
















Beyond single-drug viability response, we also simulated
combinatorial drug response of ibrutinib in combination with
various other kinases targeting the BCR pathway, and observed
the predicted response contour to match favorably with exper-
imental results (Fig. 5). These results demonstrate that our
model can correctly capture the interaction between inhibitors
as well.

Overall, these results suggest that viability response of small-
molecule inhibitors targeting the BCR signaling network can be
predicted via in silico simulation of the BCR signaling model in
combination with the tumor growth model.

Cross-talk between PI3K and NFkB pathway mediates efficacy
of PI3K inhibition in TMD8

In both the drug response data and model's simulation, we
observed that PI3K inhibition is significantly more effective at
inhibiting tumor growth than blockage of its downstream

effector AKT. A similar phenomenon was reported in other
studies, where PI3K inhibition was shown to attenuate NFkB
transcriptional activity (3, 47). We hypothesized that the effi-
cacy of PI3K inhibition is primarily attributed to suppression of
NFkB signaling, which is mediated by upstream cross-talk
between the PI3K and NFkB pathways. To test this hypothesis,
we abolished the cross-talk between PI3K and NFkB by knock-
ing out in silico PI(3,4,5)P3-mediated membrane recruitment of
BTK in the signaling model. Under this condition, we resimu-
lated the viability response of PI3K inhibition, which showed
significant reduction compared with both experimental data
and simulation with the full signaling model (Fig. 4, brown
line). This result supports the notion that the upstream cross-
talk between PI3K and NFkB pathway is critical in mediating
tumor growth inhibition by PI3K inhibitor. It also provides
further rational support for the clinical use of PI3K inhibitors in
DLBCL that are dependent in NFkB signaling (3, 47).

