Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity

Christine Pasero1,2, Gwenaelle Gravis2, Mathilde Guerin2, Samuel Grangeaud1, Jeanne Thomassin-Piana2, Palma Rocchi1,2, Maria Paciencia-Gros2, Flora Poizat2, Melanie Bentobj2, Francine Azario-Cheillan2, Jochen Walz2, Naji Salem2, Serge Brunelle2, Alessandro Moretta2, and Daniel Olive1,2,4

Abstract

The field of immunotherapy for solid tumors, such as prostate cancer, has been recently focusing on therapies that can counter tumor-mediated immunosuppression. Precise quantification and characterization of the immune infiltrates in tumors is crucial to improve treatment efficacy. Natural killer (NK) cells, major components of the antitumor immune system, have never been isolated from prostate tumors, despite their suspected role in disease progression. Here, we examined the frequency, phenotype, and functions of NK cells infiltrating control and tumor prostate tissues. NK cell infiltrates in prostate tissues were mainly CD56 (NCAM1)–positive and displayed an unexpected immature, but activated, phenotype with low or no cytotoxic potential. Furthermore, we show that TGFB1 (TGFB1) is highly secreted into the prostate environment and partly mediates the immunosuppressive effects on NK cells. In addition to this basal level of immunotolerance to NK cells, the prostate environment became further resistant to NK cell–mediated immunity upon cancer cell infiltration. Coculture experiments revealed that prostate cancer cells induced the expression of inhibitory receptor (ILT2/IL18R1) and downregulated the expression of activating receptors NKp46 (NCR1), NK2D (KLRK1), and CD16 (FGCR3) by NK cells, thus preventing their recognition of tumor cells. Notably, blood levels of NKp46 were also decreased in prostate cancer patients and were inversely correlated with levels of prostate-specific antigen, the main prognostic factor in prostate cancer. Our study shows that a strong immunosuppressive environment impairs NK cell function at multiple levels in prostate cancer and provides a rationale for the design of therapies that restore NK cell efficiency in the prostate tumor microenvironment. Cancer Res; 76(8); 2153–65. ©2016 AACR.

Introduction

Prostate cancer is one of the most frequent causes of cancer mortality among men (1) and is still incurable once it becomes metastatic. Androgen-deprivation therapy (ADT) is the mainstay of treatment for advanced prostate cancer, but resistance to castration inevitably develops. Immunotherapy has been introduced as an alternative therapeutic approach with Sipuleucel-T and GVAX-PCa cell-based cancer vaccines, or Ipilimumab (anti-CTLA-4) mAb (2). Over the past few years, the immune infiltrate and its prognostic significance have attracted a lot of attention (3); however, infiltrating lymphocytes are poorly characterized in prostate. Thus, the interaction between immune system and tumor cells within the patient’s tumor needs to be better understood in order to develop clinically effective immunotherapies.

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a fundamental role in antitumor immunity (4). Mice lacking NK cells or defective for NK cell receptors have a higher incidence of spontaneous tumors (5). A 11-year follow-up study reported that a low degree of NK cell cytotoxicity was correlated with increased cancer risk in men (6). NK cells can be broadly divided in CD56dim cytotoxic subset, which represent the majority of NK cells in the blood, and in CD56bright cytokine producer subset (7). The activation of NK cells is regulated by a balance between activating and inhibitory signals transmitted through surface receptors that determine the cytotoxic response (8). Inhibitory receptors include the killer immunoglobulin-like receptors (KIR), CD94/NKG2A, and LILRB1) and downregulated the expression of activating receptors (9, 10).

Tumor cells have developed several mechanisms to evade from NK immunosurveillance, through the modulation of cell surface molecules or the release of immunosuppressive soluble factors such as PGE2 or TGFB1 in the tumor microenvironment (9). Alterations of NCRs have been observed in blood from acute myeloid leukemia patients (11), and recent studies show that intratumoral NK cells display phenotypic and/or functional alterations compared with peripheral NK cells in breast cancer (12, 13), lung cancer (14–16), colorectal cancer (17), renal cell
In prostate cancer, the ligands for NKp30 and NKp46 were found to be expressed on primary tumors but not on benign prostate hyperplasia (21). Importantly, increased NK cell infiltrate within prostate tumors was found to be associated with a lower risk of progression through IHC, providing evidence that NK cells may have a protective role against prostate cancer in humans (22). However, prostate-infiltrating NK cells have never been isolated and their phenotype and functions remain unknown. Indeed, the isolation of tumor-infiltrating immune components is problematic due to the small size of prostate samples and the infiltrative growth of the tumor within the gland.

