poor patient survival. Collectively, our findings suggest that the HIF-1α/CCL20/IDO axis in hepatocellular carcinoma is important for accelerating tumor metastasis through both the induction of EMT and the establishment of an immunosuppressive tumor microenvironment, warranting further investigation into the therapeutic effects of blocking specific nodes of this signaling network. Cancer Res; 76(4); 818–30. ©2016 AACR.

Introduction

Hepatocellular carcinoma is one of the most common malignancies worldwide with a poor prognosis (1–3). Metastasis is the leading cause of death in the majority of hepatocellular carcinoma patients, of which the overall five-year survival rate is merely 5% to 6% (4–6). The presence of a portal vein tumor thrombus (PVTT) is considered to be a strong predictor of metastasis and one of the most significant factors for a poor prognosis in hepatocellular carcinoma (7). Venous thrombosis is a major hallmark of metastatic hepatocellular carcinoma with 40% to 90.2% of advanced hepatocellular carcinoma patients reporting PVTT (7–10). The association of PVTT with hepatocellular carcinoma is mainly due to the highly vascular nature of hepatocellular carcinoma tumors (11, 12).

The tumor microenvironment plays an important role in cancer development and metastasis (13). Because of the rapid tumor cell growth, the tumor often outpaces its blood supply, leading to substantial hypoxia in the vicinity of hepatocellular carcinoma tumors (14). Hypoxia triggers overexpression of hypoxia-inducible factor 1α (HIF-1α), which has previously been shown to induce epithelial–mesenchymal transition (EMT) of cancer cells in breast cancer (15). During EMT, epithelial cells are converted into motile, invasive mesenchymal cells. EMT is frequently observed at the invasive front of advanced tumors and significantly correlates with metastasis in tumor progression (16–18). There is also increasing evidence for a functional relationship between EMT and macrophages, as both cell types are found at the invasive front of tumors (19, 20). However, it is unclear whether the EMT of cancer cells contributes to the immunosuppressive microenvironment in hepatocellular carcinoma.

Immune cells within the tumor microenvironment also play an important role in cancer development and metastasis. Monocytes can respond to environmental signals and differentiate into tumor supportive macrophages, which modulate the stroma to prompt tumor invasion and metastasis (21, 22). These monocyte-derived macrophages are the most abundant leukocytes that infiltrate the tumor microenvironment (23, 24). A subset of...
monocyte-derived macrophages has increased expression of indo-
leamine 2, 3-dioxygenase (IDO), a rate-limiting enzyme required
for degradation of tryptophan. These IDO⁺ monocyte-derived
macrophages can assist tumors by suppressing T-cell activation
and proliferation through degradation of the essential amino acid
tryptophan (25).

While the IDO⁺ monocyte-derived macrophages play a vital
role in establishing and maintaining an immunosuppressive
tumor environment, the mechanism through which the micro-
environment educates the monocytes and induces a tolerogenic
state remains unclear. In this study, we explored that the inter-
action between hypoxia-induced EMT of cancer cells and mono-
cyte-derived macrophages. We showed that increased levels of the
CCL20 cytokine released from cancer cells significantly induced
the expression of IDO in monocyte-derived macrophages, helping
to form an immunosuppressive microenvironment to accelerate
metastasis.

Materials and Methods

Patients and specimens
Tumor tissue samples were obtained from the Second Affili-
ated Hospital of Zhejiang University School of Medicine.
Ninety patients with hepatocellular carcinoma underwent cura-
tive resection between 2007 and 2010, and samples from these
patients were used for IHC and quantitative RT-PCR (qRT-
PCR). This project was approved by the Ethics Committee of
Second Affiliated Hospital of Zhejiang University School of
Medicine. All samples were anonymously coded in accordance
with local ethical guidelines (as stipulated by the Declaration of
Helsinki), and written informed consent was obtained.

