Influence of Thyroid Hormone on the Formation of Induced Skin Tumors in Mice

HERBERT SILVERSTONE, PH.D., AND ALBERT TANNENBAUM, M.D.

(From the Department of Cancer Research,† Medical Research Institute, Michael Reese Hospital, Chicago 16, Illinois)

Chronic caloric restriction inhibits the formation of various tumors of the mouse (1, 2). The restriction in caloric intake produces, among many changes, a decreased total metabolism and decreased body weight of the animals. In order to acquire information as to which of these—caloric intake, total metabolism, or body weight—might be most directly related to tumor formation, diverse experimental procedures have been studied: feeding of dinitrophenol or sodium fluoride, and the housing of the mice at low environmental temperatures (3).

The present study supplements the above experiments and has a similar objective; in this instance thyroid hormone was fed to mice in a dose that caused increased food consumption and increased metabolism, and only a slight retardation of body growth. The experiments were designed to also reveal the effects of administration of thyroid on the different stages of carcinogenesis.

The concept of discrete stages in the genesis of tumors has been introduced through a variety of studies (4, 5, 6, 7, 8) indicating that the formation of induced skin tumors proceeds through at least 2 stages: a) initiatory changes induced by the action of a carcinogen on normal cells; and b) the promotion or development of these “biased” cells, under necessary conditions, into neoplastic cells that grow into a visible tumor. These two stages can be separated roughly by the experimental technique of applying a carcinogen for a short time and terminating these applications before tumors arise in any of the experimental animals. One may arbitrarily regard the consequent intervals—a) that encompassing the application of the carcinogen, and b) the subsequent period during which grossly visible tumors appear—as corresponding respectively to the stage of initiation and the stage of development. This technique has been employed to demonstrate that the inhibitory action of caloric restriction (9) and the accelerating action of fat-enriched diets (10, 11) on the genesis of tumors are exerted mainly during the second stage, that of development, and have little or no effect on the initiation stage. Similarly the co-carcinogenic actions of croton oil (5), turpentine (4, 5), and wound healing (4) are effective mainly in the stage of development. On the other hand, various solvents for carcinogens influence tumor formation primarily in the initiatory stage by modifying the concentration or amount of carcinogen acting upon the tissue.

This general knowledge of the stages of carcinogenesis has been briefly reviewed, because the present study was in part based upon these considerations. The experiments were designed to study the effects on skin tumor formation of thyroid hormone when administered a) throughout the experiment, b) only during the interval of cutaneous application of carcinogen, and c) only during the period of tumor appearance.

METHODS

The mice employed were adult dba strain males bred in our laboratories. Litter mates were distributed between the several groups of each experiment as far as possible. From the time of weaning until transfer to the experimental diets they were fed a commercial ration, Purina fox chow checkers. In all experiments the animals were housed in groups of 5 in cages with solid bottoms. The carcinogen was a 0.3 per cent solution of 3,4-benzpyrene in acetone; at semi-weekly intervals a single drop (0.02 cc.) was applied to the interscapular area by means of a dropping pipet.

The experimental diets were composed of Purina fox chow meal, skimmed milk powder, and cornstarch, and were prepared as in earlier work (9). The thyroid extract (Proloid) was incorpo-

* This investigation was supported (in part) by a research grant from the National Cancer Institute, U.S. Public Health Service, and by the Gustav E. Berlin Memorial Fund.
† Supported, in part, by the Michael Reese Research Foundation and the Foundation for Cancer Research, Chicago.
rated in the diets at the level of 0.04 per cent, inasmuch as previous experience had indicated that this concentration increased caloric intake by approximately 50 per cent, without a drastic effect on body weight. Where the design of the experiment called for changing the diet, this was done a few weeks after the final application of the carcinogen.

The general care of the animals, examination and evaluation of tumors and other pathology, and recording were carried out as previously described (9).