We, therefore, set out to analyze and compare for the first time NK cell phenotype and functions in tumor but also control prostate tissues, in comparison with NK cells isolated from peripheral blood of prostate cancer patients (pB-PC). Our results reveal two unexpected levels of tissue tolerance to NK cells in prostate cancer: first, NK cells infiltrating the prostate gland display immature phenotype with hyporesponsive functional status; second, the tumor breaks the balance between activating and inhibitory NK cell receptors. Together, these alterations lead to a profound immunosuppressive environment that should be targeted to restore NK cell cytotoxicity against prostate cancer.

Patients and Methods

Patients
Prostate cancer patients were prospectively recruited in a comprehensive cancer center (Institut Paoli-Calmettes, Marseille, France) and provided written informed consent. The project was reviewed by the internal review board and the study was approved by a central national ethics committee.

Tumor tissues were obtained from 21 prostate cancer patients (mean age 71.9 years) including n = 16 localized (Loc) or locoregional (LCR) tumors and n = 5 metastatic (M) tumors. Clinical characteristics of the tumors can be found as Supplementary Table S1. The mean follow-up period was 12.1 months. Control prostate tissues (n = 20, mean age 66.9 years) were collected from prostate cancer patients, in an area selected out of the tumor site by pathologists, or from bladder cancer patients of the tumor site by pathologists, or from bladder cancer patients. Blood samples from healthy volunteers (mean age 51 years) were used as controls (Etablissement Français du Sang, EFS, Marseille, France).

Isolation of lymphocytes from blood
Peripheral blood mononuclear cells (PBMC) were purified from blood samples by Lymphoprep (lymphocyte separation medium) density gradient centrifugation. PBMCs were washed and resuspended in RPMI (Gibco, Life Technologies) medium for further analysis.

Isolation of lymphocytes from prostate tissues
Fresh prostate tissues were extemporaneously treated and mechanically minced using scalpels in RPMI medium. Cell suspensions obtained were filtered successively through 70- and 30-μm cell strainers (Miltenyi Biotec). The supernatant was harvested and centrifuged at high speed to remove residual cellular elements. This supernatant, referred as "dissociation supernatant" was aliquoted and frozen at −20°C until further use in functional experiments. Cell suspension was washed and used directly for flow cytometry staining.

Cell lines
PC3 cell line is derived from a late-stage castrate-resistant metastatic prostate cancer sample and was purchased from ATCC. PC3 was cultured in DMEM (Gibco Life Technologies) supplemented with 10% fetal calf serum (FCS, Lonza). K562 cell line is derived from human erythroleukemia cell line (ATCC) and was cultured in RPMI supplemented with 10% FCS.

Flow cytometry
Cells were incubated with conjugated antibodies or isotypic controls (listed in Supplementary Table S2) for 30 minutes at 4°C, washed and extemporaneously collected on a BD LSR Fortessa cytometer (BD Biosciences), and analyzed with FACS Diva (BD Biosciences) or FlowJo (TreeStar Inc.) softwares. For NK cells, the gating strategy consisted on the elimination of the doublets based on FSC-A/FSC-H parameters, followed by the removal of dead cells using a cell viability marker. NK cell population was defined as CD3−CD56+ cells within the lymphocyte gate. The phenotypic data in the article are represented as percentage of cells positive for a given marker (bimodal expression); or the mean ratio fluorescence intensity (RMFI, unimodal expression), that is, the ratio between the mean fluorescence intensity (MFI) of cells stained with the selected mAb and that of cells stained with isotypic control alone.

CD107 degranulation and IFNγ/TNFα production
PBMCs were activated overnight in IL2 (100 UI/mL; Chiron) and IL15 (10 ng/mL; Miltenyi Biotec), and incubated with K562 target cells at effector: target (E:T) ratio of 10:1 during 4 hours, with monensin (Golgi Stop). FITC-conjugated anti-CD107a (LAMP1), and FITC-conjugated anti-CD107b (LAMP2) mAbs (BD Biosciences). Then PBMCs were stained for 30 minutes at 4°C with PerCP-Cy5.5-conjugated anti-CD3 and PC7-conjugated anti-CD56 antibodies and permeabilized with Cytofix/Cytoperm (BD Biosciences). Intracellular antibodies were next added (IFNγ and TNFα) before cell analysis.

51Cr experiments
Blocking mAbs directed against NK cell receptors or related ligands were produced in A. Moretta’s laboratory: anti-Nkp30 (F252), anti-Nkp46 (KL247), anti-2B4 (CO54), anti-DNAM (F5), anti-NKG2D (ON72). Purified NK cells from healthy donors or patients were incubated at various effector: target (E:T) ratios (10:1, 5:1, 2:1) in triplicate, with 51Cr-labeled K562 target cells in the presence of blocking mAbs or saturating concentrations of appropriate isotype controls. Four hours later, supernatants were harvested and assayed for the release of 51Cr.

