JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis

Na Li, Shilpa S. Dhar, Tsai-Yu Chen, Pu-Yeh Kan, Yongkun Wei, Jae-Hwan Kim, Chia-Hsin Chan, Hui-Kuan Lin, Mien-Chie Hung, and Min Gyu Lee

Abstract

Entire or partial deletions of the male-specific Y chromosome are associated with tumorigenesis, but whether any male-specific genes located on this chromosome play a tumor-suppressive role is unknown. Here, we report that the histone H3 lysine 4 (H3K4) demethylase JARID1D (also called KDM5D and SMCY), a male-specific protein, represses gene expression programs associated with cell invasiveness and suppresses the invasion of prostate cancer cells in vitro and in vivo. We found that JARID1D specifically repressed the invasion-associated genes MMP1, MMP2, MMP3, MMP7, and Slug by demethylating trimethyl H3K4, a gene-activating mark, at their promoters. Our additional results demonstrated that JARID1D levels were highly downregulated in metastatic prostate tumors compared with normal prostate tissues and primary prostate tumors. Furthermore, the JARID1D gene was frequently deleted in metastatic prostate tumors, and low JARID1D levels were associated with poor prognosis in prostate cancer patients. Taken together, these findings provide the first evidence that an epigenetic modifier expressed on the Y chromosome functions as an anti-invasion factor to suppress the progression of prostate cancer. Our results also highlight a preclinical rationale for using JARID1D as a prognostic marker in advanced prostate cancer.

Introduction

Histone lysine methylation plays a pivotal role in epigenetically regulating gene expression at the genome-wide level (1, 2). This modification is associated with either gene activation or silencing, depending on the site of lysine residues. For instance, methylated histone H3 lysine 4 (H3K4) is related to active or poised gene states, whereas methylated H3K27 is linked to gene repression. Lysine residues can be methylated in three different states: mono-, di-, and trimethylation (me1, me2, and me3). Distribution patterns and functions of the three methylation states in the mammalian genome are often distinct but overlap substantially. For example, trimethyl H3K4 (H3K4me3) is generally located at the transcription initiation sites (3). Its levels are positively linked to the transcription frequency of active genes but can be found at poised promoters, which also contain the repressive mark H3K27me3. Most of dimethyl H3K4 (H3K4me2) is colocalized with H3K4me3 at the 5′-ends of active genes, and its subset is localized at the enhancers and bodies of active genes.

Histone lysine methylation is reversibly modulated by specific lysine methyltransferases and demethylases (4, 5). H3K4 methylation is established by several methyltransferases, including mixed lineage leukemia (MLL) 1–4, SET1, SET7 (alias SET9), SMYD1, and SMYD2 (6). It can be reversed by several H3K4 demethylases, including LSD1, LSD2, and JARID1A–D (7–13).

The entire or partial regions of the male-specific Y chromosome are deleted in up to 52% of prostate tumors, although the entire loss of the Y chromosome may be rare in these male-specific tumors (14). Of interest, alterations of the Y chromosome also occur in other types of cancer, including testicular tumors, male-predominant esophageal tumors (about 33%), male bladder tumors (10% to 40%), and male pancreatic tumors (15–19). Vijayakumar and colleagues showed that the reintroduction of a Y chromosome in the Y chromosome–deficient human prostate cancer cell line PC-3 impeded tumor formation in vivo (20). These studies indicate that the Y chromosome has a tumor-suppressive function in addition to its roles in sex determination and male fertility. This notion is further supported by a recent report showing that the loss of the Y chromosome in peripheral blood is correlated with a high risk of cancer (21). However, whether a male-specific protein expressed on the Y chromosome may function as a tumor or metastasis suppressor remains unknown.