EXPERIMENTS

Experiment 1. Three month old dba males were distributed into 3 groups of 50 mice each. The diets were composed of Purina fox chow meal, 55 per cent; skimmed milk powder, 25 per cent; and cornstarch, 25 per cent. The ration at the level of 4 gms. daily per mouse was the control diet. The same ration at the level of 6 gms. and containing 0.04 per cent thyroid extract, was the thyroid diet. These amounts were approximately at the ad libitum level. Group h-CC was fed the control diet, and groups h-TC and h-TT were fed the thyroid diet. Three weeks after institution of the experimental diets, treatment with carcinogen was begun. Fourteen applications of the solution of benzpyrene were given at semi-weekly intervals over a period of 6 1/2 weeks; 3 weeks after the final application, the mice of group h-TC were transferred from the thyroid ration to the control ration; the rations of groups h-CC and h-TT were not changed. Thus group h-CC was fed the control diet, and group h-TT the thyroid diet throughout the experiment, while group h-TC was given the thyroid diet for the period encompassing the application of carcinogen and the control diet during the period of tumor appearance.

Excluding the deaths caused by a laboratory accident during the twenty-fourth week of the experiment, very few of the mice without tumors died before the fortieth week. At this time the death rate in group h-TT suddenly increased—7 tumor-free mice as well as some with tumors died between the fortieth and forty-eighth week. For this reason the experiment was terminated.

During the course of the experiment the caloric intake was dependent on the ration fed. The mice on the control diet consumed, on the average, 3.9 to 4.0 gms. daily; those on the thyroid diet, 5.4 to 6.0 gms. In the same order, they drank approximately 3 cc. and 6 cc. of water daily. Although they consumed nearly 50 per cent more food, the mice on the thyroid diet weighed less than those on the control diet (Table 1a).

The formation of skin tumors is illustrated in Figure 1 and the data summarized in Table 1b. The results are discussed together with those of the following experiment.

Experiment 2. Two hundred dba male mice, approximately 2 1/2 months of age, were divided into 4 equivalent groups of 50 each. The ration consisted of Purina fox chow meal, 50 per cent; skimed milk powder, 25 per cent; cornstarch, 25 per cent; and brewers yeast, 2.5 per cent. This ration, compared with that of Experiment 1, contains a higher proportion of protein, mineral, and fat and a supplementary source of B-vitamins. The control diet consisted of 4.0 gms. of the ration daily, the thyroid diet of 6.0 gms. of the ration containing 0.04 per cent thyroid extract.

Four weeks after initiation of the experimental diets, the mice were given the first of 12 semi-weekly applications of the benzpyrene solution—over a period of 5 1/2 weeks. Three weeks after the final application of carcinogen the diets were either

For convenience, the experimental groups are designated as follows: The initial letter designates the experiment. The first letter after the dash indicates the diet during the period of carcinogen application, C (control) or T (thyroid). The second letter after the dash indicates the diet during the period of tumor appearance, again either C or T.
changed or continued according to the design of the experiment as tabulated:

Dietary regimen during

<table>
<thead>
<tr>
<th>Period of carcinogen application</th>
<th>Period of tumor appearance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (−4 to 84 weeks) of experiment</td>
<td>(84 weeks to end of experiment)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Period of carcinogen application</th>
<th>Period of tumor appearance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-CC†</td>
<td>control</td>
<td>control</td>
</tr>
<tr>
<td>n-TT</td>
<td>thyroid</td>
<td>thyroid</td>
</tr>
<tr>
<td>n-CT</td>
<td>control</td>
<td>thyroid</td>
</tr>
<tr>
<td>n-TC</td>
<td>thyroid</td>
<td>control</td>
</tr>
</tbody>
</table>

* Time is indicated in weeks after initial application of carcinogen. † See footnote number 2.

The study was terminated 48 weeks after the initial application of carcinogen inasmuch as subsequent to this time there occurred a sharp increase in the death rate of the mice ingesting the thyroid diet. In the first 48 weeks of the experiment, there were only 2 to 5 deaths in a group, and most of these were caused by spontaneous lymphomata.