Cell culture and treatment
HL-7702 and human hepatoma cell line (Huh-7) were
obtained from the Shanghai Institute for Biological Science
(Shanghai, China). Hep-G2 cells were obtained from ATCC. They
were maintained in DMEM supplemented with 10% FBS (Gibco)
and 1% penicillin/streptomycin (Sigma). All cell lines were
authenticated by a professional biotechnology company in
2015, and used in our previous study (26). Cells were exposed to
hypoxia (1.0% O₂) in a hypoxic chamber (Thermal Tech) for
the indicated time period.

Cells were transfected with HIF-1α siRNA #1 and #2 (Invitro-
gen) and negative control siRNA (nc-siRNA; GenePharma) at 100
nM/L using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions.

Chromatin immunoprecipitation assay and luciferase reporter
assays
Putative hypoxia response element (HRE)-like sequences were
identified in the CCL20 promoter sequence using the regulatory
sequence analysis tools (http://rsat.ulb.ac.be/rsat/). After treat-
ment with 100 μM/L CoCl₂ for 12 hours, Hep-G2 and Huh-7
cells were cross-linked and processed according to the Millipore
EZ-ChIP Assay Kit protocol (Millipore). The mouse anti-human
HIF-1α ChIP validated antibody (ab1, Abcam), and mouse IgG (negative
control) were used. PCR analysis for CCL20 was carried out
using the primers (forward: 5’-GACCCTTTGTATCCGGTCATTA; reverse:
5’-AGTACGAGCATGCATACAA) and the PCR pro-
ducts were analyzed by agarose gel electrophoresis.

The putative (AGAAGGCGTGTTGCCACA) HRE-like sequence
synthesized by Hanbio was ligated into the pGL3-basic plasmid
(Promega) to construct the CCL20 promoter luciferase reporter
plasmid. A VEGF reporter plasmid, containing a T-100/306
fragment from the human VEGF promoter, was constructed as
described previously (27). Luciferase reporter assays were carried
out in 24-well plates, and 250 ng of CCL20 reporter plasmid or
VEGF reporter plasmid was cotransfected with 750 ng HIF-1α
plasmid (Vigene Bioscience CH886250) and 25 ng pRL-TK report-
er plasmid (Millipore). Reporter activity was evaluated using the
dual luciferase reporter system (Promega).

In vitro coculture model
Peripheral blood mononuclear cells (PBMC) were isolated by
Ficoll density-gradient centrifugation. Monocytes were purified
from PBMCs using anti-CD14 magnetic beads (Miltenyi Biotec),
or fluorescence-activated cell sorting (FACS). Monocytes were
cultured with cell lines expressing GFP at a ratio of 3:1 for 3 days.
Then, the medium was changed to medium with CCL20 (100
ng/mL; PeproTech), medium with IFNγ (100 IU/mL; PeproTech),
medium with fludarabine (50 μM/L; Selleckchem), or the cells
were directly cultured with hypoxic tumor cells for one day. After
day one, fresh medium was added and the cells were cultured for
another day. Then, we sorted the GFP-expressing hepatoma cells
from the non-GFP-expressing monocytes using FACS (Supple-
mental Fig. S3C). The supernatants were harvested and kynurenine
was detected (28).

In vitro T-cell culture models
Circulating T cells were purified using the Pan T Cell Isolation
Kit II (Miltenyi Biotec) or FACS sorting. Autologous or treated
monocytes were pretreated with 10 μg/mL mitomycin C (Sigma)
for 30 minutes, washed twice, and cocultured for 7 days with
polyclonal-stimulated (10 μg/mL anti-CD3 and 10 μg/mL anti-
CD28) and prelabeled CISE T cells at a ratio of 1:10 in the
presence or absence of 100 μM/L (1-MT; Sigma). Functional
assays were carried out using the regulatory T cell (Treg)/suppres-
sion inhibitor (Miltenyi Biotec), with five ratios of Treg/Teff
(0:1, 1:0, 1:1, 4:1 and 8:1).

