Integral Role of Transcription Factor 8 in the Negative Regulation of Tumor Angiogenesis

Takayuki Inuzuka, Masumi Tsuda, Shinya Tanaka, Hideaki Kawaguchi, Yuijiro Higashi, Yusuke Ohba

Abstract

Angiogenesis is involved in various physiologic and pathological conditions, including tumor growth, and is tightly regulated by the orchestration of proangiogenic and antiangiogenic factors. Inhibition of vascular endothelial growth factor (VEGF), the best-established antiangiogenic treatment in cancer, has shown some effectiveness; however, the identification of novel regulators, whose function is independent of VEGF, is required to achieve better outcomes. Here, we show that transcription factor 8 (TCF8) is up-regulated in endothelial cells during angiogenesis, acting as a negative regulator. Furthermore, TCF8 is specifically expressed in the endothelium of tumor vessels. Tcf8-heterozygous knockout mice are more permissive than wild-type mice to the formation of tumor blood vessels in s.c. implanted melanoma, which seems to contribute to the more aggressive growth and the lung metastases of the tumor in mutant mice. Suppression of TCF8 facilitates angiogenesis in both in vitro and ex vivo models, and displays comprehensive cellular phenotypes, including enhanced cell invasion, impaired cell adhesion, and increased cell monolayer permeability due to, at least partly, MMP1 overexpression, attenuation of focal adhesion formation, and insufficient VE-cadherin recruitment, respectively. Taken together, our findings define a novel, integral role for TCF8 in the regulation of pathologic angiogenesis, and propose TCF8 as a target for therapeutic intervention in cancer. [Cancer Res 2009;69(4):1678–84]

Introduction

Angiogenesis, the development of new blood vessels from existing ones, apart from being central to a variety of physiologic phenomena, including tissue growth and repair, fetal development, and the female reproductive cycle, is crucial for supplying oxygen and nutrients to specific pathologic tissues such as neoplasms (1, 2). The process of angiogenesis consists of multiple, interrelated steps, which are tightly regulated by the balance between proangiogenic and antiangiogenic factors (3, 4). First, angiogenic growth factors secreted from tissues in need of oxygen activate receptors present on endothelial cells in preexisting vessels, which trigger subsequent angiogenic signaling. The activated endothelial cells release proteases such as matrix metalloproteases (MMP) that degrade the basement membrane and extracellular matrices (ECM) to escape from the preexisting vessel walls and invade into surrounding tissues. The endothelial cells then proliferate into the surrounding matrix and form solid sprouts connecting neighboring vessels. As sprouts extend toward the source of the angiogenic stimulus, endothelial cells migrate in tandem, using adhesion molecule integrins. Finally, the endothelial cells stop proliferating and invading, strengthen cell-cell adhesion, and recruit other classes of supporting cells such as pericytes and smooth muscle cells to form a full-fledged vessel lumen. At this stage, the expression of genes classified as negative regulators with roles in vascular stabilization and differentiation is also induced; the absence of these factors results in excess vasculature with high remodeling activity, which leads to the formation of unsettled and aberrant blood vessels (5).

Among a range of angiogenic factors, vascular endothelial growth factor (VEGF) has been identified as the most potent and predominant (6), and thus, VEGF inhibitors are used in cancer therapy to suppress tumor angiogenesis. Although these therapies yield certain outcomes, inhibition of VEGF alone might be insufficient to permanently halt angiogenesis. In fact, emerging evidence indicates that inhibition of single targets leads to the up-regulation of additional angiogenic factors (7). Therefore, identification of other molecular targets with distinct complementary mechanisms of action from that of VEGF is desired to construct an integrated treatment with antiangiogenic agents, which yields a greater efficacy.