We previously showed that the histone demethylase JARID1D (also known as KDM5D and SMCY) downregulates gene expression by demethylating H3K4me2 and H3K4me3 (7). Of H3K4 methyltransferases and demethylases, only JARID1D is male-specific, because only JARID1D is localized on the Y chromosome.
containing shLuc or shJARID1D were seeded in 24-well plates at
24 to 48 hours of incubation, the cells were harvested, and the
(JGemini) according to the manufacturer’s instructions. Following
3000 (Life Technologies) or the Continuum transfection reagent
ID1D, we transfected the PC3 prostate cancer cells with the
(RT-PCR) and Western blot analysis.
by quantitative reverse transcription polymerase chain reaction
by puromycin for 72 hours. Knockdown ef
10% fetal bovine serum. Media with virus particles were used to
later, the medium was replaced with DMEM supplemented with
vector. Lentiviruses were generated by cotransfecting HEK293T cells
TRCN0000234751), shJARID1D-N4 (TRCN0000234754), and
Knockdown and ectopic expression experiments
Three independent small hairpin (sh) RNAs against JARID1D
were used for knockdown of JARID1D. shJARID1D-N1
(1TRCN0000234751), shJARID1D-N4 (TRCN0000234754), and
shLuciferase (shLuc; control shRNA) in the puromycin-resistant
PLKO.1 vector were purchased from Sigma Aldrich. shJARID1D-4
(GCACAAACCATGCTGCAATGTAAC) was cloned into the PLKO.1
vector. Lentiviruses were generated by cotransfecting HEK293T cells
with a shJARID1D (or shLuc)-expressing plasmid, a packing plasmid
(ΔdeltaR8), and an envelope plasmid (VSV-G). Fourteen hours later,
the medium was replaced with DMEM supplemented with
10% fetal bovine serum. Media with virus particles were used to
infect the DU145 prostate cancer cells. Infected cells were selected
by puromycin for 72 hours. Knockdown efficiency was determined
by quantitative reverse transcription polymerase chain reaction
(RT-PCR) and Western blot analysis.
To ectopically express JARID1D and its catalytic mutant mJARID1D,
we transfected the PC3 prostate cancer cells with the
JARID1D or mJARID1D cDNA construct using Lipofectamine
3000 (Life Technologies) or the Continuum transfection reagent
(Geminii) according to the manufacturer’s instructions. Following
24 to 48 hours of incubation, the cells were harvested, and the
total RNAs were isolated for further analysis.
Cell proliferation, migration, and invasion assays
For the cell proliferation assays, cells infected with viruses
containing shLuc or shJARID1D were seeded in 24-well plates at
a density of 15,000 cells per well in triplicate, and cells were
counted 1, 2, 3, and 4 days after plating. Migration assays were
performed as previously described (22–24) with some modifica-
tion. Briefly, cells (1.0 × 10^5) in 500 μL of serum-free DMEM were
seeded on the porous membrane of each insert, and 500 μL of
DMEM media containing 10% fetal bovine serum was added to
each well. Twenty-four hours later, the cells that had migrated to
the other side of the membrane were fixed with 4% paraformal-
dehyde and stained with crystal violet. For the cell invasion assay,
DU145 cells (1.0 × 10^5) and PC3 cells (1.0 × 10^5) were
suspended in DMEM with 0.1% bovine serum albumin and seeded
on the Matrigel-coated membrane in each insert. Twenty-four
hours later, the cells that had invaded the Matrigel and moved to
the other side of the membrane were fixed and stained as in the
migration assays.

Mouse xenograft studies
DU145 cells were transfected with the pGL4.51 [luc2/CMV/
Neo] plasmid (Promega) and selected with 500 μg/mL G418. Two
weeks later, single-cell colonies that stably expressed biolumines-
cence signals were selected using the IVIS 100 Imaging System
(Xenogen). A clone (DU145-Luc2, #9) was used in the mouse
xenograft studies. DU145-Luc2 cells were infected with viruses
containing shScramble or shJARID1D-4. Cells were selected for at
least 3 days using puromycin.
The cells were injected into the tail veins of 6- to 8-week-old
male athymic nu/nu mice (1 × 10^7 cells per mouse) obtained
from The University of Texas MD Anderson Cancer Center (Hou-
ton, Texas). After cell implantation, metastasized loci and tumor
growth were monitored using the IVIS 100 Imaging System. Eight
to 10 weeks after implantation, the mice were humanely eutha-
nized, and their lung tissues were collected for standard histo-
logical examination. MD Anderson’s Institutional Animal Care
and Use Committee approved the care and use of the mice used in
these experiments.