Detection of soluble factors and cytokines
sMICA, ADAM17, TGFβ1, and PGE2 secretion were evaluated by ELISA (R&D Systems). IL1ra, MCP-1, RANTES, and IL8 secretion were evaluated in a 9-plex multiple human cytokine assay
Tissue and Tumor NK Cell Alterations in Prostate Cancer

Statistical analyses

All statistical analyses were performed using GraphPad Prism software (GraphPad). The nonparametric tests (paired Wilcoxon test or unpaired Mann–Whitney test) are indicated in the figure legends. Only P values inferior to 0.05 were considered as significant. Heatmaps were performed using multi-experiment viewer of the TM4 micro-array software suite (TMeV); version 4.9 was retrieved from http://www.tm4.org/mev.html.

Results

NK cells infiltrating the prostate gland display peculiar phenotype and low cytotoxic potential

We first investigated NK cell infiltration on paraffin-embedded prostate tissues by immunohistochemical staining using the NK cell–specific marker NKp46 (Fig. 1A). The results show that prostate tissues are poorly infiltrated by NK cells, in comparison with T cells that were detected with anti-CD3 antibody (Fig. 1B).

Heatmaps were performed using multi-experiment viewer of the TM4 micro-array software suite (TMeV); version 4.9 was retrieved from http://www.tm4.org/mev.html.

Both populations were mainly localized in the stroma surrounding normal and tumor prostatic glands. We prospectively collected tumor (n = 21) and control prostate tissues (n = 20) to investigate infiltrating NK cell phenotype, by comparison with NK cells isolated from peripheral blood of prostate cancer patients (pB-PC, n = 10). Lymphocytes were isolated by mechanical dissociation of fresh tissues, and NK cells were extemporaneously analyzed by flow cytometry. We found low frequency of NK cells within control (2.9 ± 0.6%, 1.47 × 10^3 NK cells/g) and tumor prostate tissues (3.6 ± 0.5% of living lymphocytes, 2.2 × 10^5 NK cells/g), compared with the proportion of NK cells in peripheral blood (12.7 ± 2.3%; Fig. 1C). We analyzed NK cell subsets in blood and tissues by flow cytometry, according to CD56 expression (Fig. 1D). We found that the pattern of distribution of CD56dim and CD56bright subsets was significantly perturbed in tumor as well as in control tissues. In peripheral blood from prostate cancer patients, the CD56dim subset prevailed over the CD56bright subset, as described in peripheral blood from healthy donors. In contrast, the CD56bright subset was significantly increased in control and tumor tissues. Then maturation and activation markers were measured by flow cytometry (Fig. 2A and B). CD57 has been associated with the terminal differentiation stage of CD56dim NK cells (23) and CD57^+ cells displayed higher cytotoxic capacity and decreased capacity to proliferate (24). We found that CD57 expression was significantly reduced in infiltrating NK cells compared with peripheral NK cells. In contrast, the activation markers CD69 and NKP44 were significantly increased in NK cells infiltrating control and tumor tissues compared with pB-PC. To note, CD57 decreased expression was not only due to the lower proportion of CD56dim subset; indeed, CD57 was decreased also within CD56dim subset both in control and tumor tissues. CD69 and NKP44 were mostly increased in CD56bright subset (Fig. 2C).

To further explore prostate-infiltrating NK cells, we measured ex vivo CD107 degranulation of overnight IL2/IL15 activated NK cells in response to K562 erythroleukemia cell line (Fig. 2D and E). Interestingly, NK cells isolated from both control (bottom) and tumor (top) prostate tissues showed significantly low or null degranulation potential (measured as CD107 assay) but high activated phenotype (CD69 expression) compared with peripheral NK cells.

Together, these results show that immature but activated NK cells are overrepresented in prostate gland, regardless of whether the tissue is invaded by the tumor or not. Moreover, prostate-infiltrating NK cells display hyporesponsive functional status in the presence of target cells. This highlights a mechanism of tissue tolerance in prostate gland that impairs NK cell phenotype and functions.