The two-handed zinc finger (ZF) homeodomain transcription factor TCF8, alternatively designated as 6EF1, ZEB-1, Nil2, and Zfhx1p1, has been implicated in a range of biological phenomena, including cancer invasion, cellular senescence, viral infection, bone metabolism, and T-cell and neuronal development (8–11). Because of the conserved DNA-binding property of two ZF-domain clusters, TCF8 regulates the expression of various molecules at the transcriptional level. Specifically, TCF8 functions as a transcriptional repressor of epithelial markers, including E-cadherin, and promotes epithelial-mesenchymal transition (EMT) as well as the invasion of cancerous cells. In the cardiovascular system, 6EF1 (the murine orthologue of TCF8) has been shown to regulate Smad-dependent gene induction, which results in abnormal intimal thickening after balloon injury in 6EF1-heterozygous knockout (KO) mice (12). The human Tcf8 gene encoded on 10p11.2 is implicated in posterior polymorphous corneal dystrophy, a disease characterized by abnormal proliferation of corneal endothelial cells and accumulation of type IVα3 collagen (13). Although these results raise the possibility that TCF8 might function in vascular endothelial cells, there is limited literature available that addresses this issue.
Here, we identify TCF8 as a negative regulator of angiogenesis in vitro, ex vivo, and in vivo. Additionally, tumor angiogenesis is significantly up-regulated in Tcf8-heterozygous KO mice, which leads to the more aggressive growth and the distant metastases of s.c. injected melanoma. Because the expression of TCF8 is independent of VEGF and is restricted within tumor-related blood vessels, our finding defines a novel mechanism for the negative regulation of pathologic angiogenesis.

Materials and Methods

Reagents and antibodies. The MMP inhibitor GM6001 was obtained from CHEMICON International. Antibodies against TCF8 (ZEB1), α-smooth muscle actin (SMA), β-actin, HA, and CD31 were purchased from Santa Cruz Biotechnology, DAKO, Santa Cruz Biotechnology, Roche, and Abcam, respectively. An antibody against TCF8 (AREB6) for mouse tissue staining was kindly provided by Dr. K. Kawakami (Jichi Medical University).

Expression plasmids. Human TCF8 cDNA was obtained by reverse transcription-PCR (RT-PCR) of total RNA from human umbilical vascular endothelial cells (HUVEC) and was cloned into pcR-BluntII-TOPO (Invitrogen). To generate HA-tagged TCF8 expression vectors, the cDNA was subcloned into the Xhol and Notl sites of the pcXN2-3xHA vectors (14).

Cell culture and transfection. HUVECs were maintained in complete endothelial basal medium (EBM-2) and transfected with small interference RNA (siRNA) targeting the human TCF8 mRNA (si TCF8; ref. 15) using HiPerFect Transfection Reagent (Qiagen) according to the manufacturer's instructions. AllStars Negative Control siRNA (si Control; Qiagen) was used as a control. The cells were analyzed after 48 or 72 h. Cells, which had been passaged 4 to 10 times, were used throughout the experiments. 293T cells were cultured in DMEM (Sigma) supplemented with 10% FCS. Expressions plasmids were introduced with FuGENE HD (Roche) according to the manufacturer's protocol.

Tube formation assay. Tube formation by HUVECs on Matrigel (BD-Discovery Labware) was performed as described previously (16, 17) with some modifications. Each well of a 12-well plate was coated with 250 μL of 10 mg/mL Matrigel, and was filled with 7.5 × 10^5 cells in 1 mL of complete EGM-2. At the indicated times, 10 images of the formed tubes were obtained for every well and the number of tubes was quantified, followed by total RNA extractions.