RNA isolation, cDNA synthesis, and quantitative RT-PCR
Total RNAs were extracted using RNeasy kits (Qiagen). cDNAs
were synthesized using the iScript cDNA Synthesis Kit (Bio-Rad)
according to the manufacturer’s instructions. Quantitative
RT-PCR was carried out in triplicate using SYBR-Green. Gene
expression levels were measured quantitatively using CFX Man-
ger software (Bio-Rad) and were normalized to GAPDH. The
relative fold is the fold change compared with the control. The
RT-PCR primer sequences are listed in Supplementary Table S1.

cDNA microarray
DU145 cells were infected with shLuc- or shJARID1D-containing
lentiviruses three times and selected with puromycin for 72
hours. Total RNAs were prepared using an RNeasy Kit (Qiagen),
and knockdown efficiency was assessed by quantitative RT-PCR.
Affymetrix U133P GeneChips were used for the microarray
experiments.

Chromatin immunoprecipitation assay
Chromatin immunoprecipitation (ChIP) assays were carried
out as previously described (25). Rabbit immunoglobulin (IgG)
was used as a control for the ChIP assay, and the PCR values of
ChIP DNA were normalized to input. The ChIP PCR primer
sequences are listed in Supplementary Table S2.
ChIP-Seq

For H3K4me3 ChIP-Seq, DU145 prostate cells infected with shLuc- or shJARID1D-containing viruses were cross-linked with 1% formaldehyde at room temperature for 10 minutes and then sonicated to fragment genomic DNA sizes to 200 to 500 bp. ChIP was performed using anti-H3K4me3 antibody. After library preparation and quantification, DNA was subjected to HiSeq 2500 sequencing platform (UCI Genomics HTF). Reads were aligned to the human genome (UCSC hg19) using the Bowtie aligner. If a read maps to more than one genomic locations, the read alignment was suppressed (26). Then the unmapped reads were removed using Sam tool. MACS software was used for peak calling. In MACS, the parameter with no model and a shift size of 100 bp was chosen, and input data were used as a control for normalization (27). Bigwig track were generated to visualize ChIP-seq data in the UCSC genome browser. Integrative analysis of gene profile around TSS and heatmap generation was performed using Cistrome platform (28)

Immunohistochemistry

The avidin–biotin immunoperoxidase method was used to visualize proteins in tissue microarrays (Biomax PR955 and PR8011). Tissues in microarrays were deparaffinized, treated with citrate buffer, and heated with a microwave for 20 minutes. Then,
A. Genes upregulated by JARID1D knockdown

- Translation
- Cell adhesion
- Transport
- Transmembrane transport
- Signal transduction
- Cell proliferation
- Protein complex assembly
- Cell differentiation
- Cell cycle
- Ribosome biogenesis
- Cell division
- Mitosis
- Protein folding
- Carbohydrate metabolic process
- Cell death
- Extracellular matrix organization
- Cytoskeleton organization
- Cell motility
- Vesicle-mediated transport
- Response to stress
- Nucleocytoplasmic transport
- Embryo development
- Protein maturation

B. Expression (log2)

- LOC720755
- FTHL1
- ADAMTS16
- MMP1
- SNAI2
- IGFBP3
- BMP2
- ANGPT1
- TFF2
- ESR1
- HMGAA2
- SCG5
- LOC4
- CTIP2A
- GPR87
- RPS19
- LOC2062
- TME/M7A
- PDE1C
- NAK
- PIK3R1
- AKR1D1
- CDKN1A
- BRAK1
- DPAP4
- VIL1
- ITGB5
- MIR155HG
- ZNF195
- H2B3T1
- NYSE
- SLC35F3
- LOC67352
- ZNF41
- CADO
- SPN1K
- MTHFD2L
- IOD2
- TSLAC4
- TRAC
- LOC100131262
- CAMKK1

C. Relative mRNA level (fold)

- shLuc
- shJARID1D-N4
- shJARID1D-4
- DU145 cells
microarrays were incubated with the primary antibodies (e.g., anti-JARID1D) for 1 hour at room temperature. Staining intensity was assessed by Chromavision Automated Cellular Imaging System (ACIS-III) from Dako.

Analysis of expression levels in tumor samples and of patient survival

For the Oncomine database analysis, the mRNA levels were normalized to the median value of the dataset, and expression levels were log2-transformed (www.oncomine.com). Kaplan–Meier overall survival curves were generated for patients for whom follow-up data were available. The log-rank (Mantel–Cox) test was used to analyze survival differences between groups.

Statistical analysis

Data are presented as the means ± SEMs (error bars). A Student t test was used to assess whether differences between two different groups were statistically significant. *, P < 0.05; **, P < 0.01; and ***, P < 0.001 indicate statistically significant changes.