Tumor-induced alterations on activating and inhibitory NK cell receptors

To explore what happens in cancer context, we conducted a comparative analysis between NK cells infiltrating tumor and control prostate tissues (Fig. 3). We found that the activating receptors NKP46 and NKG2D were significantly decreased in NK cells infiltrating tumor compared with control tissues (Fig. 3A). There was also a trend towards a lower expression of NKP30 and DNAM-1 in tumors. In contrast, the inhibitory receptor ILT2 showed higher expression in NK cells infiltrating tumor compared with control tissues (Fig. 3B). Interestingly, CD16, which is involved in antibody-dependent cellular cytotoxicity (ADCC), is clearly decreased in tumor compared with control tissues (Fig. 3C). Representative flow cytometry profiles are shown in Fig. 3D. We observed, as previously published in breast, lung, and colorectal cancer (12, 14, 17), that paired peripheral and intratumoral NK cells from the same patients displayed drastic differences in their phenotype (Supplementary Fig. S1) but our study identifies which ones are due to the tumor and not to tissue localization. We further explored NK cell alterations depending on the stage of prostate cancer: localized (Loc) or locoregional (LCR; i.e., tumor with extracapsular extension, or seminal vesicle/regional lymph node invasion, but has not spread into other organs; n = 16), or metastatic prostate cancer for which tumor has already spread to other organs (n = 4; see Supplementary Table S1). As depicted in Fig. 3E, the decreased expression of activating NKP46 and NKG2D, and the increased expression of inhibitory ILT2 were more pronounced in NK cells infiltrating metastatic than localized or LCR tumors. These observations prompted us to investigate whether the phenotype of infiltrating NK cells would correlate with clinical outcome. We considered median
Figure 1.
Frequency and phenotype of NK cell infiltrate in tumor and control prostate tissues. A and B, immunohistochemical staining of infiltrating immune cells on paraffin-embedded control or tumor prostate tissues. A, NKp46\(^+\) NK cells. B, CD3\(^+\) T lymphocytes. Brown, positively stained cells. NG, normal prostatic gland; TG, tumor prostatic gland. Original magnifications, \(\times 10\), \(\times 20\), \(\times 40\), followed by computer magnification. C and D, flow cytometry analysis of infiltrating NK cells after tissue dissociation. C, frequency of CD3\(^-\)CD56\(^+\) NK cells within prostate tumors (\(n = 2\), gray circle) and control prostate tissues (\(n = 20\), white circle) gated among living lymphocytes. In parallel, white squares show the frequency of NK cells in peripheral blood from prostate cancer (PC) patients (pB-PC, \(n = 10\)). The horizontal bar represents the mean value \(\pm\)SEM. D, frequency of CD56\(^{dim}\) and CD56\(^{bright}\) NK subsets in tumor and control prostate tissues compared with peripheral blood from patients (pB-PC). The scatter plots (left) report frequency for CD56\(^{dim}\) and CD56\(^{bright}\) subsets for all patients tested. The horizontal bar represents the mean value \(\pm\)SEM. Representative examples (right) for flow cytometry gating of CD3\(^-\)CD56\(^+\) NK cell subsets are shown in blood, control, and tumor prostate tissues in two patients with prostate cancer. Two regions were selected to represent CD56\(^{dim}\) and CD56\(^{bright}\) populations. Statistical analyses were done using nonparametric Mann-Whitney test. *, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\).
Figure 2.
NK cells infiltrating both control and tumor prostate tissues display altered profile and poor cytotoxic potential. A, expression of CD57, CD69, and NKp44 gated on NK cells isolated from control (n = 20, white circle) and tumor prostate tissues (n = 21, gray circle) for all patients tested. In parallel, white squares show the expression of each marker on NK cells from peripheral blood (pB-PC, n = 10). The horizontal bar represents the mean value ± SEM. Statistical analyses were done using nonparametric Mann–Whitney test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. B, representative dot plots for CD57/CD56, CD69/CD56, and NKp44/CD56 profiles on control and tumor prostate tissues are presented in comparison with peripheral blood. The quadrant marker has been set according to the isotype controls. C, expression of CD57, CD69, and NKp44 on CD56dim and CD56bright NK cell subsets from control (gray column) and tumor (black column) prostate tissues compared with pB-PC (white column). D and E, functionality of NK cells infiltrating control and tumor prostate tissues compared with NK cells from peripheral blood. CD107 degranulation was assessed by flow cytometry on NK cells incubated overnight in medium complemented with IL2 (100 UI/mL) and IL15 (10 ng/mL) before incubation with K562 cell line according to 10:1 E:T ratio for 4 hours. D, dot plot representation of CD107 (degranulation) and CD69 (activation) expression in NK cells infiltrating prostate tumor (red) compared with peripheral NK cells from the same patient (top); and NK cells from control prostate tissue (blue) compared with peripheral NK cells from healthy donor (bottom). Numbers in dot plots indicate the percentage of CD107 or CD69+ cells within CD56+ NK cells. E, summary of CD107 and CD69 expression obtained on NK cells isolated from peripheral blood (white circle) and tissues (control, blue circle; tumor, red circle) Bar graphs represent mean ± SEM. Statistical analyses were done using nonparametric Mann–Whitney test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
values for tumor samples \((n = 21) \) as cut-off to determine NKp46^{high} (cutoff = 10.6) and NKG2D^{high} (cutoff = 9.9) expression. We looked at the distribution of patients according to their PSA value and clinical status at last follow-up (Fig. 3F). Interestingly, patients with infiltrating NK cells displaying NKp46^{high} (dashed columns) and/or NKG2D^{high} (white columns) expression all belonged to groups with low \(<10 \text{ ng/mL}\) to intermediary \((\text{comprised between } 10 \text{ and } 20 \text{ ng/mL})\) PSA levels. None of these patients were found in the poor prognosis group corresponding to high PSA levels. In addition, most patients with high expression of NKp46 and NKG2D on intratumoral NK cells at surgery displayed a high tendency toward no progression 1 year after.