Flow cytometry
All antibodies used were purchased from Biolegend unless
specified otherwise. Macrophages were stained with fluoro-
rochrome-conjugated mAbs for CD4 (HCD14), CD16 (3G8),
CD45 (H30), CD163 (GHI/61), CD25 (BC96), and HLA-DR
(L243) with a control antibody. T cells were left untreated or
stimulated at 37°C for 5 hours with Cell Activation Cocktail
(Biolegend). Thereafter, cells were stained with CD3 (145-2C11),
CD4 (RM4-5), CD8 (SK1), CD25 (BC96), CD127 (A019D5),
IFNγ (4S.B3), Foxp3 (206D3), and IL2 (MQ1-17H12). Cell
sorting was performed on a FACSaria II (BD Biosciences)
and flow cytometric analysis was performed on a Canto-II (BD
Biosciences). We used the Intracellular Cytokine Staining Kit from
BD Pharmingen, and the transcriptional factor staining was
performed using the Fix/Perm Kit (eBioscience).

ELISA
The supernatants were collected and stored at 4 °C. Concentra-
tions of CCL20, IL10, IL12, IL6, and VEGF in the conditioned
media were detected using ELISA kits (R&D Systems, Inc.).
Carcinoma patients who received surgery in the Second Af
Categorical variables were compared using a
HIF-1
Results
Fl
Immuno
Ye et al.
unpaired Student
terwise indicated. Continuous variables were evaluated using an
(1:1,000; Lianke-bio). Positive cells were quantified by confocal microscopy and analyzed by ImagePro Plus software. Staining without primary antibodies were used as negative controls.
Paraffin-embedded hepatocellular carcinoma tissue samples were cut into 5-μm sections and processed for IHC (29). The slides were incubated with human anti-CCL20 (1:1,000) or HIF-1α (1:1,000) antibodies. We defined samples without any staining as 1 score. Other samples were defined as low (2 scores), medium (3 scores), or high (4 scores) levels of expression. The scoring system is illustrated using representative samples of each score in Supplementary Fig. S6 and was evaluated by two independent pathologists.
Immunoblotting and antibodies
Western blot analysis was performed to detect the levels of CCL20 (ab9829, Abcam), IDO (ab156787, Abcam), STAT1 (ab2415, Abcam), p-STAT1 (ab29045, Abcam), STAT3 (9139, Cell Signaling Technology), p-STAT3 (9145, Cell Signaling Technology), E-cadherin (3195, Cell Signaling Technology), vimentin (3879, Cell Signaling Technology), and HIF-1α (NB100-105, Novusbiol). The proteins were extracted and separated by SDS-PAGE then transferred to polyvinylidene difluoride membranes (Millipore). Membranes were incubated overnight at 4°C with specific primary antibodies. The next day, membranes were further incubated with secondary antibodies and visualized using ChemiDoc XRS System (Bio-Rad Laboratories) or X-ray film (Kodak).
Quantitative reverse transcription PCR
Tumor sample or cells were lysed as previously described. qRT-PCR was performed on the ABI 7900 Prism HT (Applied Biosystems), followed by melting curve analysis. The ΔCt method was used to assess the gene expression fold change among groups. Three independent experiments were performed.
Statistical analysis
Statistical calculations were performed using Prism 5 software (GraphPad). Data were expressed as mean and SD, unless otherwise indicated. Continuous variables were evaluated using an unpaired Student t test for comparisons between two groups. Categorical variables were compared using a χ² test (or Fisher exact test). Multivariate analysis was performed using forward stepwise logistic regression analysis. Survival analysis was conducted using the Kaplan–Meier method with the log-rank test. Two-sided tests were performed with a P < 0.05 indicating statistical significance.

Results
HIF-1α is positively associated with PVTT in hepatocellular carcinoma patients
To evaluate the clinical outcomes of PVTT in hepatocellular carcinoma patients, we analyzed the survival of 90 hepatocellular carcinoma patients who received surgery in the Second Affiliated Hospital of Zhejiang University School of Medicine in China. The results showed that 21 patients within PVTT group had a significantly worse prognosis than the other patients (Fig. 1A). As HIF-1α is one of the most potent proteins linked to liver metastasis and tumor progression, we examined HIF-1α mRNA level in normal livers, tumors without PVTT, and tumors with PVTT (n = 21 in each group; Fig. 1B). HIF-1α mRNA level was significantly higher in the group of tumors with PVTT. Moreover, we found significantly strong nuclear staining for HIF-1α in the tumors with PVTT (Fig. 1C and 1D).