Results

JARID1D suppresses the invasive but not the proliferative or migratory abilities of prostate cancer cells

As an initial step toward understanding the role of JARID1D in prostate cancer events, we determined whether JARID1D regulates the proliferation, migration, and invasion of prostate cancer cells. In particular, we examined the effect of JARID1D knockdown on these cellular characteristics using the widely used and weakly metastatic prostate cancer cell line DU145 (29, 30). All three shJARID1Ds used in this study specifically reduced JARID1D mRNA and proteins levels (Fig. 1A; Supplementary Fig. S1), but JARID1D depletion did not have a significant effect on the proliferative and migratory abilities of DU145 cells (Fig. 1B and C). The cell migration assay, because it lacks an extracellular matrix barrier, scores the simple migratory abilities of cancer cells. In contrast, the invasion assay measures the abilities of cancer cells to degrade and invade a Matrigel matrix that mimics the in vivo matrix barrier. Therefore, we also examined the effect of JARID1D knockdown on cell invasion. In sharp contrast to cell migration, cellular invasiveness was highly increased by JARID1D depletion (Fig. 1D). These results indicate that JARID1D may act as an epigenetic repressor of the invasion, but not proliferation or migration, of prostate cancer cells.

JARID1D inhibits the invasiveness of prostate cancer cells in vivo

To assess the effect of JARID1D on the invasiveness of prostate cancer cells in vivo, we used an intravenous mouse xenograft model. For this experiment, we generated a DU145 cell line expressing a luciferase (DU145-Luc2 cells) that enabled us to monitor tumor growth in vivo. Following the treatment of DU145-Luc2 cells with shJARID1D or control shRNA, cells were injected into tail veins of mice. In this xenograft model, cancer cells invade into a distant organ during extravasation (departure from the blood system) and grow as a tumor at the metastatic site (primarily, the lung). This mouse xenograft experiment demonstrated that 8th to 10th weeks after cell injection, luciferase signals in the shJARID1D mice (n = 15) were significantly higher than those in the control shRNA mice (n = 9; Fig. 1E and F). Tumor formation in shJARID1D group mice was confirmed by hematoxylin and eosin staining (Fig. 1G). These results suggest that JARID1D suppresses the invasive capacities of DU145 prostate cancer cells in vivo.

JARID1D represses the expression of invasiveness-associated genes

To determine how JARID1D suppresses the invasive ability of prostate cancer cells, we compared the whole genome mRNA expression profile of JARID1D-depleted DU145 cells to that of control (shLuc-treated) DU145 cells using Affymetrix microarrays. Consistent with JARID1D’s inhibition of cellular invasiveness, gene ontology analysis showed that JARID1D knockdown upregulated gene expression programs associated with cellular invasiveness, including cell adhesion, cytoskeleton organization, and extracellular matrix organization (Fig. 2A and B). The number of invasiveness-associated genes upregulated by JARID1D knockdown was higher than the number of those genes downregulated by JARID1D knockdown (Fig. 2A vs. Supplementary Fig. S2). Interestingly, expression levels of several invasion-associated genes, including the matrix metalloproteinase 1 (MMP1) and the transcriptional repressor gene Slug, were increased by JARID1D knockdown (Fig. 2B). Our quantitative RT-PCR analysis confirmed that JARID1D knockdown upregulated expression levels of MMP1 and Slug (Fig. 2C).

MMPs are known to facilitate cell invasion and metastasis by enzymatically degrading extracellular matrix components (31). The mesenchymal cell–cell adhesion molecule N-cadherin and Slug promote epithelial-to-mesenchymal transition (EMT), a reversible, temporary but complex process in which immotile epithelial cells convert to motile and invasive mesenchymal cells. In contrast, the epithelial cell–cell adhesion molecule E-cadherin inhibits this process (32, 33). However, the expression of multiple well-known invasion-associated genes, including several MMPs, E-cadherin, and N-cadherin, was not detected by the Affymetrix microarrays (Fig. 2B). Therefore, we manually analyzed the effect of JARID1D knockdown on these genes using quantitative RT-PCR. Our results demonstrated that in addition to the upregulation of MMP1 and Slug, JARID1D knockdown also upregulated the MMP2, MMP3, MMP7, MMP10, MMP13, MMP14, and N-cadherin genes in DU145 cells (Fig. 2C). In agreement with JARID1D’s lack of effect on cell migration, JARID1D depletion did not affect the expression of several genes associated with cell