The mice receiving the control diet consumed from 3.7 to 4.0 gms. of food daily, those on the thyroid diet from 5.2 to 6.0 gms. The water consumption of the latter was from 25 to 50 per cent greater than that of the mice on the control ration. As in Experiment 1, the mice ingesting the thyroid diet weighed less than those on the control diet despite the increase in caloric consumption of approximately 40 per cent (Table 2a). On the average, the hyperthyroid mice were only about 2 per cent smaller in body length.

With respect to the formation of skin tumors, the results of Experiment 2 (Table 2b, Figure 2) agree with those of Experiment 1 (Table 1b, Figure 1) in the following particulars: The initial tumors appeared earlier in those groups receiving the thyroid diets during the period of application of carcinogen (h-TT and h-TC compared with h-CC; and n-TT and n-TC compared with n-CC and n-CT). The tumor incidences among the mice fed the thyroid diet only during the period of carcinogen application, followed by the control diet during the period of tumor formation (groups h-TC and n-TC), were slightly greater than those of the mice on the control diets throughout the experiment. Tumor incidences among the mice fed the thyroid diet throughout (h-TT and n-TT) were at first slightly greater than among the control mice, but at about the thirtieth week there was a relatively sharp reduction of tumor formation among the hyperthyroid mice, and by the time the experiments were terminated these groups had slightly lower tumor incidences than the controls.

As a consequence of this early augmentation and later repression of tumor formation the mean times of tumor appearance were shorter in groups h-TT and n-TT than in the corresponding control groups. The effect of feeding the thyroid diet only during the period of tumor appearance (i.e. preceded by the control diet during the period of application).
The administration of thyroid hormone has many effects upon the animals: increased food consumption, increased metabolism, a relative loss in body weight, increased heat loss, peripheral dilatation of blood vessels, shifts and changes in protein and fat storage, etc. It is possible that the accelerating action on skin tumor formation during the initiation stage of carcinogenesis is due to local changes at the site and time of carcinogen application, possibly even affecting the tissue dose of carcinogen. Thus the augmented tumor formation reported by Kreyberg may have been due to protracted tar application (for 6 months), which contrasts with the relatively short period of car-

The mechanisms of these actions are obscure. The administration of thyroid hormone has many effects upon the animals: increased food consumption, increased metabolism, a relative loss in body weight, increased heat loss, peripheral dilatation of blood vessels, shifts and changes in protein and fat storage, etc. It is possible that the accelerating action on skin tumor formation during the initiation stage of carcinogenesis is due to local changes at the site and time of carcinogen application, possibly even affecting the tissue dose of carcinogen. Thus the augmented tumor formation reported by Kreyberg may have been due to protracted tar application (for 6 months), which contrasts with the relatively short period of car-
on tumor formation mainly during the second
stage of carcinogenesis (9).

The most pertinent finding is that the considerable augmentation of food intake and metabolic activity, produced by thyroid extract, resulted in only a small effect upon tumor formation. These data support the conclusions arrived at in related investigations (3) concerned with dinitrophenol, sodium fluoride, and low environmental temperature: It is not the level of caloric intake or total metabolic turnover but rather the body weight level at which a balance is struck between caloric intake and utilization that is a significant factor in the genesis of some mouse tumors.

SUMMARY

1. Mice fed diets containing 0.04 per cent thyroid extract (Proloid) consumed 40 to 50 per cent more food, yet weighed about 10 per cent less, than the control mice.

2. The striking augmentation of caloric intake and metabolic activity did not produce a large effect upon the incidence or mean time of appearance of skin tumors induced by the application of 3,4-benzpyrene.

3. The data suggest, however, a small differential effect of thyroid hormone on the two stages of carcinogenesis: stimulating in the stage of initiation and retarding in the stage of development.

4. The results give indirect supporting evidence that the inhibition of tumor formation produced by caloric restriction is more related to the low body weight of the animal than to the actual level of caloric intake or metabolic activity.

REFERENCES

Influence of Thyroid Hormone on the Formation of Induced Skin Tumors in Mice

Herbert Silverstone and Albert Tannenbaum

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/9/11/684

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.