RNA isolation and RT-PCR. RNA isolation and RT-PCR were performed as described previously (18). Briefly, the total RNA was isolated from cells using an RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions. First strand cDNA was synthesized from 1.0 μg of total RNA by SuperScript III reverse transcriptase (Invitrogen). The primers used for PCR amplification were: glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-F, 5'-GAATTCATCATCATTCTCCAGG-3'; GAPDH-R, 5'-CATGGGCCCCATAGGTCCCACAC-3' and TCF8-F, 5'-TGCTACGATGTTGAGAAGAC-3'; TCF8-R, 5'-GGTGGATGTGGAAGAC-3'. Real-time PCR was performed using a Light Cycler 480 and the Universal Probe Library system (Roche) for GAPDH and MMP1, and by using the SYBRGreen system for TCF8, respectively. Sequence for primers and probes used for real-time PCR were as follows: GAPDH-F, 5'-AGCCACATCGCTGACAGAC-3'; GAPDH-R, 5'-GCCCAATACGACCAAATCC-3'; GAPDH-probe, 5'-TGGGGAAAG-3'; and MMP1-F, 5'-GCTACCCCTTTGATGCTTAACTACGA-3'; MMP1-R, 5'-TTTGTGAGCTGACACTCTG-3'; MMP1-probe, 5'-GGGAGAAG-3'. The same primers used in the conventional RT-PCR were used for TCF8. Data were normalized by the expression level of GAPDH in each sample.

Mice. Tcf8 (Δ Ef1) heterozygous KO mice were described previously (10), and were backcrossed onto C57BL/6. Wild-type (WT; C57BL/6) mice were purchased from CLEA Japan. Mice were maintained under specific pathogen-free conditions, and mice breeding and experiments were approved by the institutional animal care and experiment committee at Hokkaido University. We s.c. injected 1 × 10^6 B16/F10 murine melanoma cells into the mice, measured the tumor size by surface examination every 4 d, and excised the tumors 16 d postimplantation for further analyses. Tumor volume was calculated by long and short axes and height, where each tumor was assumed to be an ellipsoid (19). CD31-positive infiltrating microvessels were counted in 10 fields per section from 4 mice per group. Abdominal and thoracic organs were also dissected to determine whether there were any metastases. We deem noteworthy that the cell line used here is reported to metastasize to the lungs by i.v. injection but not by s.c. injection (20).
The Aortic ring assay was performed essentially as described previously (21). Briefly, thoracic aorta obtained from WT and KO mice were sectioned, placed on a well of a 48-well plate coated with 125 μL of Matrigel, and covered with an additional 100 μL of Matrigel. The rings were incubated in 500 μL of complete EGM-2. The medium was replaced every other day. At day 5, images of aortic rings were acquired, and the outgrowth areas were delineated and quantitated with MetaMorph software (Molecular Devices).

Invasion, migration, and wound-healing assays. The Matrigel invasion assay was performed using 24-well BD BioCoat Matrigel Invasion Chambers (BD-Discovery). HUVECs (2.5 × 10^4) were seeded in the upper chamber in serum- and supplement-free EGM-2 medium. Cells were allowed to invade to the lower chamber containing complete EGM-2 medium for 1 h at 37°C. The noninvading cells on the upper surface of the filter were removed by wiping with a cotton swab. Infiltrated cells were fixed with 3.7% formaldehyde in PBS, stained with 0.2% crystal violet, and quantified. For the migration assay to type I collagen gels, a transwell (Nunc AS) was coated with a type I collagen solution (Nitta Gelatin) for 1 h at 37°C, and washed twice with EGM-2 medium. After inoculation with 1.0 × 10^4 cells and incubation for 8 h, analysis was performed as described above. The wound-healing assay was performed as described previously (18).

Chromatin immunoprecipitation assay. A Chromatin Immunoprecipitation (ChIP) Assay kit (Upstate) was used essentially according to the manufacturer's protocol. Briefly, control and HA-TCF8–expressing 293T cells were fixed with 1% formaldehyde, lysed in lysis buffer, sonicated, and clarified by centrifugation. The resulting supernatant was immunoprecipitated with an anti-HA antibody. The precipitates were then amplified by PCR with these primers: Mmp1-promoter-F, 5’-AGCCAGCTAAGTGAGTGTC-3’; Mmp1-promoter-R, 5’-TTTCTTCCACACCTTGGTC-3’; and Mmp1-3’-CDR-F, 5’-TGCAACTCTGACGTTGATCC-3’; Mmp1-3’-CDR-R, 5’-GGTGACACCAGTGACTGC-3’.