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0E
xp

er
im

en
ta

l d
at

a 
 

M
od

el
 s

im
ul

at
io

n 

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0

C
or

re
la

tio
n 

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0

100

50 25 12.5

6.25

3.125

1.563

0.781

0.391

0

5000

2500

1250

625

312.5

156.25

78.125

39.0625

19.5313

0

0.00

0.00

0.02

0.06

0.11

0.15

0.15

0.25

0.19

0.22

0.00

0.00

0.03

0.07

0.12

0.12

0.20

0.18

0.22

0.23

0.00

0.00

0.03

0.07

0.11

0.19

0.20

0.20

0.22

0.18

0.00

0.00

0.03

0.08

0.14

0.19

0.22

0.26

0.24

0.27

0.00

0.00

0.04

0.10

0.18

0.25

0.38

0.32

0.29

0.27

0.00

0.00

0.07

0.17

0.30

0.39

0.34

0.41

0.39

0.38

0.00

0.02

0.14

0.24

0.39

0.39

0.47

0.62

0.56

0.60

0.00

0.04

0.27

0.37

0.55

0.65

0.81

0.87

0.90

0.69

0.00

0.10

0.42

0.60

0.82

0.71

0.99

0.94

1.00

0.95

0.02

0.13

0.45

0.65

0.66

0.99

1.00

0.98

0.93

1.00

0.02

0.02

0.02

0.03

0.03

0.04

0.06

0.09

0.12

0.16

0.02

0.02

0.03

0.03

0.04

0.06

0.08

0.11

0.13

0.17

0.02

0.02

0.03

0.04

0.06

0.08

0.11

0.14

0.17

0.21

0.02

0.03

0.04

0.06

0.09

0.12

0.16

0.20

0.23

0.27

0.03

0.04

0.05

0.08

0.13

0.18

0.23

0.28

0.31

0.35

0.04

0.06

0.08

0.12

0.19

0.26

0.33

0.38

0.42

0.46

0.06

0.08

0.12

0.18

0.26

0.35

0.43

0.49

0.53

0.58

0.08

0.11

0.16

0.24

0.34

0.44

0.54

0.61

0.65

0.71

0.10

0.14

0.21

0.30

0.41

0.53

0.63

0.71

0.76

0.81

0.16

0.21

0.29

0.41

0.54

0.69

0.81

0.89

0.94

1.00

0.00

0.00

0.00

0.00

0.01

0.03

0.06

0.08

0.11

0.23

0.02

0.00

0.00

0.00

0.00

0.03

0.03

0.07

0.09

0.24

0.04

0.00

0.00

0.00

0.00

0.03

0.03

0.10

0.14

0.25

0.01

0.00

0.00

0.00

0.00

0.03

0.05

0.11

0.18

0.26

0.00

0.00

0.00

0.00

0.01

0.05

0.09

0.11

0.18

0.30

0.00

0.00

0.00

0.00

0.03

0.07

0.11

0.16

0.25

0.35

0.00

0.00

0.00

0.00

0.06

0.13

0.21

0.30

0.37

0.62

0.01

0.00

0.00

0.00

0.12

0.21

0.33

0.44

0.46

0.78

0.00

0.00

0.00

0.03

0.18

0.40

0.48

0.61

0.91

0.99

0.00

0.00

0.00

0.04

0.20

0.48

0.54

0.69

0.90

1.00

0.07

0.07

0.08

0.08

0.09

0.10

0.11

0.13

0.14

0.16

0.05

0.05

0.05

0.06

0.07

0.08

0.10

0.12

0.14

0.17

0.04

0.04

0.04

0.05

0.06

0.07

0.10

0.13

0.16

0.21

0.03

0.03

0.03

0.04

0.05

0.08

0.12

0.16

0.20

0.27

0.03

0.03

0.03

0.04

0.06

0.09

0.14

0.21

0.26

0.35

0.02

0.03

0.03

0.04

0.06

0.11

0.18

0.27

0.35

0.46

0.02

0.03

0.03

0.04

0.07

0.13

0.23

0.35

0.44

0.58

0.02

0.03

0.03

0.05

0.08

0.16

0.29

0.43

0.54

0.71

0.02

0.03

0.03

0.05

0.10

0.19

0.34

0.50

0.63

0.81

0.03

0.03

0.04

0.06

0.12

0.25

0.44

0.64

0.79

1.00

0.10

0.13

0.11

0.11

0.16

0.17

0.20

0.18

0.18

0.20

0.12

0.09

0.11

0.13

0.15

0.22

0.20

0.17

0.21

0.20

0.14

0.10

0.11

0.18

0.14

0.22

0.20

0.23

0.21

0.23

0.19

0.13

0.21

0.21

0.19

0.23

0.23

0.31

0.26

0.31

0.24

0.19

0.26

0.18

0.21

0.26

0.33

0.32

0.29

0.37

0.28

0.29

0.29

0.29

0.30

0.35

0.42

0.42

0.46

0.41

0.42

0.43

0.42

0.43

0.45

0.45

0.54

0.58

0.56

0.51

0.59

0.59

0.55

0.60

0.63

0.69

0.81

0.75

0.70

0.80

0.70

0.78

0.86

0.94

1.00

0.77

0.88

0.89

1.00

1.00

0.80

0.86

0.80

0.88

0.87

0.99

1.00

1.00

0.91

1.00

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.04

0.16

0.04

0.04

0.04

0.04

0.04

0.04

0.05

0.05

0.06

0.17

0.07

0.07

0.07

0.07

0.07

0.08

0.08

0.09

0.10

0.21

0.13

0.13

0.13

0.13

0.13

0.13

0.14

0.15

0.16

0.27

0.22

0.22

0.22

0.22

0.22

0.22

0.23

0.24

0.25

0.35

0.33

0.34

0.34

0.34

0.34

0.34

0.35

0.36

0.37

0.46

0.47

0.47

0.47

0.47

0.47

0.48

0.48

0.49

0.51

0.58

0.61

0.61

0.61

0.61

0.61

0.61

0.62

0.63

0.64

0.71

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.74

0.75

0.81

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.94

0.95

1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.00.80.60.40.20.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Experiment

