Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone

Mikhail G. Kolonin1, Anna Sergeeva2, Daniela I. Staquicini3,4, Tracey L. Smith3,4, Christy A. Tarleton3,4, Jeffrey J. Molldrem2, Richard L. Sidman5, Serena Marchi6,7, Renata Pasqualini3,4, and Wadih Arap3,8

Abstract

Human prostate cancer often metastasizes to bone, but the biological basis for this site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE–PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a nonproteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short timeframe. Our findings demonstrate how RAGE–PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention.

Introduction

Some prevalent tumors, prostate cancer among others, have selectivity for bone metastasis, but the biological basis for this observation remains poorly understood (1). Similar to hematopoietic stem cell homing to the bone marrow niche (2), it has been proposed that specific cell–cell and/or cell–matrix interactions might mediate tumor cell trafficking to the axial skeletal microenvironment. Accordingly, candidate protein interactions that promote osteoblastic proliferation of tumor and stromal cells have been identified (1). Understanding functional interactions between cancer cells and nonmalignant cells within the bone marrow is central for developing target therapeutics for lethal metastatic tumors.

We have pioneered an approach to identify cancer-relevant ligand receptors involving the selection of combinatorial random peptide libraries in terminal cancer patients (3, 4). Using this strategy, we identified the peptide WELGGGP (single-letter amino acid code) as targeting moiety for human bone marrow metastasis of prostate cancer (4). This motif mimics a portion of the ligand-binding domain of the receptor for advanced glycation end products (RAGE). The broad repertoire of RAGE ligands accumulates in tissues under cellular stress, contributing to chronic nonmalignant diseases, such as diabetes and neurodegenerative disorders (5), and to malignant diseases, for example, tumor cell activation during the metastatic cascade (6). Our analysis revealed that RAGE overexpression correlates with prostate cancer metastasis to bone marrow, but not to other nonosseous soft tissues, such as lymph nodes (4). Moreover, proteinase 3 (PR3), a serine protease known to be secreted with roles in disorders such as granulomatosis with polyangiitis (Wegener granulomatosis; ref. 10). Although a large number of...
studies provides evidence that PR3 contributes to inflammation, its role in cancer progression remains largely unknown. Here, we analyzed the functional relevance of RAGE/PR3 interaction in the context of prostate cancer cell migration and bone marrow metastasis. Our results show that: (i) RAGE/PR3 binding mediates a heterotypic interaction between cancer cells and hematopoietic cells; (ii) binding of RAGE to PR3 activates a signaling cascade independent of PR3 proteolytic activity, which promotes tumor cell migration in vitro; and (iii) human prostate cancer cells expressing RAGE on their surfaces target the bone marrow microenvironment in vivo.

Materials and Methods

Cell lines

PC3, U937, HL-60, and DU145 cell lines were purchased from the ATCC and were maintained in RPMI containing penicillin, streptomycin, L-glutamine, and 10% FBS. pcDNA3.1(N-terminal truncated) and pcDNA3.1(FL-RAGE full-length) plasmids were established in our laboratory between 2000 and 2004. Stably transfected PC3 cells were selected in complete culture containing 0.5 mg/ml G418 (Sigma). Validation of RAGE expression was analyzed by staining with a goat polyclonal (R&D Systems, PC3) or a mouse mAb (Abcam, DU145) anti-RAGE antibody at 200 ng/mL for 1 hour at 4°C, followed by incubation with corresponding Cy3-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories) at 5 μg/ml (30 minutes at 4°C) and flow cytometry analysis with a BDFACS Aria instrument (Becton Dickinson).

All cell lines were cytogenetically authenticated by ATCC, passed 2 to 3 times, and stock aliquots were stored in liquid nitrogen. Cells were tested for mycoplasma contamination by PCR and/or with the Universal Mycoplasma Detection Kit (ATCC, cat#30-1012K, http://www.atcc.org/products/all/30-1012K.aspx?generalInformation) or MycoAlert Mycoplasma Detection Kit (Lonza, Cat# LT07-318, http://www.lonza.com/products-services/bio-research/cell-culture-products/mycoplasma-detection-and-removal/mycoalert-mycoplasma-detection-kit.aspx). Thawed cells, passaged for 2 to 3 times, and stock aliquots were stored in liquid nitrogen.