Cell adhesion and permeability assay. The cell adhesion assay was performed essentially as described previously (22). After coating wells with Matrigel or type I-C collagen (Nitta Gelatin) for 1 h at room temperature, 2 × 10^4 HUVECs were plated in each well of a 96-well plate (Nunc) for the indicated time at 37°C. The bound cells were stained with 0.04% crystal violet, lysed, and quantified by measuring the absorbance at 595 nm.

Cell permeability was determined by using an *In vitro* Vascular Permeability Assay kit (CHEMICON International) according to the manufacturer's instructions.

Immunohistochemistry and fluorescence microscopy. Formalin-fixed paraffin sections were stained with H&E by the conventional method. The sections were also incubated in primary antibodies, peroxidase blocking solution, biotinylated secondary antibody, avidin/biotin complex solution, and peroxidase substrate solution. Microscopic examination was performed after counterstaining with hematoxylin. Immunofluorescence microscopy was performed as described (23).

Statistical analyses. All data represent means and SDs of three independent experiments performed in triplicate, and were subjected to one-way ANOVA, followed by the comparison by Student’s or Welch’s t tests. *P* values obtained from the tests are described in the figure legends.

Results

TCF8 expression during angiogenesis. To test whether TCF8 is involved in angiogenesis, we first examined the expression of TCF8 mRNA during tube formation of human umbilical vein endothelial cells (HUVEC) on Matrigel, an *in vitro* approximation of angiogenesis, and found that TCF8 expression was up-regulated ~2.5-fold at 12 hours after initiation of tube formation by HUVECs on Matrigel (Fig. 1A and B). We also explored the mechanism by which the expression of TCF8 is regulated in HUVECs; however, none of the growth factors included in the assay medium could induce TCF8 expression (Fig. 1C), even in the combination of all factors (Supplementary Fig. S1). In particular, transforming growth factor (TGF)-β, a known inducer of TCF8 especially in carcinomas (24), failed to evoke TCF8 expression in HUVECs (Fig. 1C), indicating a cell type–specific regulation.
To verify endothelial TCF8 expression \textit{in vivo}, we performed immunohistochemistry on human pathologic specimens using an anti-TCF8 antibody. The expression of TCF8 in human breast cancer tissue was observed in the hyalinized vascular structure (Fig. 1D, a–c), and TCF8-positive cells (Fig. 1D, b and c, arrow) were distinct from α-SMA–positive cells (arrow head). Endothelial staining was more apparent in colon cancer vessels (Fig. 1D, d–f), and TCF8 expression was also detected in the sinusoidal endothelium of hepatocellular carcinoma, vasculatures of hemangioblastoma, and cavernous hemangioma (Supplementary Fig. S2A–C). In contrast, TCF8 was absent from granulation tissue capillaries, dilated malformed vessel endothelium, and normal blood vessels within intervening brain tissues (Supplementary Fig. S2D; Fig. 1D, g–l). These results indicate that TCF8 is preferentially expressed in the endothelial cells of tumor vessels, a location where vigorous angiogenesis occurs. When comparing the time courses of TCF8 induction and tube formation, we noticed that the tube architecture was nearly complete and at steady-state, at the time points of TCF8 induction (Fig. 1A and B), suggesting a role for TCF8 in the termination and stabilization, but not the induction, of tube formation. Therefore, TCF8 signaling might be needed to subdue excess tumor angiogenesis.