HIF-1α induces EMT in hepatocellular carcinoma cell lines
We examined the potential for hypoxia to induce EMT in hepatocellular carcinoma cell lines, Huh-7 and Hep-G2. After exposure to 1.0% oxygen for 24 hours, the morphology of the Huh-7 and Hep-G2 cells became significantly stretched and elongated (Fig. 1E). The epithelial biomarker E-cadherin was downregulated, while simultaneously the mesenchymal biomarkers vimentin and Snail increased (Fig. 1F). In addition, immunofluorescence showed weaker E-cadherin membrane localization and stronger intracytoplasmic localization of vimentin (Fig. 1G). These results are all typical of events that occur during EMT of tumor cells.

HIF-1α induces the expression of the cytokine CCL20 by mesenchymal cancer cells
To investigate whether there was a change in the cytokine profile associated with hypoxia-induced EMT of cancer cells, the hypoxic medium from Hep-G2 cells was analyzed using the RayBio Human Cytokine Antibody Array (AAH-CHE-1; Fig. 2A). The expression of six cytokines [CCL2, CCL20, CXCL1 (GROα), CXCL8 (IL-8), CXCL9, and CXCL16] increased significantly compared with the condition medium of untreated Hep-G2 cells, and the levels of CCL20 increased most dramatically. We used qRT-PCR to confirm an increase in CCL20 gene expression at 16 and 24 hours in both Huh-7 cells and Hep-G2 cells under hypoxic conditions (Fig. 2B).

To confirm whether the HIF-1α was responsible for this change in cytokine levels, HIF-1α accumulation and CCL20 levels were examined over time in Huh-7 and Hep-G2 cells exposed to 1% oxygen (Fig. 2C). HIF-1α reached a peak at 16 hours, and then gradually declined, which was consistent with the dynamic change in CCL20 gene expression. However, the protein levels of CCL20 did not reach a maximum until 24 hours. Therefore, there may be a time delay between HIF-1α-induced gene expression and secreted protein levels for CCL20. Knockdown of HIF-1α by siRNA (100 nmol/L) in Hep-G2 and Huh-7 cells resulted in a significant decrease in the expression of CCL20 compared with the control (nRNA at 100 nmol/L; Fig. 2D). After HIF-1α knockdown, there was no upregulation of EMT markers observed either by Western blot or immunofluorescence under hypoxic conditions. Furthermore, the Transwell assay showed that HIF-1α knockdown prevented hypoxic Huh-7 or Hep-G2 cells passing through the Matrigel-coated membranes (Supplementary Fig. S1A–S1C).

To understand whether there was direct association between HIF-1α and CCL20, we overexpressed HIF-1α (using a HIF-1α plasmid) and found that CCL20 dramatically increased both in Hep-G2 and Huh-7 cells (Fig. 2E). To further confirm that the CCL20 gene is regulated directly by hypoxia through a HRE [(A/G)CGTG]; refs. 30–32), high-scoring HRE-like sequences in the CCL20 gene promoter were identified by
bioinformatics analysis. Moreover, a ChIP assay using an anti-
HIF-1α showed that the putative HRE in the promoter of the
CCL20 gene (AGAAGGGCCGTTGGCCACA) was captured (Fig.
2F). To determine whether the putative HRE plays a functional
role in hypoxia-dependent transcriptional activation, we
cotransfected cells with the HIF-1α plasmid and a CCL20 or
VEGF luciferase reporter. Inducibility of the CCL20 reporter by
HIF-1α overexpression was compared with that of VEGF report-
er, which contains a functional HIF-1α-binding site. We
detected a substantial, significant increase of CCL20 promoter
transactivation (approximately 5–10 fold relative to control
cells) in response to HIF-1α overexpression. This result con-
firms that the putative HRE (AGAAGGGCCGTTGGCCACA) in
CCL20 was activated by HIF-1α (Fig. 2G). Taken together, these
results suggest that a functional HRE motif exists in the pro-
moter fragment of the CCL20 gene that mediates hypoxia-
dependent CCL20 expression.