PR3 activity and cell motility assays

PR3 from primary human leukocytes (Sigma) was used unless otherwise specified. For proteolysis assays, 10 μg of recombinant proteins was incubated for 30 minutes at 37°C with 100 ng of PR3 prior to resolution by SDS-PAGE. For cell migration, 1 × 10⁵ suspended cells were incubated for 30 minutes at 37°C with PR3 (0.3 μg/ml). After washing in PBS, cells were suspended in serum-free medium and applied to the upper chamber of transwell inserts (Costar) coated with Collagen 1 (Biosciences) in the presence of JNK inhibitor II (CAS 129-56-6 Calbiochem; 50 μmol/L), or in control conditions. RPMI supplemented with 1% FBS was used as chemoattractant. After 24 hours, migrated cells were fixed, stained in Crystal Violet (Fisher), and counted (5 fields/well) under a light microscope.

Cell adhesion assays

Binding of PR3-expressing U937 cells to PC3 cells was assayed by coculturing adherent PC3 cells with a 10-fold excess of U937 cells for 24 hours, followed by washing with PBS. Binding of U937 and HL-60 cells to RAGE was assayed by coating 96-well plates with Fc-RAGE or control proteins (250 ng/well in 50 μL PBS), blocking with PBS containing 3% BSA, followed by incubation with 5 × 10⁵ U937, HL-60, or PC3 cells. In both cases, cells were fluorescently labeled with Calcein AM (Molecular Probes) in 150 mmol/L NaCl and 20 mmol/L HEPES, followed by washing and fluorescence quantification. Adherent cell numbers were normalized in a standard calibration curve. For cell adhesion inhibition assays, anti-RAGE antibody was used at 1.5 μg/mL.

Protein immunolocalization

Cells were grown overnight on coverslips in complete medium at 37°C followed by serum starvation for 16 hours. PR3 (0.5 μg/ml) was added to the cells for 30 minutes at 37°C. After washes, cells were fixed in 4% parafomaldehyde for 10 minutes at room temperature, permeabilized with 0.1% saponin, 0.1% BSA in TBS (30 minutes), and blocked with 1% BSA/ TBS for 1 hour at room temperature. Staining was performed with anti-RAGE antibody (Abcam) at 1 μg/ml, rabbit anti-PR3 antibody (Novus Biologicals) at 2 μg/ml, mouse monoclonal phospho-p44/42 (Thr202/Tyr204) E10 antibody (Cell Signaling Technology) at 5 μg/ml, or rabbit anti-phospho-JNK (T183/Y185) antibody (R&D Systems) at 2 μg/ml. Secondary FITC-conjugated donkey anti-mouse antibody was used at 5 μg/ml and Cy3-conjugated goat anti-mouse or mouse anti-rabbit antibodies were used at 2.5 μg/ml (Jackson Immunoresearch Laboratories). DNA was stained with Hoechst 33258 (Sigma) or DAPI Vectashield (Vector Laboratories). Images were captured with an IX70 fluorescence microscope (Olympus) and confocal Leica TCS SP8.