TCF8 regulates tumor angiogenesis \textit{in vivo}. We next appraised the function of TCF8 in tumor angiogenesis \textit{in vivo}. B16/F10 murine melanoma cells were injected s.c. into C57BL/6 mice and δfj1/Tcf8-heterozygous KO mice with a C57BL/6 background. As revealed by surface examination, implanted tumor growth in Tcf8-deficient mice was significantly slower during the first 12 days but was comparable with WT mice at day 16 (Supplementary Fig. S3A). Macroscopic examination during autopsy revealed that the tumors had a complex, multilobular appearance and had invaded into adjacent and deeper tissues in Tcf8-mutant mice, whereas tumors in WT mice were encapsulated with simple oval shapes (Supplementary Fig. S3B; Fig. 2A and B). This seemed to be the reason for the observed comparable tumor sizes between the mice. Consistent with its more aggressive features, the tumor weight of the mutant mice was significantly greater than that of the WT mice (Fig. 2A). Surprisingly, multiple lung metastases of up to 2 mm in diameter were observed in 3 of the 4 mutant mice but were not observed in WT animals (Fig. 2C). It is important to note that the F10 subline of B16 melanoma has never been shown to metastasize to distant organs after s.c. injection (20), indicating that the TCF8-deficient milieu allowed for the tumors to display more malignant phenotypes. Immunohistochemistry showed that the number of microvessels composed of CD31-positive endothelial cells in KO mice tumors was significantly higher than that of WT mice (Fig. 2D), and that the expression of TCF8 in the endothelium of tumor vessels in these tumors was substantially less than that of their WT counterparts, notwithstanding the heterozygous nature of the KO mice, as opposed to a homozygous one (Fig. 2D). Although it is possible that the tumors are also influenced by signals emanating from other tumor stroma components, excess angiogenesis constitutes one of the foremost mechanisms in providing a favorable milieu for more aggressive tumor growth, thus highlighting the importance of these findings.

TCF8 negatively regulates angiogenesis \textit{in vitro} and \textit{ex vivo}. To further investigate the exact mechanism by which TCF8 regulates angiogenesis, we examined the effect of TCF8 expression on tube formation by HUVECs. Endogenous TCF8 knockdown by siRNAs, which successfully suppress expression by 70% to 80% (Fig. 3A), augmented the number of tubes ∼2-fold in Matrigel (Fig. 3B). Essentially similar results were obtained by tube formation on a type I collagen gel (data not shown). Furthermore, when we performed an aortic ring assay (an \textit{ex vivo} angiogenic model) by using sections of aorta resected from Tcf8-heterozygous KO and WT mice, endothelial cell sprouting from the aorta of KO mice was again more efficient than those of WT mice (Fig. 3C). One should also note that the knockdown of TCF8 enhances tube formation but the tube structure is easily breakable and unstable. These results clearly indicate a critical role for TCF8 in the negative regulation as well as stabilization of angiogenesis.

TCF8 regulates cell invasion and migration via MMP1 expression. We next examined the effect of TCF8 expression on the cellular phenotypes involved in angiogenic processes, including cell invasiveness, motility, and adhesion (4,25). Consistent with the results of the tube formation assay, invasiveness into Matrigel was enhanced up to 2.3-fold by transfection with siRNAs against TCF8 (Fig. 4A). Enhanced migration, ∼3.7-fold, when a type I collagen gel was used as a matrix, was also observed (Fig. 4A). Interestingly, however, TCF8 is likely to be dispensable for endothelial cell motility. A wound-healing assay showed no significant differences in the motility of HUVECs transfected with control and TCF8-targeting siRNA on the matrices tested (data not shown), unlike breast cancer cells in which TCF8 accelerates the motility (26).

One possible mechanism underlying the increased invasiveness and migration might be the up-regulated digestion of ECMs via TCF8-mediated transcriptional regulation of the gene encoding MMP1. MMP1 induction during tube formation was significantly enhanced in Matrigel when TCF8 was silenced (Fig. 4B). Furthermore, a ChIP assay showed the specific binding of TCF8 to the MMP1 promoter (Fig. 4C).
to the promoter region of the Mmp1 gene (Fig. 4C), in which there are 2 putative TCF8 binding sites at −427 and −409 bp from the transcription initiation site (data not shown). To verify the significance of MMP1 as a downstream effector of TCF8, we performed a tube formation assay in the presence or absence of an MMP inhibitor, GM6001, and found that tube formation, facilitated by TCF8 knockdown, was inhibited by GM6001 by ~20% (Fig. 4D), suggesting that, albeit in part, MMP1 plays a substantial role in TCF8-mediated regulation of angiogenesis. These data collectively indicate that TCF8, induced in the late phase of angiogenesis, regulates MMP1 expression negatively, thereby blocking invading endothelial cells.