M
od

el

r = 0.952

1.00.80.60.40.20.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Experiment

M
od

el

r = 0.966

1.00.80.60.40.2

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Experiment

M
od

el

r = 0.965

BTK–PI3K BTK–AKTBTK–NFκB

Ibrutinib (nmol/L)

Ibrutinib (nmol/L)

B
K

M
-120 (nm

ol/L)
B

K
M

-120 (nm
ol/L)

M
K

-2206 (nm
ol/L)

M
K

-2206 (nm
ol/L)

Viability

N
C

G
C

00161703 (nm
ol/L)

N
C

G
C

00161703 (nm
ol/L)

Ibrutinib (nmol/L) Ibrutinib (nmol/L)

Ibrutinib (nmol/L) Ibrutinib (nmol/L)

Figure 5.

Combinatorial drug viability responses of BTK inhibitor ibrutinib in combination with additional inhibitors targeting BCR network intermediates were predicted and
compared with experimental data.
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Computational optimization of targeted therapy against
chronic active BCR signaling

Using the above modeling framework, we sought to identify
targeted therapies against the BCR signaling network that most
effectively inhibit tumor growth. We exhaustively tested all drug
pairs based on 11 small-molecule inhibitors currently available
that target various kinases in the network, yielding 55 treatment
strategies in total. In each scenario, viability response was simu-
lated at 10�10 virtual dosages where each targeted kinase was
inhibited at 0% to 99% evenly spaced in log10 space. We calcu-
lated area under the combinatorial viability response surface as an
overall indicator of drug combination potency. The smaller the
value is, themore potent the drug target combination is (Fig. 6A).
We found that under the same inhibition potency, efficacy of
different treatment strategies was highly variable, ranging from
almost no growth inhibition to up to 80% reduction (Fig. 6B).
Specifically, inhibiting downstream of the NFkB signaling path-
way, especially through MALT1 and IKK inhibitor, exhibited the
most prominent efficacy, and combinedMALT1 and IKKblockage
yielded highest tumor growth inhibition. In comparison, tumor
cell growth was relatively insensitive to blockage of MAPK path-

way in our simulations. In summary, this computational screen-
ing result suggests that various treatment strategies against a
signaling network can yield highly variable therapeutic responses
and that in silico simulation can help identify targets that confer
intrinsic vulnerability.

We then sought to identify drug combinations that are syner-
gistic via computational simulations. For a given two-drug com-
bination, the combinatorial drug response at 10� 10 virtual
dosage as discussed above were used to estimate mode of drug
interaction under the Bliss independence model (see Materials
and Methods; Fig. 7A). Computational screening predicted dual
blockage of LYN and SYK as themost synergistic combination. To
test this prediction,we treatedABCDLBCL cell lines TMD8,HBL1,
and OCI-LY10 with LYN inhibitor dasatinib and SYK inhibitor
R406, atmultiple doses. Comparing combinatorial drug response
data to theoretical additive response predicted by the Bliss inde-
pendence model (see Materials and Methods), we confirmed
synergism between dasatinib and R406 (Fig. 7B). We also tested
and confirmed the predicted antagonism between dual SYK and
MALT1 inhibition using SYK inhibitor R406 andMALT1 inhibitor
MI-2 across three ABC DLBCL cell lines (Fig. 7B).
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Discussion
It is increasingly acknowledged that aberrant BCR signaling

plays a central role in the development and maintenance of
many B-cell malignancies (48). Although a large panel of small-
molecule inhibitors against BCR signaling have been devel-
oped, rational methodologies that can predict effective com-
binatorial therapy and guide the design of specific treatment
strategy in individual patients have been lacking. To bridge this
gap, we aimed to construct the first kinetic model of the core
BCR signaling network and use this model to investigate
targeted therapy against BCR signaling. We showed that simu-
lations with the signaling model reconstructed dynamics of
normal B-cell signaling in silico. Combining the signaling mod-
el with a data-trained tumor growth model successfully pre-
dicted viability response of multiple drug combinations, and
identified novel synergistic drug combinations such as LYN and
SYK inhibitor.