Together, these data show that the tumor specifically targets the balance between activating and inhibitory receptors involved in NK cell cytotoxicity, with underexpression of activating receptors...
and overexpression of inhibitory receptors, and more pronounced alterations along with metastatic progression. High expression of NKP46 or NKG2D on infiltrating NK cells correlated with good prognosis, suggesting that NK cells could control tumor escape.

The cytokine milieu in prostate tissue environment impacts NK cell functions partly through TGFβ1

To explore the cytokine environment in prostate gland, we quantified soluble factors released in dissociation supernatant from control and tumor tissues (Fig. 4A and B). We found high levels of TGFβ1, known for its immunosuppressive properties on NK cells, in control supernatants and the secretion was significantly increased in the tumor. PGE2 secretion was also increased in tumor compared with control milieu. Other soluble factors such as Rantes and IL8 were found in tumor milieu and may account for inflammatory signals observed in cancer context. Then, NK cells from healthy donors were exposed to dissociation supernatants from control or tumor tissues for 24 hours to test the effect of cytokine environment on NK cells (Fig. 4C and D). We found that cytokine milieu from tumor induced a profound inhibition of CD107 degranulation compared with control supernatants. Finally, blocking TGFβ1 efficiently restored CD107 degranulation in control condition (by 63% on average) but only partially when NK cells were exposed to tumor supernatants (by 18%). Our results show that cytokine milieu in the prostate gland contains immunosuppressive soluble factors, including TGFβ1, that can affect NK cell functions. These observations further strengthen and reproduce the

![Figure 4](image-url)

Figure 4. Analysis of cytokine milieu in control and tumor prostate tissues. A, soluble factor production in dissociation supernatant from control (white column, n = 8) and tumor (black column, n = 8) prostate tissues. The histograms represent the secretion of IL1ra, MCP-1, RANTES, IL8, evaluated by multiplex assays, and sMICA, ADAM17, PGE2, TGFβ1, evaluated by ELISA, as mean ± SEM. The levels of cytokines have been corrected for cell number after tissue dissociation and are represented as pg/mL for 1 million of cells. B, scatter dot plot representation of TGFβ1 secretion (pg/mL for 1 million of cells) in supernatants from control and tumor prostate tissues by ELISA. Data are shown as mean ± SEM. Statistical analyses were done using nonparametric Mann–Whitney test. **, P < 0.01; *** P < 0.001. C, impact of the cytokine milieu on NK cells. Peripheral NK cells from three independent healthy donors were exposed for 24 hours to individual dissociation supernatants (dilution one-fourth) from control (n = 6) or tumor (n = 5) prostate tissues. To evaluate the role of TGFβ1, dissociation supernatants were preincubated in parallel with neutralizing TGFβ1 antibody (10 μg/mL) for 30 minutes before exposure to NK cells. NK degranulation was assessed against K562 cell line in a 4-hour assay (E:T ratio = 1:1) and the percentage of NK cells positive for CD107 was analyzed by flow cytometry. Data are shown as the percentage of CD107 inhibition calculated as [%(positive control (without supernatant) – % in the condition with supernatant)]/%(positive control) × 100 ± SEM. Statistical analyses were done using Mann–Whitney test. **, P < 0.01; *** P < 0.001. D, representative flow cytometry analyses of CD107 degranulation after exposure to supernatant from control or prostate tissue, and recovery of degranulation after TGFβ1 blockade. The gate has been set according to medium condition without K562 target cell line.
Prostate cancer cells alter the receptors involved in their recognition.

To explore the mechanism that may account for phenotypical differences between NK cells infiltrating control and tumor tissues, we performed transwell coculture experiments with PC3 prostate cancer cell line (Fig. 5A). NK cells from healthy donors were exposed to PC3 cell line through direct or indirect (through transwell membrane) contact for 48 hours. We found that PC3 cells induced a significant downregulation of NKP46, NKG2D, and DNAM-1 after cell-to-cell contact (Fig. 5B). There was also a trend towards a decreased expression of NKP30 and CD16. In contrast, ILT2 (inhibitory receptor) and CD69 (activation marker) expression on NK cells were significantly higher after contact with PC3 cell line.