Figure 2. JARID1D represses the expression of several invasiveness-associated genes. A, gene ontology analysis for genes upregulated by JARID1D knockdown in DU145 cells. The mRNA levels were measured using the Affymetrix U133P gene expression microarray. Gene ontology analysis was performed for 1,416 genes whose expression levels in the shJARID1D group were 1.5-fold higher than those in the shLuc group (i.e., shJARID1D/shLuc ≥ 1.5). B, heatmap of genes upregulated by JARID1D knockdown in DU145 cells as measured by microarray, C, effects of JARID1D knockdown on the expression of invasiveness-associated genes. Quantitative RT-PCR analysis of genes showed that JARID1D knockdown increased MMP1, MMP2, MMP3, MMP7, MMP10, MMP13, MMP14, N-cadherin, and Slug mRNA levels in DU145 cells.
migration, such as RhoA and RhoC. These results suggest that JARID1D suppresses cell invasion by transcriptionally repressing multiple invasion-associated genes.

JARID1D’s enzymatic activity is required for JARID1D’s anti-invasive function

A histone demethylase can regulate cellular functions dependent or independent of its catalytic activity. For example, we have shown that the demethylase activity of the H3K27 demethylase UTX (also called KDM6A) is dispensable for the regulation of the proliferative and invasive abilities of breast cancer cells (24). In contrast, the demethylase activity of UTX is dispensible for several other biologic processes, such as T-box family member–dependent gene expression (34), mesoderm differentiation of mouse embryonic stem cells (35), and mouse embryonic development (36).

To assess whether the enzymatic activity of JARID1D is necessary for cellular invasiveness and to complement shRNA-mediated JARID1D knockdown experiments, we determined the effect of JARID1D's ectopic expression in the prostate cancer cell line PC3, which lacks endogenous JARID1D because of the absence of the Y chromosome. As shown in Fig. 3A and B, wild-type JARID1D and its catalytic mutant mJARID1D were similarly expressed, and their overexpression had no obvious effect on total cellular H3K4me3 levels. Our results also showed that JARID1D but not mJARID1D significantly decreased the invasive abilities of PC3 cells (Fig. 3C). Consistent with this, the ectopic expression of JARID1D but not that of mJARID1D significantly reduced the expression levels of the MMP1, MMP2, MMP3, MMP7, and Slug genes in PC3 cells (Fig. 3D–H). These results indicate that JARID1D has an anti-invasiveness function that depends largely on JARID1D’s catalytic activity.
JARID1D occupies multiple invasiveness-associated genes and demethylates H3K4me3 at their promoters

JARID1D represses gene expression by demethylating H3K4me3 at the gene promoter regions (7). Therefore, genes upregulated by JARID1D knockdown may be targeted by JARID1D. We tested this possibility by performing ChIP experiments. In particular, we examined different promoter regions of the MMP1, MMP2, MMP3, MMP7, and Slug genes. Our ChIP results showed that JARID1D occupied specific promoter regions in the MMP1, MMP2, MMP3, MMP7, and Slug genes (Fig. 4A–E).

Because we previously showed that JARID1D demethylates H3K4me3 represses gene expression (7), we sought to determine whether JARID1D demethylates H3K4me3 at the promoters of JARID1D-repressed genes in DU145 cells. Specifically, we assessed the effect of JARID1D knockdown on H3K4me3 levels at gene promoters using a ChIP-Seq approach. JARID1D knockdown slightly increased the average of H3K4me3 ChIP-Seq peaks of all the gene-regulatory regions spanning +6 kb (+6 kb (Fig. 5A; Supplementary Fig. S3) and also augmented the averaged ChIP-Seq peak of H3K4me3 signals of the top 150 genes upregulated by shJARID1D (Fig. 5B; Supplementary Table S3; see also Fig. 2B). The averaged H3K4me3 ChIP-Seq peak of the 150 genes was slightly higher than that of all the gene-regulatory regions (Fig. 5A), suggesting that JARID1D preferentially represses genes whose H3K4me3 levels are higher than the average H3K4me3 level. Modest increases of H3K4me3 peaks at the 150 genes upon JARID1D knockdown were correlated with substantial increases in their gene expression (Supplementary Table S3 vs. Fig. 5B).