In this work, we chose to develop a highly detailed kinetic
model of the BCR signaling network, modeling direct protein–
protein interactions using highly quantitative ODEs wherever
possible. We note that there are other simpler modeling techni-
ques for analysis of signaling pathways, for example, simplifying
signaling cascades as coupledHill functions (43)or usingBoolean
network models. To investigate the predictive power of a simpler
model, we constructed a Boolean model of a simplified BCR
signaling network consisting of only the 11 targetable nodes

together with signaling pathway end points and a node represent-
ing cell viability (Supplementary Fig. S3). In this model, each
node has only two states (0, inactive; 1, active), and the state value
in a particular step is determined by the values of all its regulators
in the previous step. A node will be active if the majority of its
regulators are activating, except that the Viability node is active
when any of the signaling outputs is active. Assuming the two
input nodes LYN and SYK are constitutively active, all possible
initial states (2^12) are exhaustively simulated until reaching
attractors. These initial states ended up in two attractors, both
attractors consisting of states in which Viability is on (Supple-
mentary Fig. S4). Then all two drug combinations were tested. To
simulate drug-mediated inhibition, each targeted node wasmade
constitutively inactive. There are four drug combinations that
result in a single global attractor in which Viability is off. These
four drug combinations are BTK-MEK, BTK-RAF, SYK-MEK, and
SYK-RAF. These four drug combinations ranked low in the drug
efficacy predictions made by the full ODE model (Fig. 6B).
Moreover, experimental data in TMD8 cell line (31) indicates
that the BTK-MEK and BTK-RAF combinations are not very
effective in decreasing cell viability—the MEK and RAF inhibitors
are not responsive (along the y-axis) and synergism is lacking
(Supplementary Fig. S5). Overall, these results suggest that a
simple Boolean network model is not able to capture the same
results as the full ODE model and that its prediction accuracy is
lacking when compared with experimental data.
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The clinical application of targeted therapy is frequently chal-
lenged by highly variable drug response among cancer patients.
Heterogeneous response to BCR signaling–targeted therapy was
observed in ABCDLBCL cell lines (47) and in clinical trials of ABC
DLBCL patients (7). This is likely due to differential expression of
proteins in the BCR signaling pathway that impact pathway
activities in individual patient. In this study, signal transduction
is explicitly modeled on the molecular level, which provides a
straightforward framework to incorporate protein level variation
to develop patient-specific predictive models. Specifically, expres-
sion levels of proteins within the BCR signaling network can be
measured experimentally using protein expression profiling tech-
niques such as reverse-phase protein array (RPPA) or other
approaches. Then protein expression changes in patients relative
to cell line can be incorporated into the model to predict optimal
treatment strategy for individual patients. We believe that the use
of patient-specific predictive models can greatly improve the
performance of targeted therapy in cancer.

In this study, we focused on the exploration of combinatorial
efficacy of kinase inhibitors against BCR signaling pathway
components. In the future, it may be compelling to combine
kinase inhibitors with traditional chemotherapeutic drugs in
the clinical setting. Regrettably, capturing the combinatorial
effect of kinase inhibitors and chemotherapeutic drugs likely
requires a complex theoretical framework that may involve
a more detailed mechanistic characterization of cell cycle
and DNA damage response than the simple growth model we
use here.

Finally, we note that besides DLBCL, aberrant BCR signaling
was shown to play a role in other B-cell malignancies such as
chronic lymphocytic leukemia (CLL; ref. 49) and mantle cell
lymphoma (MCL; ref. 50). In phase II studies of BTK inhibitor
ibrutinib, 71%and68%overall response rate (ORR)was reported
in CLL and MCL patients, respectively (51), suggesting targeting
BCR signaling as promising treatment strategy. Correspondingly,

the overall framework and predictions reported in this work may
also be useful to identify drug combinations for CLL and MCL-
targeted treatment.
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