Because NK cell cytotoxicity is known to depend on the engagement of different triggering receptors, we screened the expression of ligands for NK cell receptors on PC3 cell line (Fig. 5C). PC3 cells expressed high level of ligands for DNAM-1 (Nectin-2 and CD155/PVR). The expression of ligands for NKG2D was heterogeneous (detection with antibodies against MICA/B and ULBP1/2/3, or with NKG2D-Fc recombinant protein). In contrast, NKP30-ligand and NKP46-ligand expression were relatively weak, but Fc-fusion proteins have lower affinity than that of specific mAbs. The expression of HLA family molecules was heterogeneous. To assess the specific involvement of NK cell receptors during the recognition of prostate tumor cells, we preincubated resting NK cells from healthy donors with blocking antibodies to different receptors (ILT2, NKG2D, or irrelevant isotype control mAb). Target cell lysis was measured by Cr51 release. Results are shown as the percentage of cytotoxic decrease induced against PC3 (right) or K562 cell line (positive control, left) was evaluated in a 4-hour51Cr assay in the presence of blocking antibodies for NKP30, NKP46, 2B4, DNAM-1; ILT2, NKG2D, or irrelevant isotype control mAb. Data are shown as mean ± SEM. D, cytotoxicity of resting NK cells preincubated with blocking antibodies for different receptors during the recognition of prostate tumor cells. Experiments were performed in triplicate. Statistical analyses were done using nonparametric Wilcoxon matched-pairs signed rank test. * P < 0.05; ** P < 0.01; *** P < 0.001.

Figure 5.
Prostate tumor cells alter the expression of activating/inhibitory NK cell receptors through direct contact. A, peripheral PBMCs from healthy donors were exposed to PC3 prostate cell line through direct or indirect (Tw-PC3 for “transwell membrane,” Greiner Bio One, 0.4 µm pore) contact, according to a 10:1 E:T ratio. After 48 hours, NK cells were harvested and phenotyped for NK cell receptors by flow cytometry. B, the graphs show the expression of NK cell receptors on NK cells exposed to PC3 prostate tumor cell line directly or through transwell membrane, compared with nonexposed NK cells. Results are representative of three independent experiments (n = 7 healthy donors in total). Statistical analyses were done using nonparametric Wilcoxon matched-pairs signed rank test. *, P < 0.05; **, P < 0.01; *** P < 0.001. C, expression of NK cell ligands on PC3 prostate cell line by flow cytometry for three independent experiments. Bar graphs report the expression of ligands for DNAM-1, NKG2D, NKP30, NKP46, and the expression of HLA molecules. Data are shown as mean ± SEM. D, cytotoxicity of resting NK cells against PC3 (right) or K562 cell line (positive control, left) was evaluated in a 4-hour51Cr assay in the presence of blocking antibodies for NKP30, NKP46, 2B4, DNAM-1; ILT2, NKG2D, or irrelevant isotype control mAb. Target cell lysis was measured by Cr51release. Results are shown as the percentage of cytotoxic decrease induced by the blocking antibodies compared with the irrelevant control mAb on three independent experiments. Statistical analyses were done using nonparametric Wilcoxon matched-pairs signed rank test. *, P < 0.05; **, P < 0.01; *** P < 0.001.
antibodies to NK cell receptors, and then used them in a \(^{51}\text{Cr}\) cytotoxic assay against PC3 or K562 cell lines (Fig. 5D). We found that blocking NKp46, DNAM-1, or NKG2D significantly decreased the cytotoxicity of NK cells against the PC3 cell line. Blocking Nkp30 decreased cytotoxicity to a lower extent, corroborating Nkp30 ligand expression. As a control, Nkp30, DNAM-1, and to a lesser extent NKG2D were the major receptors involved in NK cell cytotoxicity against K562 cell line, as described in the literature. In conclusion, our findings show that prostate cancer cells downregulate the activating receptors involved in their recognition, by mechanism dependent on cell-to-cell contact. Interestingly, these are precisely the receptors we found dysregulated in human prostate tumors. Mechanistically, we found an increased pool of intracellular NKp46 in NK cells isolated from tumors compared with peripheral NK cells, suggesting that Nkp46 could be internalized but not degraded in response to its ligand in tumor (Supplementary Fig. S2A). We did not detect intracellular NKG2D, but sMICB ("P < 0.05) was significantly increased in sera from prostate cancer patients compared with healthy donors, and sMICB ("P < 0.01) was significantly increased in patients with metastatic disease stage, thus shedding light on mechanisms that could lead to internalization and degradation of NKG2D (Supplementary Fig. S2B).

Peripheral NK cells from metastatic patients reflect the intratumoral alterations

To strengthen these observations, we enlarged our analysis to blood samples from patients with localized prostate cancer (Loc, \(n = 18\), metastatic prostate cancer (Meta, \(n = 30\)), and healthy donors as controls (HD, \(n = 20\); Fig. 6A). The expression of activating receptors NKp46 and NKG2D was significantly lower in patients with metastatic prostate cancer than in patients with localized prostate cancer or HD. There was also a trend towards a decreased expression of Nkp30 and DNAM-1 in metastatic compared with localized prostate cancer patients. In contrast, the expression of inhibitory receptor ILT2 was significantly upregulated in metastatic prostate cancer patients compared with localized patients or HD. Hence, NK cells from peripheral blood of metastatic prostate cancer patients reflect the same phenotypic alterations, targeted on NKp46, NKG2D, and ILT2 than NK cells isolated in metastatic tumors compared with peripheral NK cells in metastatic prostate cancer patients or HD (Fig. 6G). Altogether these results show that phenotypic alterations of peripheral NK cells in metastatic prostate cancer are associated with major impaired functions.