To evaluate the potential relationship of HIF-1α and CCL20 in
the tumor microenvironment, we analyzed their expression in
adjacent sections of hepatocellular carcinoma tissues by staining
for HIF-1α and CCL20 (Supplementary Fig. S2). HIF-1α was
expressed at higher levels at the invasive front (Supplementary
Fig. S2). We observed the same gradient for CCL20 with higher
levels at the tumor edge, where cancer cells displayed more
mesenchymal features and expressed high levels of HIF-1α, com-
pared with the center of the tumor (Supplementary Fig. S2). These
data indicated that hypoxia-induced mesenchymal cancer cells
secreted more CCL20 at the invasive front due to increased levels
of HIF-1α.

Tumor-derived CCL20 upregulates IDO expression in
monocyte-derived macrophages

Tumor microenvironments recruit monocytes from blood, and
educate them, converting them into tumor supportive macro-
phages. Previous studies used the tumor culture supernatants
from hepatoma cells to induce the macrophages (22, 33). How-
ever, this model may not accurately reflect the effects of cell-to-cell
contacts, which are important for cell surface marker function.
Therefore, in this study, we cocultured isolated monocytes
directly with hepatoma cells (Huh-7 and Hep-G2). After 72
hours, the monocytes cocultured with hepatoma cells, but not
with HL-7702, exhibited a high expression of CD206 and
CD163 (Supplementary Fig. S3A). Moreover, the levels of
HLA-DR were reduced in monocytes exposed to hepatoma
cells compared with HL-7702 (Supplementary Fig. S3A). The
activation of suppressive monocyte-derived macrophages was
also confirmed by IL10, IL12, IL6, and VEGF cytokine produc-
tion (Supplementary Fig. S3B).

To further identify the effect of the hypoxia-induced cytokines
in the tumor microenvironments, we directly cultured monocyte-
derived macrophages with hypoxic hepatoma cells and then
sorted the monocyte-derived macrophages from the tumor cells.
We found that the expression of IDO increased in the monocyte-
derived macrophages (Fig. 3A). As Lutz and colleagues reported
(34), CD14+ monocytes are heterogeneous, and include different
subsets of monocytes. Therefore, we sorted the major subset (the
classical CD14+CD16− subset) from the two minor CD16+ subsets
(the intermediate CD14+CD16+ and the nonclassical
CD14+CD16+ subsets). Consistent with a previous report (35),
the nonclassical CD14+CD16+ monocytes expressed the lowest
levels of CD163 and CD206 compared with the other two subsets,
Figure 1.
HIF-1α is positively associated with PVTT development in hepatocellular carcinoma patients. A, the cumulative overall number of hepatocellular carcinoma patients with PVTT compared with those without PVTT over time, estimated using the Kaplan-Meier method. B, relative mRNA levels of HIF-1α measured by qRT-PCR and normalized to β-actin, in normal livers, and in hepatocellular carcinoma tumors without and with PVTT. Data are expressed as means ± SD and compared using the unpaired t test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). (Continued on the following page.)
Hypoxia-Induced EMT Creates Immunosuppression

(Continued.) HIF-1α mRNA was undetectable in one normal liver tissue and one tumor with PVT. C, IHC staining showing the accumulation of HIF-1α in normal liver, tumor without PVT, and tumor with PVT. Representative images at ×200 magnification from one set of the samples are shown. D, statistical analysis of the pathologic scores of HIF-1α in the various groups. Data are expressed as means ± SD and compared using the unpaired t test (*, P < 0.05; **, P < 0.01; *** P < 0.001). E, bright field microscopy showing the morphologic changes that occur when Huh-7 and Hep-G2 cells were cultured for 24 hours in 10% oxygen. F, detection of HIF-1α in Hep-G2 induced to undergo EMT by culturing for 24 hours in 1.0% oxygen. The relative signal intensity of each of the indicated cytokines is shown. B, relative levels of cytokine array from the condition medium of Hep-G2 cells and Hep-G2 after transfection with the siRNA at 100 nmol/L for 12 hours. G, luciferase activities of CCL20 or VEGF cotransfected with HIF-1α plasmid. Results in A–G are expressed as means ± SD of at least three separate experiments and compared using the unpaired t test (*, P < 0.05; **, P < 0.01; *** P < 0.001).