Animal experiments

All experiments were approved by the Institutional Animal Care and Utilization Committees of University of Texas MD Anderson Cancer Center (Houston, TX) and University of New Mexico Health Science Center (Albuquerque, NM). Homing of PC3/FL-RAGE, PC3/Nt-RAGE, and DU145 to bone marrow was performed essentially as described previously [11]. Briefly, cells were suspended in RPMI containing 5% FBS, and 5 μg of an anti-RAGE antibody was added to 100 μL of cell suspension and incubated for 1 hour at room temperature prior to administration. Immunocompetent, C57Bl/6 male mice (6 months old) were anesthetized with a tribromoethanol-based agent (Avertin; 0.015 mL/g/dose). The left cardiac ventricle was punctured percutaneously, and 2 × 10⁵ cells were administered through a 25-gauge needle attached to a 0.5-ml syringe. After 1 hour, 10 mL of RPMI was perfused through the heart. Explanted tissues were fixed with 10% formalin, and bones were decalcified with 5% oxalate solution of 5% ammonium hydroxide and 5% ammonium oxalate. IHC staining of formalin-fixed paraffin-embedded (FFPE) tissue sections was performed with mouse monoclonal pan-cytokeratin antibody (Abcam) used at 1:100 and LSAB Peroxidase Kit (DAKO). IHC staining of FFPE bone tissue was performed using the mouse monoclonal pan-cytokeratin antibody conjugated with HRP by Lightning-Link Horseradish Peroxidase Kit (Innova Biosciences) and revealed with DAB Chromogen Kit (Biocare Medical). Hematoxylin was used as counterstain. Five random fields of each slide containing 5-μm
tissue sections were imaged on a Nikon Ti Eclipse inverted microscope (Nikon Instruments). Cell count was determined using the Fiji ImageJ software. Positively stained cells were determined in Fiji using the Trainable Weka Segmentation plugin. Regions of positively stained cells, nonstained cells, and background in each field were marked and applied to train the classifier. Positive cells were determined from the final image constructed by the classifier.

Statistical analysis

GraphPad Prism software v.5.03 was used to graph data as mean ± SEM and to calculate P values with Student t test (two-tailed) and two-way ANOVA. P < 0.05 was considered statistically significant.

Results

Binding of RAGE to PR3 mediates heterotypic cell–cell adhesion

To test our hypothesis that prostate cancer cell surface RAGE interacts with bone marrow–associated PR3, we first characterized the molecular basis of this interaction. To obtain in vitro models of RAGE-overexpressing or control cells, PC3 human prostate cancer cells, which express low levels of this receptor in culture (12), were stably transfected with full-length RAGE (PC3/Fl-RAGE) or with a N-truncated mutant lacking the WKLGGGP-spanning portion (PC3/Nt-RAGE; ref. 13), respectively. RAGE expression and presence on the membrane were confirmed by flow cytometry analysis using anti-RAGE and anti-RAGE N-terminal antibodies (Fig. 1A). Addition of soluble PR3 to live cells resulted in accumulation at the cell surface in regions positive for RAGE, as evaluated by immunofluorescence of PC3 and PC3/Fl-RAGE cells (Fig. 1B). Intense colocalization of RAGE and PR3 was observed in PC3/Fl-RAGE cells when compared with control PC3. For in vitro binding assays, we used the human promyelocytic cell line HL-60 and myelomonocytic cell line U937, which both express PR3 (14). HL-60 and U937 cells specifically bound to wells coated with recombinant Fc fragment–fused RAGE (Fc-RAGE), but not with Fc alone, Fc-conjugated human epidermal growth factor 2 (Fc-Her2), Fc-conjugated bone morphogenetic protein receptor 1A (Fc-BMPRIA), or gelatin. PC3 cells used as a negative control did not bind to Fc-RAGE or any of the control proteins, except fibronectin (Fig. 1C). Finally, an antibody against the WKLGGGP-spanning domain of human RAGE (4) inhibited binding of RAGE-expressing (PC3/Fl-RAGE) cells