We also examined the effect of JARID1D knockdown on H3K4me3 ChIP-Seq peaks at individual genes using our ChIP-Seq data. JARID1D knockdown modestly increased H3K4me3 levels at MMP1, MMP3, MMP7, and Slug promoters, whereas it had no obvious effect on H3K4me3 levels at the ACTB promoter (Fig. 5C–G). However, some genes, including MMP2, did not show a detectable H3K4me3 ChIP-Seq signal upon JARID1D knockdown, although their expression levels were upregulated by JARID1D knockdown (data not shown). In the analysis of chromatin occupancy of histone marks and chromatin-binding proteins, the sensitivity of quantitative ChIP is often higher than that of ChIP-Seq. Therefore, we performed quantitative ChIP to manually detect H3K4me3 levels at the MMP2 promoter. Our quantitative ChIP results showed that JARID1D knockdown increased H3K4me3 levels at the MMP2 promoter in addition to the MMP1, MMP3, MMP7, and Slug promoters (Fig. 5H). These results indicate that the JARID1D-catalyzed demethylation of H3K4me3 is linked to the JARID1D-mediated repression of several invasion-associated genes.

JARID1D levels are low in metastatic prostate tumors, and the JARID1D gene is frequently deleted in metastatic prostate cancer but not in primary tumors

To determine whether JARID1D expression is dysregulated in primary and metastatic prostate tumors, we compared JARID1D
Low JARID1D levels are associated with high MMP1 and MMP3 mRNA levels and with poor prognosis in prostate cancer patients

To determine whether JARID1D levels are associated with the expression of certain JARID1D target genes in prostate tumor samples, we compared the expression levels of JARID1D to those of its target genes using the cBioPortal (NCBI GEO Database #GSE1032). Our database analysis showed that JARID1D mRNA levels were inversely correlated with the mRNA levels of MMP1 and MMP3 but not those of other JARID1D target genes, including MMP2, MMP7, MMP10, and Slug (Fig. 7A and B; Supplementary Fig. S5).

To determine whether JARID1D levels are linked to the clinical outcomes of prostate cancer patients, we performed a Kaplan-Meier survival analysis of 39 prostate cancer patients grouped by immunohistochemistry-assessed JARID1D protein levels. This analysis revealed that low JARID1D protein levels were significantly associated with poor overall survival in prostate cancer patients (Fig. 7C). Moreover, our analysis of the publicly available databases showed that low JARID1D mRNA levels also signified poor overall survival in two different cohorts of prostate cancer patients (Fig. 7D and E). These results suggest that JARID1D is a novel prognostic marker of prostate cancer.

Discussion

Our results indicate that the male-specific histone demethylase JARID1D suppresses the invasive ability of prostate cancer cells in vitro and in vivo by downregulating invasion-associated gene programs. Compared with normal prostate tissues, primary prostate tumors had low JARID1D levels, and metastatic prostate tumors had even lower JARID1D levels than primary prostate tumors did. These findings are strengthened by our public database analysis, which showed that the JARID1D gene was frequently deleted in metastatic prostate tumors but not in primary tumors. Furthermore, our findings demonstrated that low JARID1D mRNA and protein levels were linked to poor survival in prostate cancer patients, indicating that JARID1D is a prognostic marker for prostate cancer.

The overall function of the Y chromosome appears to be associated with tumor suppression (20, 21). However, multiple Y chromosome-specific genes, including Sry and TSPY, have been reported to have oncogenic function (38, 39). The current study, which indicates that JARID1D has a metastasis-suppressive role in prostate cancer progression, provides new molecular insight into how the partial or entire loss of the Y chromosome may reduce or nullify its overall tumor-suppressive function. To our knowledge, JARID1D is the first Y chromosome-specifically expressed protein to be identified as an anti-invasiveness factor. Walport and colleagues recently reported that the Y chromosome contains an additional histone methylation modifier called UTIY (40). UTIY has a weak H3K27 demethylase activity, but its function in prostate tumorigenesis is not known.