monocyte-derived macrophages with T cells to detect proliferation and cytokine production. Compared with controls, hypoxic tumor-treated monocyte-derived macrophages slightly inhibited the proliferation of T cells. The addition of CCL20-treated IDO+ monocyte-derived macrophages further enhanced the inhibition (Fig. 5A and B). When IDO activity was blocked with the competitive inhibitor 1-MT, the effect of T-cell inhibition was attenuated. On the other hand, CCL20-treated IDO+ monocyte-derived macrophages significantly decreased secretion of IFNγ both in CD4+ and CD8+ T cells (Fig. 5C and D). As expected, 1-MT suppressed the inhibitory effect of monocyte-derived macrophages on IFNγ secretion.

We also examined whether the CCL20-treated IDO+ monocyte-derived macrophages influence the generation of immunosuppressive Treg-like cells. Autologous-sorted CD4+CD25+Foxp3+ effector T cells were cocultured with IDO+ monocyte-derived macrophages. After 7 days, we found high expression of Foxp3 in T cells (Fig. 5E–G). Foxp3 was significantly induced in the
CD4+CD25+ cells other than in CD4+CD25- cells (Fig. 5G). To further determine the function of these Treg-like cells, we sorted the CD4+CD25+CD127- cells from the coculture system. We cultured the sorted autologous CD4+CD25+ cells with the Treg Suppression Inspector (Miltenyi Biotec) at five different ratios of Treg cells: Treg cells (i.e., 0:1, 1:0, 1:1, 4:1, and 8:1). We found that the proliferation of T cells was significantly inhibited by the Treg-like cells compared with the control (Fig. 5H and I). These findings suggest that IDO+ monocyte-derived macrophages exert an immunosuppressive effect on T cells in an IDO-dependent manner.

High amounts of CCL20 predict poor patient survival

To investigate the clinical relevance of elevated CCL20 levels in hepatocellular carcinoma cancer patients, we performed immunohistochemical staining in the 90 hepatocellular carcinoma samples. We divided patients into "low" and "high" expression groups, based on the median value of CCL20 levels, to assess the association of expression of CCL20 with clinical characteristics (Fig. 6A; Supplementary Fig. S6). We found that the high expression of CCL20 was significantly correlated with the tumor PVTT group (P = 0.030; Supplementary Table. S1). There was a significant inverse correlation of tumor CCL20 expression with both
Hypoxia-Induced EMT Creates Immunosuppression

Figure 4.
Phosphorylation of STAT1 is required for upregulation of IDO expression. A, protein levels of pSTAT3, STAT3, pSTAT1, STAT1, pP65, and P65 in CD14⁺ monocytes cocultured with Huh-7 and Hep-G2 cells in the presence or absence of hypoxic tumor (HT) cells, CCL20, or IFNγ as detected by Western blot analysis. GAPDH was used as a loading control. B, statistical analysis of the pSTAT3, STAT3, pSTAT1, STAT1, pP65, and P65 protein levels in the various groups is shown. Protein levels were quantified by densitometry, corrected for the sample load based on GAPDH expression, and expressed as fold-increase or decrease relative to the control lane. Data are expressed as means ± SD and were compared using the unpaired t test (** P < 0.01; *** P < 0.001). C, protein levels of pSTAT1, STAT1, and IDO in CD14⁺ monocytes cocultured with Hep-G2 cells, CCL20, or fludarabine (+ P65 antagonist at 50 μmol/L) as detected by Western blot analysis. D, immunofluorescent images showing the nuclear location of STAT1 in monocytes after treatment of fludarabine (50 μmol/L) in the presence of CCL20. One of three representative results is shown in A, C, and D.

disease-free survival (P = 0.0197; Fig. 6B) and overall survival (P = 0.0083; Fig. 6C). Univariate and multivariate analysis showed that α-fetoprotein (AFP), tumor PVTT, and elevated CCL20 expression were independent factors for overall survival (P < 0.05; Supplementary Table S2).