Figure 1.
PR3 binds to RAGE on prostate cancer cells. A, FACS analysis of cell surface full-length and N-terminal domain RAGE expression in PC3, PC3/Fl-RAGE, and PC3/Nt-RAGE cells. White, white dashed line, and dark gray: RAGE staining; gray, IgG isotype control. B, Serum-starved PC3 and PC3/Fl-RAGE cells were incubated with 0.3 μg/mL PR3 for 30 minutes at 37°C, fixed, and subjected to immunofluorescence with antibodies against RAGE (green) and PR3 (red). Colocalization is visualized as yellow signal. C, PR3-expressing (HL-60 and U937) or negative (PC3) cells were used in cell adhesion assays on immobilized Fc-RAGE or control proteins. Percentage of cell adhesion was calculated by relative fluorescence. D, Binding of PR3-expressing U937 cells to RAGE-expressing cells is inhibited by anti-RAGE antibody. PC3/Fl-RAGE cells were preincubated with a control IgG or anti-RAGE antibody (1.5 μg/mL) and assayed for binding to suspended U937 cells. Error bars, SEM from three independent experiments.

* P < 0.05; ** P < 0.01; *** P < 0.001. Scale bar, 5 μm.
RAGE/PR3 Interaction Mediates Bone Metastasis

Prostate cancer cell migration is induced by an enzyme activity-independent binding of PR3 to RAGE. A, Recombinant Fc-RAGE and Fc-BMPRIA (control) were exposed to PR3 (+) or mock buffer (−) for 1 hour at 37 °C, resolved by 4% to 20% SDS-PAGE, and stained with Coomassie blue. 1, Fc portion cleaved off by PR3. B, Inhibition of Fc-RAGE proteolysis by RAGE-mimic peptide. Fc-RAGE (10 μg at 100 μg/mL) was incubated with 100 ng of PR3 (lanes 2–10) or buffer (lane 1) at 37 °C for 1 minute (lanes 2, 5, 8), 20 minutes (lanes 3, 6, 9), or 60 minutes (lanes 4, 7, 10) in the absence (lanes 2–4) or presence of 1 mg/mL biotinylated cyclic synthetic peptides, CWELGGGPC (lanes 5–7) or control (lanes 8–10), resolved by 4% to 20% SDS-PAGE and stained with Coomassie blue. Arrows, noncleaved Fc-RAGE and cleaved RAGE. 2, Fc portion.

Figure 2.

Prostate cancer cell migration is induced by an enzyme activity-independent binding of PR3 to RAGE.

As PR3 is a proteinase, we analyzed whether RAGE could serve as a PR3 substrate. PR3 cleaved Fc-RAGE, but not another Fc-tagged recombinant protein, BMPRIA (Fig. 2A). Protein microsequencing revealed that this cleavage occurred not in the RAGE protein itself, but instead in the linker (amino acid sequence IEGRMD) that links RAGE to Fc. Because IEGRMD is the canonical sequence for Factor Xa, which is also a serine proteinase, we conclude that PR3 cleaves this linker as a result of binding to the RAGE moiety. Because Fc and BMPRIA are also linked by IEGRMD in the control protein, the lack of its cleavage indicates the specificity of PR3 binding to RAGE. This interaction between PR3 and RAGE was specifically inhibited by the peptide WELGGGP, as revealed by cleavage inhibition (Fig. 2B). Combined, these data are consistent with the previous observation of RAGE binding to PR3 through the WKLGGGP motif located at the N-terminal region (4) and indicate that RAGE is not a substrate of PR3.

PR3 activates MAPK pathway and cell motility in RAGE-expressing cells

Binding of AGEs to RAGE promotes phosphorylation of p44/42 (Erk1/2) and c-Jun N-terminal kinase (JNK1), the signaling cascades activating cell motility (6, 15). Because of the structural similarity of PR3 and advanced glycation end (AGE) products (4), we investigated whether PR3 binding to RAGE would trigger a similar signaling cascade and result in induction of tumor cell migration. We exposed PC3/FI-RAGE cells to soluble PR3 and assayed MAPK phosphorylation status and localization by immunofluorescence. PC3/FI-RAGE cells displayed nuclear phosphorylation of both p44/p42 (Fig. 3A) and JNK1 (Fig. 3A and B) upon PR3 treatment. Notably, high MAPK phosphorylation was detected in cells expressing high surface levels of RAGE (Fig. 3A). In contrast, no MAPK phosphorylation was observed in PC3/Nt-RAGE cells treated with soluble PR3 (Fig. 3B). Consistently with the activation of signal transduction pathways, we showed that PR3 significantly increased the motility of PC3, PC3/FI-RAGE, and DU145 cells, but not PC3/Nt-RAGE cells. Cell migration was inhibited in the presence of a JNK-specific inhibitor (Fig. 3C). Combined, these findings indicate that PR3 induces phosphorylation and nuclear translocation of p44/p42 and JNK1, leading to cancer cell motility, through a nonproteolytic interaction with cell surface RAGE.