TCF8 regulates cell-matrix and cell-cell adhesions. The other cellular function of TCF8 involves cell adhesion. TCF8 silencing significantly inhibited cell adhesion to both Matrigel and type I collagen by >25%, whereas the plating efficiency toward uncoated culture plates was not altered (Fig. 5A). Focal adhesions of TCF8-silenced cells were increased in number but decreased in size, with fine actin filaments visualized by anti-paxillin and phalloidin (Fig. 5B), suggesting that TCF8 is required for the consolidation of integrin-mediated interactions to the specific ECMs.

TCF8 may also participate in the regulation of cell-cell adhesion. We found that TCF8-repressed HUVECs allowed for more 70,000-molecular weight dextran penetration through the cell monolayer (Fig. 5C), suggesting that TCF8 is required for the consolidation of tight junction component molecule ZO-1 staining pattern of the tight junction component molecule ZO-1 (Fig. 5D, arrowheads), whereas the D, arrowheads), whereas the staining pattern of the tight junction component molecule ZO-1 was comparable (data not shown), which is in agreement with a very recent report (27). It is interesting that TCF8 repression did not affect the expression level of VE-cadherin (data not shown). Therefore, it seems that TCF8 specifically regulates the recruitment of VE-cadherin to the membrane, possibly by altering the expression level of regulators of VE-cadherin localization; however, further in-depth studies are required. In view of these results, it seems that TCF8 plays a key role in the strengthening of cell-matrix and cell-cell adhesion, which in turn might be substantially important in the stabilization of vasculature.

Discussion

In the present study, we show that TCF8, expressed specifically in endothelial cells and induced in the late phase of in vitro angiogenesis models, plays an integral role in the regulation of angiogenesis by regulating cell invasiveness, adhesiveness, and permeability. These observations, consistent with the phenotype seen in Tcf8−−/ embryos having frequent edema at midgestation and, less frequently, internal bleeding in the nasal region (10), indicate that vasculatures composed of TCF8-repressed endothelial cells are unsettled and leaky, albeit devoid of the structural abnormalities of the vasculature in the mutant mice (10). These characteristics of TCF8-deficient vessels resemble those of tumor vessels, which lead to increased interstitial pressure that limits drug diffusion within the tumor and favors tumor spreading, which occasionally leads to tumor cell dissemination in the blood stream and the appearance of tumor metastases (28). TCF8 expressed in tumor vessels is probably required for the suppression of excess tumor angiogenesis. Indeed, allograft tumors in Tcf8-deficient mice display aggressive growth and lung metastases (Fig. 2).

Cancer development and progression are attributed to genetic and epigenetic alterations in transforming cells. However, tumors are not merely a unitary aggregate of neoplastic cells but rather a complex tissue with ECMs, blood vessels, stromal cells, and infiltrating immune cells. Tumor angiogenesis is the most critical biologic event for cancer progression, not only because it supplies oxygen for tumor growth, but also because it supports tumor invasion, metastases, and drug resistance (28). VEGF inhibitors, such as bevacizumab—an anti-VEGF antibody approved by the US