We also analyzed the relationship between CCL20 and IDO expression in hepatocellular carcinoma patients with or without vascular invasion from National Center for Biotechnology Information Gene Expression Omnibus database (GSE20238; ref. 37). The database includes a total of 91 hepatocellular carcinoma patients and the associated vascular invasion data for 79 patients. Our analysis showed that the CCL20 levels significantly correlated with IDO in patients with vascular invasion (P = 0.0443; Fig. 6D). In contrast, no significant association was observed in patients without vascular invasion (P = 0.7949; Fig. 6E). These data strongly suggest that increased tumor CCL20 abundance is a significant and independent predictor of poor survival in hepatocellular carcinoma patients.

Discussion

Over the past decade, much research into hepatocellular carcinoma has focused on the cancer cells themselves, without taking into account the unique but complex tumor microenvironment. Hypoxia in the tumor microenvironment plays an important role in driving cell metastasis (38, 39). Our study demonstrated that PVTT can cause substantial hypoxia in hepatocellular carcinomas compared with the hepatocellular carcinomas without PVTT. However, whether the reverse is true (i.e., that different levels of HIF-1α directly induce the formation of PVTT) remains unclear. Indeed, some patients with high HIF-1α expression still existed in the PVTT− group compared with the PVTT+ group (Fig. 1B). Moreover, based on our findings, we cannot conclude whether HIF–1α has on–off or a more graduated effect on PVTT formation.

In response to hypoxia, HIF-1α is known to accumulate and induce EMT in tumor cells to facilitate metastasis (40). During EMT, tumor cells acquire cell motility, with decreased adhesive ability and a rearranged cytoskeleton (40, 41). EMT is also thought to have another function: to create an immunosuppressive microenvironment by educating the infiltrating immune cells (42). We examined whether a change in the secretory cytokine profile during EMT may be the key factor for educating immune cells in the microenvironment. We found hypoxia-induced mesenchymal cancer cells elevated the levels of CCL20 in the...
microenvironment. Moreover, we identified a functional HRE within the CCL20 promoter for the first time. Therefore, we propose that hypoxia induces HIF-1α, which interacts with this HRE to stimulate the transcription of CCL20. Together, our results suggest that CCL20 expression is under the direct control of HIF-1α via a HRE in the CCL20 gene promoter.
Among the cytokines upregulated during hypoxic EMT, CCL20 was required for the induction of IDO expression in monocyte-derived macrophages. Indeed, the analysis of our clinical samples showed that CCL20 was significantly associated with IDO expression in hepatocellular carcinoma with PVTT. Moreover, as monocyte-derived macrophages are typically composed of three subsets, which are characterized by different levels of CD14 and CD16 expression, we assessed whether they showed differential responses to the hypoxia. We showed that all three subsets of monocytes could be affected by our coculture system. Although the subsets showed differential expression of CD163 and CD206, they all showed increased IDO expression. Therefore, CCL20 is required for the induction of IDO expression in monocyte-derived macrophages.

Previous studies showed that the CCL20–CCR6 axis is important for the recruitment of circulating Tregs into the tumor microenvironment (43). Here, we demonstrated that CCL20-treated IDO⁺ monocyte-derived macrophages significantly inhibited the T-cell proliferative activity compared with untreated monocyte-derived macrophage-mediated suppression on T-cell proliferation and production of IFNγ in CD4⁺ and CD8⁺ cells. On the other hand, we found the CD25⁺Foxp3⁺ Treg-like cells significantly increased in samples cultured with CCL20-treated IDO⁺ monocyte-derived
macrophages compared with those cultured with untreated monocyte-derived macrophages. The potential mechanism for the increase in CD25$^{\text{+}}$ Foxp3$^{\text{+}}$ Treg-like cells may be the production of TGF-β, IL10, and thrombospondin-1 (TSP1), which have been reported to induce Tregs (44, 45). Together, these results indicate that the release of CCL20 during hypoxic-EMT plays an important role in creating a tumor immunosuppressive microenvironment.