Global H3K4me3 levels are significantly increased in many advanced prostate tumors, including prostate cancer metastases (41). Our data indicated that low JARID1D levels were not correlated with high global H3K4me3 levels in prostate tumor samples (data not shown). In addition, our results showed that JARID1D overexpression had no detectable effect on global H3K4me3 levels while JARID1D knockdown only weakly increased global H3K4me3 levels (Fig. 5A). These results are not surprising, because global H3K4me3 levels may be coregulated by several H3K4 methyltransferases and demethylases. In support of this, previous studies have shown that total cellular levels of the H3K4me3 demethylase JARID1B and the H3K4me2 demethylase LSD1 are increased in prostate tumors, although these studies included small numbers of tumors (42, 43). Together, these findings suggest that low JARID1D levels enhance cellular invasion by increasing H3K4me3 levels at specific invasiveness-associated genes (rather than at the whole genomic level) and activating such genes.

Metastasis is a complicated process in which tumor cells undergo the detachment from the primary site, extravasation into blood vessels, extravasation to a different body location, and colonization at the secondary site (44). Mounting evidence suggests that EMT is required for metastasis. In the present study, JARID1D knockdown increased expression levels of key EMT regulators, such as N-cadherin and Slug. In contrast, JARID1D did not affect the expression of E-cadherin (Fig. 2C), suggesting that E-cadherin may not be an important factor for the JARID1D-mediated regulation of cell invasion. In line with this, Nieman and colleagues reported that overexpression of N-cadherin enhances the mobility and invasion of cancer cells regardless of E-cadherin...
Li et al.

A

Normal Cancer

High JARID1D

Low JARID1D

Cancer Metastasis

B

P < 0.001

<table>
<thead>
<tr>
<th>IHC</th>
<th>JARID1D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Tumor</td>
<td>28</td>
<td>68</td>
</tr>
<tr>
<td>Metastasis</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>59</td>
</tr>
</tbody>
</table>

C

JARID1D mRNA levels

Log2 median-centered ratio

Normal Primary Metastasis

P = 0.024 P = 6.18E-8

D

Exome sequencing aCGH

Deletion of JARID1D gene (%)

High grade localized tumor Metastatic tumors

P = 0.024

E

Percent change of total patients

Histone demethylases Histone methyltransferases

Deletion Amplification Mutation

Cancer Research

Published OnlineFirst January 8, 2016; DOI: 10.1158/0008-5472.CAN-15-0906

Downloaded from cancerres.aacrjournals.org on November 15, 2017. © 2016 American Association for Cancer Research.
levels (45). We also found that JARID1D represses the expression of multiple MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP10, MMP13, and MMP14 (Fig. 2C). Interestingly, MMPs have been known to induce EMT. For example, the induced expression of MMP3 drives the molecular and phenotypic conversion of normal epithelial cells to mesenchymal cells (46). Reciprocally, EMT induction results in increased levels of MMPs. For instance, the expression of Snail1 in cancer cells triggers an

Figure 6.
JARID1D expression is significantly decreased in metastatic prostate cancer. A, representative images of immunohistochemical staining for JARID1D expression in human normal prostate tissues, primary prostate tumors, and metastatic prostate tumors. B, immunohistochemical analysis of JARID1D protein levels in normal prostate tissues (n = 21), primary prostate tumors (n = 68), and metastatic prostate tumors (n = 6). C, analysis of JARID1D mRNA levels using a dataset called "Yu prostate cancer" from the publicly available database Oncomine. D, database analysis for the frequency of JARID1D gene deletion. Using exome sequencing data from the Grasso prostate cancer dataset from the Oncomine database, we analyzed the JARID1D gene’s deletion in localized prostate tumors (n = 11) and metastatic prostate tumors (n = 50; left). Tumors with −2 (a high-level copy loss) were considered to have gene deletion (37). Using array comparative genomic hybridization (aCGH) data of the Grasso prostate cancer dataset from the Oncomine database, we analyzed the JARID1D gene’s deletion (right). Less than −1 in log2 (tumor/normal tissue ratio) in gene copy numbers was considered to have gene deletion (37). E, analysis of the mutation and copy number alteration of multiple histone lysine methyltransferases and demethylases in 50 metastatic prostate tumors using exome sequencing data from the Grasso prostate cancer dataset (cBio Portal). Tumors with −2 (a high-level copy loss) were considered to have gene deletion. Data in the bar graph in D are reused here for direct comparison.