Figure 4. TCF8 regulates cell invasiveness and migration via MMP1 expression. A, HUVECs transfected with si Control or si TCF8 were inoculated on Matrigel-coated or on type I collagen (Col-I)–coated chambers. After 22 h (Matrigel) or 6 h (Col-I), the invading/migrating cells were counted; bars, SD. Representative photographs are shown. B, levels of MMP1 during tube formation were determined by real-time RT-PCR. The data shown are means of triplicates from three independent experiments; bars, SD. *, *P = 0.00514; **, *P = 0.00127. C, ChIP assay to confirm TCF8-Mmp1 promoter interaction. Immunoprecipitates (top) of lysates of 293T cells expressing HA-TCF8 or input DNA (bottom) were amplified by primers specific for the human Mmp1 promoter (promoter) or 3′-coding (CDR) regions. D, HUVECs prepared as in A were subjected to a tube formation assay in the presence or absence of an MMP inhibitor GM6001. The data shown are means of triplicates from three independent experiments. *, *P = 0.00999; **, *P = 0.00186; ***, *P = 0.0152.
Food and Drug Administration for use in colorectal and breast
cancers—have been shown to reduce tumor volumes and increase
progression-free survival time; however, monotherapy is insufficient
for the complete suppression of tumor angiogenesis. Rather, there
are concerns about up-regulation of other classes of angiogenic
factors and the emergence of side effects (7). Notwithstanding
that further detailed studies are required to identify the cell type in
which TCF8 functions as a negative regulator of tumor angiogen-
esis, our observations provide clear evidence that TCF8 in the tumor
microenvironment plays a crucial role in this process, and hence
may offer a VEGF-independent target for use in the therapeutics of
tumor angiogenesis suppression.

It has been reported that several humoral factors, including
BMP-6, TGF-β, HB-EGF, and estrogen, possess the ability to regulate
TCF8 expression (29–32). Although we tested the involvement of
stimulants in TCF8 regulation, TGF-β, even in combination with
other stimulants, unexpectedly fails to induce TCF8 expression in
the endothelial cell context (Supplementary Fig. S1; Fig. 1C).
Therefore, we hypothesize that the expression of TCF8 might be
regulated in a manner particular to endothelial cells, and hence, the
exploration of factor(s) that act specifically on endothelial cells to
induce TCF8 expression will be fundamental to establish TCF8-
targeted therapy. In this regard, angiotensin II (ATII) signaling might
be a possible candidate. First, ATII, which binds to two distinct cell
surface receptors, angiotensin type 1 and type 2 receptors (AT1R
and AT2R), is implicated in tumor angiogenesis (reviewed in refs. 33–36),
and it is also reported that the engagement of ATII to AT2R induces TCF8
expression (37). Moreover, our very preliminary data indicate that HUVECs express both AT1R and AT2R, and that
TCF8 expression is induced by ATII. In view of the above, ATII
stimulation in the presence of AT1R inhibitors is anticipated as an
ideal therapeutic intervention, through which TCF8 expression is
specifically introduced in endothelial cells.

TCF8 has been extensively implicated in the epithelial-mesen-
chymal transition (EMT) of cancer cells, characterized by loss of
the epithelial phenotype and the acquisition of a mesenchymal
state, where it acts as a transcriptional repressor for a wide range
of genes encoding epithelial marker proteins, including E-cadherin
and Lgll, by binding directly to their promoter regions (8, 26, 38).
Because MMP1 expression was highly up-regulated in endothelial
cells deficient in TCF8 (Fig. 4B), we can say that the function of
TCF8 as a transcriptional attenuator is conserved in the
endothelial cell lineage. However, although its molecular function
is conserved, TCF8 develops different phenotypes in cancerous and
endothelial cells; promoting EMT and inhibiting endothelial-
mesenchymal transition (End-MT), respectively.

End-MT has been shown to play a key role in vascular remodeling
and tumor angiogenesis (39–41), and, analogously to EMT, is
characterized by loss of endothelial markers and an increase in
mesenchymal markers, impaired cell-cell contact and adhesion,
as well as an enhanced cell migration and secretion of proteases.
Therefore, because the expression of TCF8 is induced in the late
phase of angiogenesis and is dispensable for gene regulation of
endothelial and mesenchymal markers, we propose that TCF8 is
more likely to be a promoter of mesenchymal-endothelial retrans-
formation, rather than an inhibitor of End-MT, as confirmed by the
inhibition of MMP1 expression, consolidation of focal adhesion
formation, and the recruitment of VECadherin, all of which play
a critical role in keeping tumor vasculature remodeling in check.
References

Integral Role of Transcription Factor 8 in the Negative Regulation of Tumor Angiogenesis

Takayuki Inuzuka, Masumi Tsuda, Shinya Tanaka, et al.

Cancer Res Published OnlineFirst February 10, 2009.