In macrophages and DCs, STAT1 activation has been shown to induce IDO expression via type I or type II IFN stimulation (46). In addition, posttranslational modification of STAT3 by phosphorylation and/or acetylation has been demonstrated to be essential for the expression of IDO in DCs in response to commensal bacteria or allograft transplant (47–49). In this study, we examined the expression and phosphorylation of STAT1 and STAT3 and found that the level of pSTAT1, but not pSTAT3, significantly increased in CCL20-treated monocyte-derived macrophages. This suggests that CCL20 induced expression of IDO might be due to phosphorylation of STAT1. Therefore, CCL20 may act in similar way to the classical IFNγ signaling pathway that has previously been reported to increase IDO expression.

Macrophages are versatile, plastic cells that can respond to environmental signals and differentiate into a tumor supportive phenotype (24, 50). Several studies identified the interaction between cancer cells and macrophages, using condition medium from cancer cell line to induce macrophages (22, 33). However, these studies may not reflect the real status in a tumor microenvironment, where they would be in direct cell-to-cell contact. Therefore, it is likely that this induction effect will be reduced if the cancer and immune cells are separately cultured. To mimic a hepatocellular carcinoma cell condition microenvironment in vitro, we cocultured monocytes with hepatoma cells. We found that IDO was weakly expressed in the monocyte-derived macrophages after coculture with hepatoma cells, and there was no IDO expression in macrophages induced by the condition medium alone (33).

In conclusion, our results provide new insights into the action of CCL20 on monocyte-derived macrophages that was exercised to counteract effective T-cell responses. The hypoxia-induced EMT of cancer cells helps to educate newly recruited monocytes by secreting CCL20, which, in turn, induces IDO upregulation in the monocyte-derived macrophages. This subset of IDO$^{\text{+}}$ monocyte-derived macrophages counteract effective T-cell responses by inhibiting the proliferation of T cells and the production of IFNγ.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: L.-Y. Ye, W. Chen, Q. Zhang, T.-B. Liang
Development of methodology: L.-Y. Ye, Q. Zhang, T.-B. Liang

Figure 7.
Schematic model depicting the cancer cell and monocyte-derived macrophage cross-talk observed in the tumor microenvironment. When the circulating monocytes are recruited to the tumor, cancer cells educate them, converting them into monocyte-derived macrophages. After the hypoxia-induced EMT of cancer cells located in the invasive front, the transitioned cells will secret CCL20, which, in turn, induces IDO upregulation in the monocyte-derived macrophages. This subset of IDO$^{\text{+}}$ monocyte-derived macrophages counteract effective T-cell responses by inhibiting the proliferation of T cells and the production of IFNγ.
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.-Y. Ye, W. Chen, X.-L. Bai, Q. Zhang

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L.-Y. Ye, X.-L. Bai, Q. Zhang, Q.-D. Hu

Writing, review, and/or revision of the manuscript: L.-Y. Ye, W. Chen, X.-L. Bai, X.-Y. Xu, Q. Zhang, X. F. Xia, G. G. Li, Q.-D. Hu, Q.-H. Fu

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.-Y. Ye, X.-L. Bai, X.-Y. Xu, Q. Zhang, X. Sun, Q.-D. Hu, T.-B. Liang

Study supervision: L.-Y. Ye, T.-B. Liang

References

Grant Support

This study was supported by grants from the National High Technology Research and Development Program 863 of China (86115AA020405 to T.B. Liang) and 86115AA020533, to W. Chen) and National Natural Science Foundation of China (81472212 to T.B. Liang; 91442115 to X.L. Bai; 81130007 to T.B. Liang; 81302071 to W. Chen; 81401954 to Q. Zhang; and 81171864 to X.L. Bai).

Received April 15, 2015; revised October 2, 2015; accepted October 20, 2015; published OnlineFirst February 2, 2016.
Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis

Long-Yun Ye, Wei Chen, Xue-Li Bai, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-0977

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2016/02/06/0008-5472.CAN-15-0977.DC1

Cited articles
This article cites 50 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/76/4/818.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.