RAGE mediates homing of prostate cancer cells to the bone marrow

To assess the role of PR3/RAGE interaction in cancer metastasis, we evaluated whether RAGE would promote homing of circulating prostate cancer cells to the bone marrow. On the basis of the sequence similarity of mouse and human RAGE, we used human prostate cancer cells in immunocompetent mice. In our experimental model, we focused on homing of human prostate cancer cells that occurs within an hour prior to a species-specific immune response. Mice received intracardiac injection with either PC3/Nt-RAGE cells or PC3/FI-RAGE in vehicle only or preincubated with anti-RAGE antibody. After 1 hour, femur and tibia from both legs were harvested, along with control organs, fixed, and processed for histology. Decalcified bone sections were analyzed by staining for human cells with anti-human pan-cytokeratin antibody. IHC revealed abundant PC3/FI-RAGE cells in bone marrow, where they appeared either as single cells or small clumps at the apical surface of capillaries (Fig. 4B). In contrast, PC3/Nt-RAGE cells were not detected in bone marrow microvasculature (Fig. 4A). Bone marrow homing of PC3/FI-RAGE cells was significantly inhibited by
pretreatment with anti-RAGE blocking antibody (Fig. 4C). The same experiment was performed with human prostate cancer metastasis-derived DU145 cells, which express high levels of RAGE (12), with similar results (Fig. 4D). Combined, these data indicate that RAGE-expressing cancer cells interact with the bone marrow microenvironment, which is enriched in PR3-expressing cells.

Discussion

Our group demonstrated that it is possible to proceed rapidly from discovery in humans (3) to preclinical validation (16, 17) to a first-in-human clinical trial (18). From four ligand receptors identified in terminal patient, two are ubiquitous and previously reported (integrin α4/annexin A4 and cathepsin

Figure 3.
PR3 activates RAGE-mediated MAPK phosphorylation. Where indicated, tumor cells were incubated in serum-free medium with 1 μg/mL PR3 for 30 minutes at 37°C prior to fixation. A, PC3/FI-RAGE cells treated with PR3 were subjected to immunofluorescence with antibodies against the extracellular RAGE domain (green), p44/42 MAPK (red), or phosphorylated JNK1 (p-JNK, red). Nuclei are stained blue. B, PC3/FI-RAGE (top) or PC3/Nt-RAGE (bottom) cells with (right) or without (left) PR3 treatment and subjected to anti-p-JNK immunofluorescence (red). Scale bar, 50 μm. C, RAGE/PR3 interaction induces tumor cell motility. Migration of PC3, PC3/FI-RAGE, PC3/Nt-RAGE, and DU145 cells was evaluated in a transwell assay in the presence of PR3 and JNK inhibitor II, or in control conditions. The numbers of migrated cells are shown as mean ± SEM from three independent experiments. *, P < 0.05; **, P < 0.01; *** P < 0.001.
B/apolipoprotein E3) and the other two are specific to white adipose tissue (prohibitin/annexin A2; ref. 19) and tumor tissues (RAGE/PR3; ref. 4), respectively. In prostate cancer, high level of RAGE was observed in patients with metastatic disease, and specifically in bone (but not lymph node) metastases (4). The clinical relevance of this observation has remained unclear.