Discussion

Our study highlights a peculiar pattern where CD56\(^{\text{bright}}\) subset is increased in the prostate gland, suggesting an immature but potent effector cells (25). Thus, we looked at the multifunctional potential of peripheral NK cells using the Boolean gating strategy. We found that NK cells from metastatic prostate cancer patients were mostly monofunctional cells, exerting CD107 degranulation or IFN\(\gamma\) or TNF\(\alpha\) production, than NK cells from localized prostate cancer patients or HD (Supplementary Fig. S3A). Redirected lysis against P815 target cell line using anti-CD16, anti-Nkp30, or anti-NKp46 antibody was also reduced in prostate cancer patients compared with healthy donors (Supplementary Fig. S3B). Finally, effective killing of K562 cell line was significantly reduced in resting NK cells from metastatic prostate cancer patients compared with localized prostate cancer patients or HD (Fig. 6C).有趣的是，这些结果表明前列腺癌患者体内的NK细胞在与前列腺癌相关的细胞中表达较多。

Tissue and Tumor NK Cell Alterations in Prostate Cancer

www.aacrjournals.org Cancer Res; 76(8) April 15, 2016 2161

Published OnlineFirst April 5, 2016; DOI: 10.1158/0008-5472.CAN-15-1965

Downloaded from cancerres.aacrjournals.org on September 23, 2017. © 2016 American Association for Cancer Research.
Peripheral blood NK cells are tumor-induced subsets with altered phenotype and functions. A, NK cells were collected from blood samples of patients with localized \((n = 18, \text{gray circle})\) and metastatic prostate cancer \((PC; n = 30, \text{black circle})\) and were compared with NK cells from healthy donors \((n = 20, \text{white circle})\) by flow cytometry. Scatter dot plots report the expression of NKp46, NKG2D, NKp30, DNAM-1 (as MFI ratio compared with isotypic control) and ILT2 (as the percentage of positive NK cells for the marker). The horizontal bar represents the mean value. B, Spearman correlation between the intratumoral expression of NKp46 and the expression in peripheral blood from the same patients. C, summary of the median expression of the 15 NK cell receptors tested in blood of patients with prostate cancer compared with HD. Values represent the ratio between the median value for given marker in a group compared with the median value in all groups included. Statistical analyses were done using Kruskal-Wallis (KW) ANOVA. \(*/C3/C3/C3/C3/C3, P < 0.001\). D, correlation between the expression of NK-cell receptors in peripheral blood and the clinical parameters (GS, PSA) for patients with prostate cancer. The vertical bar represents the Spearman correlation coefficients and the \(P\) values are indicated in each case if correlation was significant. E, CD107 degranulation of peripheral NK cells isolated from patients with localized \((n = 13, \text{gray column})\) or metastatic prostate cancer \((n = 23, \text{black column})\), compared with NK cells from healthy donors \((HD; n = 18, \text{white column})\). Overnight IL2/IL15-activated NK cells were incubated with K562 target cell line according to 1:1 E/T ratio for 4 hours, and CD107 expression was assessed by flow cytometry. Data are shown as mean ± SEM. F, Spearman correlation of CD107 response with the expression of NKp46 and NKp30 in peripheral NK cells. Each dot is coded for healthy donors \((\text{white circle})\), localized \((\text{orange square})\), or metastatic patients with prostate cancer \((PC; \text{blue diamond})\). Spearman correlation coefficients and \(P\) values are indicated. G, the cytotoxicity of resting NK cells from patients with prostate cancer was evaluated in a 4-hour \(\text{Cr}^{51}\) assay against K562 cell line \((E:T \text{ ratio } = 1:1)\) and compared with healthy donors \((HD)\). Target cell lysis was measured by \(\text{Cr}^{51}\) release. Statistical analyses were done using nonparametric Mann-Whitney test. *, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\).
Tissue and Tumor NK Cell Alterations in Prostate Cancer

elevated plasma TGFβ1 (32). Besides alterations on NK cell subsets, TGFβ1 can induce the downregulation of NKG2D and NKP30 expression on NK cells, leading to a decreased ability of NK cells to kill target cells (33). Phase I studies with fresolimumab (human anti-TGFβ mAb) are currently ongoing in melanoma and renal cell carcinoma (34) and our findings strongly suggest that clinical strategies targeting TGFβ1 could be of major interest in prostate cancer. Interestingly, we extracted mRNA expression from a public database including 498 localized prostate tumors, and we found that TGFβ1 was positively correlated with some markers of tumor aggressiveness in prostate cancer such as Gleason score, residual tumor, and pathologic T (Supplementary Fig. S4). CD57 was inversely correlated with Gleason score and pathologic T, sustaining that lack of maturity of immune cells, and consequently lack of cytotoxic functions are associated with aggressive prostate cancer disease.