Figure 7.
Low JARID1D levels are correlated with high MMP1 and MMP3 levels in prostate tumors and with poor survival in prostate cancer patients. A and B, correlation analysis of JARID1D mRNA levels with either MMP1 (A) or MMP3 (B) mRNA levels in a dataset from the publicly available database cBioPortal (NCBI GEO Database #GSE21032). C, Kaplan–Meier survival rate analysis of a set of prostate cancer patients grouped by IHC–assessed JARID1D levels. Tumor samples in tissue microarrays were analyzed by IHC. D, Kaplan–Meier survival rate analysis of a set of prostate cancer patients grouped by JARID1D mRNA levels. A prostate cancer patient dataset with follow-up history (NCBI GEO Database #: GSE21033) from cBioPortal was used; the mean JARID1D level for the entire group was used as the cutoff value. E, survival analysis of castration-resistant prostate cancer patients grouped by JARID1D mRNA levels. Data with follow-up history in the Grasso prostate cancer dataset from the Oncomine database were used for this analysis.
MMP-14– and MMP-15–dependent invasion program (47). Therefore, it is likely that JARID1D represses certain EMT pathways in addition to several MMP genes to inhibit the invasiveness of prostate cancer cells.

Increased invasive abilities of cancer cells are essential for metastasis, and these abilities are in principle under epigenetic control. In fact, histone methylation modifiers, which epigenetically regulate gene expression, are positively or negatively associated with metastasis processes. There are multiple examples for metastasis-promoting histone methylation modifiers. Minutes and colleagues found that the H3K27 methyltransferase EZH2 may induce prostate tumorigenesis and metastasis by repressing expression of the tumor-suppressor protein DARZIP (48). Ren and colleagues reported that EZH2 might enhance cancer cell invasion by downregulating expression of the metastasis suppressor RRP (49). Cao and colleagues showed that JARID1A (also known as RBBP2 and KDM5A) promotes breast cancer progression and metastasis (50). Similarly, Luo and colleagues demonstrated that the histone demethylase KDM4C might enhance breast tumor growth and metastasis (51). SMYD3 is upregulated in many cancer types, including pancreatic and lung tumors, and may promote cancer cell invasion by increasing expression of the matrix metalloproteinase 9 (52). In addition to overexpression of aforementioned metastasis-promoting histone modifiers, the losses of metastasis-inhibiting histone methylation modifiers may enhance cancer cell metastasis. As described in the present study, JARID1D is lost and downregulated in a substantial portion of metastatic prostate tumors. The H3K9 methyltransferase SETDB1, which appears to inhibit metastasis of lung cancer cells, may enhance cancer cell metastasis. As described in the present study, JARID1D as an anti-invasiveness histone methylation modifier that acts against prostate cancer cell metastasis by repressing metastatic gene programs. Our work uncovers a previously unknown invasion-suppressive mechanism by which a Y chromosome–specifically expressed histone demethylase epigenetically inhibits prostate cancer metastasis.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: N. Li, P.-Y. Kan, M.G. Lee
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): N. Li, T.-Y. Chen
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): N. Li, S.S. Dhar, T.-Y. Chen, M.G. Lee
Writing, review, and/or revision of the manuscript: N. Li, M.G. Lee
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): N. Li, Y. Wei, J.-H. Kim, M.G. Lee
Study supervision: M.-C. Hung, M.G. Lee
Other (provided expertise and suggestions): H.-K. Lin

Acknowledgments
The authors thank Dr. Bingsan Gu, Dr. Amrishi Sharma, Dr. Zhenbo Han, and Ms. Su Zhang for their technical assistance and Joan Bitho, Dr. Chunnu Lin, and Dr. Liaoning Yang for supplying reagents. The authors also thank Joseph Munch for manuscript editing.

Grant Support
This study was supported by grants to M.G. Lee from the NIH (CA157919 and GM095659), the Cancer Prevention and Research Institute of Texas (CPRIT RP110183), and the Center for Cancer Epigenetics at MD Anderson (including Solexa allowance) and by a postdoctoral fellowship to N. Li from the Center for Cancer Epigenetics at MD Anderson.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 13, 2015; revised October 23, 2015; accepted November 9, 2015; published OnlineFirst January 8, 2016.

References

37. Oram SW, Liu XX, Lee TL, Chan WY, Lau YF. T3PY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 2006;6:154.

38. Oram SW, Liu XX, Lee TL, Chan WY, Lau YF. T3PY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 2006;6:154.

JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-0906

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2016/01/08/0008-5472.CAN-15-0906.DC1

Cited articles
This article cites 53 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/76/4/831.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/76/4/831.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/76/4/831.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.