Here, we present ex vivo and in vivo evidence that binding of PR3 to RAGE, followed by activation of p44/p42 and JNK1 in prostate cancer cells, induces cell motility and tumor homing to the bone marrow. RAGE/PR3 interaction is likely important at two steps of metastasis: (i) cancer cell mobilization from the primary tumor and (ii) cancer cell homing and attachment to the bone marrow. Supporting a role in the first step is a well-recognized association of cancer progression with inflammation induced by PR3 expressed by leukocytes within the tumor microenvironment (7). Moreover, activation of p44/p42 and JNK1 in primary tumor cells has been shown to induce matrix metalloproteinases and angiogenic factors responsible for increased tumor invasiveness (6, 15). Thus, RAGE signaling pathways likely facilitate the initial stage of tumor cell dissemination. With respect to the second step, our data indicate that the interaction of RAGE with PR3 mediates adhesion of circulating prostate tumor cells within the bone marrow. In this context, PR3 on promyeloid progenitors and/or sinusoid endothelial cells could serve as “soil” for prostate cancer homing. Finally, PR3 could promote reactivation of MAPK pathways in cancer cells forming micrometastases, resulting in their extravasation.

Several ligands have been reported to interact with RAGE and trigger activation of signaling pathways related to cellular migration, proliferation, and survival (5). Tumor invasiveness and
metastatic potential have been correlated with RAGE upregulation, and blocking RAGE–ligand interactions has been shown to suppress tumor progression (15). It is probable that in cancers not primarily predisposed to bone metastasis, RAGE mediates tumor cell homing through RAGE-binding proteins (known or as yet unknown) other than PR3, and with different functional attributes. Future studies will be required to further characterize the organ-specific heterotypic interactions that could be investigated as targets of prospective antimetastasis therapies.

Disclosure of Potential Conflicts of Interest
R. Pasqualini has ownership interest (including patents) in Alvos Therapeutics. W. Arap has ownership interest (including patents) in Alvos Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: M.G. Kolonin, D.I. Staquicini, J.J. Molldrem, R. Pasqualini, W. Arap
Development of methodology: M.G. Kolonin, A. Sergeeva, D.I. Staquicini
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A. Sergeeva, D.I. Staquicini, C.A. Tarleton
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.G. Kolonin, A. Sergeeva, D.I. Staquicini, T.L. Smith, R.I. Sidman, S. Marchio, R. Pasqualini, W. Arap
Writing, review, and/or revision of the manuscript: M.G. Kolonin, D.I. Staquicini, T.L. Smith, R.I. Sidman, S. Marchio, R. Pasqualini, W. Arap
Administrative, technical, or material support (i.e., reporting and organizing data, constructing databases): D.I. Staquicini, C.A. Tarleton
Study supervision: R.I. Sidman, R. Pasqualini, W. Arap

Acknowledgments
We thank Drs. Thiruvengadam Arumugam and Craig D. Logsdon (University of Texas MD Anderson Cancer Center) for the pcDNA3.1(+)Nt-RAGE and pcDNA3.1(+)R-EGFP-RAGE plasmids (13). Images in this article were generated in the University of New Mexico & Cancer Center Fluorescence Microscopy Shared Resource, funded as detailed on: http://hsc.unm.edu/crtc/microscopy/acknowledgement.shtml.

Grant Support
This work was supported by grants from the NIH (P50CA100632 and P01CA148600 to J.J. Molldrem, Cancer Center Support Grant P30CA16672 to MD Anderson Cancer Center) and the U.S. Department of Defense Prostate Cancer Research Program (W. Arap), and by awards from AngelWorks, the Gilson Longenbaugh Foundation, the Marcus Foundation, and the Prostate Cancer Foundation (R. Pasqualini and W. Arap).

Received March 13, 2016; revised October 7, 2016; accepted April 13, 2017; published OnlineFirst April 20, 2017.

References
Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone

Mikhail G. Kolonin, Anna Sergeeva, Daniela I. Staquicini, et al.


Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-16-0708

Cited articles This article cites 19 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/77/12/3144.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.