Besides this first level of tissue tolerance, prostate cancer cells induce specific alterations on activating (NKP46, NKG2D) and inhibitory (ILT2) receptors involved in cytotoxicity. Interestingly, our study points out that the receptors involved in cancer recognition are specific according to the tumor type: here, we identify NKP46, NKG2D, and DNAM-1 as the main receptors involved in the killing of prostate cancer cells. In melanoma, NKP30, NKP44, and NKG2D are the receptors modulated by coculture of NK cells with melanoma cell lines (10, 35). In non–small cell lung carcinoma, a cluster of five receptors (NKP30, DNAM-1, NKP80, CD16, and ILT-2) was reduced in intratumoral NK cells. In breast cancer, the main receptors involved in NK cell cytotoxicity are CD16, and ILT-2) was reduced in intratumoral NK cells. In breast cancer, the main receptors involved in NK cell cytotoxicity are

It seems obvious that prostate cancer builds a strong immunosuppressive microenvironment: the tumor cells may recruit and facilitate the accumulation of Treg and TH17 lymphocytes increases CD56+CD4+, FoxP3+. CD8+ T cells in tissues compared with pretreatment biopsies (45). These observations together with our findings suggest that combined treatments to increase the recruitment of immune infiltrate, and to restore NK cell efficiency at the same time could represent promising approach in prostate cancer. Furthermore, our data show a decreased expression of CD16 on intratumoral NK cells, suggesting that the ability to perform ADCC would be compromised as confirmed by indirect lysis results on peripheral NK cells from prostate cancer patients. Thus, preventing CD16 downregulation or shedding could improve the efficacy of therapeutic antibody-mediated effects.

Through an integrative view of the literature, it seems obvious that prostate cancer builds a strong immunosuppressive microenvironment: the tumor cells may recruit and facilitate the accumulation of Treg and TH17 lymphocytes increases CD56+CD4+, FoxP3+CD8+ T cells in tissues compared with pretreatment biopsies (45). These observations together with our findings suggest that combined treatments to increase the recruitment of immune infiltrate, and to restore NK cell efficiency at the same time could represent promising approach in prostate cancer. Furthermore, our data show a decreased expression of CD16 on intratumoral NK cells, suggesting that the ability to perform ADCC would be compromised as confirmed by indirect lysis results on peripheral NK cells from prostate cancer patients. Thus, preventing CD16 downregulation or shedding could improve the efficacy of therapeutic antibody-mediated effects.

Disclosure of Potential Conflicts of Interest
Alessandro Moretta is a founder and shareholder of Innate-Pharma (Marcellin, France). No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: C. Pasero, G. Gravis, P. Rocchi, M. Pacienza-Gros, F. Poizat, A. Moretta, D. Olive
Development of methodology: C. Pasero, G. Gravis, M. Pacienza-Gros, F. Poizat, D. Olive
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.) C. Pasero, G. Gravis, M. Guerin, J. Thomasin-Piana, M. Pacienza-Gros, F. Poizat, M. Bentobi, J. Walz, N. Salem, S. Brunelle, D. Olive
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis) C. Pasero, G. Gravis, S. Granjeaud, P. Rocchi, M. Pacienza-Gros, F. Poizat, M. Bentobi, Salem, S. Brunelle, A. Moretta, D. Olive
Writing, review, and/or revision of the manuscript: C. Pasero, G. Gravis, M. Guerin, M. Pacienza-Gros, F. Poizat, J. Walz, A. Moretta, D. Olive
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): G. Gravis, P. Rocchi, M. Piacienza-Gros, F. Poizat, J. Walz, D. Olive
Study supervision: G. Gravis, P. Rocchi, F. Poizat, D. Olive

Acknowledgments
The authors thank Philippe Livrati and Sylvaine Just-Landi for excellent technical support; the Departments of Surgical Oncology, Pathology, and the Outpatient Unit at the Institut Paoli-Calmettes and the patients for their contribution to this work; and platforms from CRCM (Centre de Recherche en Cancérologie de Marseille, France); the Cyto-metry facility, CRCM’s Integrative Bioinformatics (CiBi) platform, and ICEP (IPC/CRCM Experimental Pathology) platform, especially Emilie Agavnian-Couquiau.

References

Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity

Christine Pasero, Gwenaëlle Gravis, Mathilde Guerin, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-1965

Cited articles
This article cites 48 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/76/8/2153.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.