Wnt Signaling Stimulates Transcriptional Outcome of the Hedgehog Pathway by Stabilizing GLI1 mRNA

Felicite K. Noubissi,1 Srikantha Goswami,1 Nicholas A. Sanek,2 Kazuyuki Kawakami,5 Toshinari Minamoto,5 Amy Moser,3,4 Yevgenya Grinblat,2 and Vladimir S. Spiegelman1,4

Introduction

Wnt and Hedgehog (Hh) are two major pathways that are critical in embryonic development, stem cell maintenance, and tumorigenesis. Both signaling pathways play critical roles in patterning, morphogenesis, and proliferation during embryogenesis and in tumorigenesis.

β-Catenin is a pivotal player in the canonical signaling pathway initiated by Wnt proteins. This pathway has been shown to control the establishment of the body axis at the very early stages of embryogenesis and the development of many organs and tissues, including brain, limbs, kidney, reproductive tract, teeth, and mammary glands (reviewed in ref. 1). In the absence of Wnt signaling, β-catenin (contained within a multiprotein complex of axin, APC, and GSK3β) is phosphorylated by GSK3β and subsequently degraded by ubiquitin-dependent proteolysis. Following the binding of Wnt proteins to receptors of the Frizzled and LRP families on the cell surface, GSK3β is inactivated and unphosphorylated β-catenin is released from the complex. It is subsequently translocated into the nucleus, where it forms a complex with Tcf/Lef, resulting in the activation of Wnt target genes. Mutational loss of APC, stabilizing mutations of β-catenin, or mutations in axin cause constitutive activation of the Wnt signaling pathway and lead to colorectal cancers (reviewed in ref. 2).

The Hh signaling pathway is also crucial for growth, patterning, and morphogenesis of many organs. This pathway is mediated by the Ci/GLI family of zinc finger transcription factors. In the absence of the Hh ligand, its transmembrane receptor Patched (Ptc) inhibits the activity of another transmembrane protein, Smoothened (Smo), resulting in inactivation of Hh signaling. Binding of the Hh ligand to Ptc abrogates the inhibitory effect of Ptc on Smo, thereby activating the transcription factor Ci/GLI. In vertebrates, three GLI genes have been identified, with GLI1 being predominantly a transcriptional activator and GLI2 and GLI3 acting as both activators and repressors. Aberrant regulation of the Hh pathway contributes to the development of many human cancers. Activating mutations of Smo or suppressing mutations of Ptc have been shown to constitutively activate the Hh signaling pathway (reviewed in ref. 3).

The Wnt and Hh signaling pathways, being fundamental in the coordination of developmental transitions, have been postulated to interact or cross-regulate at multiple levels; however, the mechanisms of these interactions are not clear. Some studies have suggested an antagonistic role of Hh signaling toward Wnt signaling. This antagonism has been reported during patterning of the dorsal somite in chick (4), in the mouse somitic mesoderm, possibly through upregulation of SFRP2 (5), and in colonic epithelial cell differentiation and colorectal cancers, probably through a GLI1-mediated mechanism (6, 7). Conversely, a Gli-dependent activation of Wnt signaling has been shown during ventro-posterior morphogenesis in Xenopus embryos (8) and during epithelial transformation, likely through Snail activation and E-cadherin inhibition (9). Active canonical Wnt signaling pathway has also been shown to be required for Hh pathway-driven development of basal cell carcinomas (10). Several reports have suggested that Hh signaling is controlled by Wnt signaling during embryogenesis (11, 12) and in development of colorectal cancers (13–15).

The mechanisms of cross-regulation between Wnt and Hh signaling pathways are not well understood. In this study, we identify a novel mechanism by which Wnt signaling regulates the transcriptional outcome of Hh signaling pathway. We show that this mechanism uses GLI1 mRNA stabilization by the RNA-binding protein CRD-BP, a direct target of the Wnt signaling pathway, and show its importance for colorectal tumorigenesis.

Materials and Methods

Expression vectors. The full-length GLI1 subcloned into pOTB7 [American Type Culture Collection (ATCC)] was amplified by PCR using Pfu Turbo DNA polymerase (Stratagene) and cloned into two vectors: pTRE-Tight (Clontech) under the control of TRE promoter and pcDNA3.1 (Invitrogen) downstream of the T7 promoter.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/). Requests for reprints: Vladimir S. Spiegelman, Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin and Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
The expression vectors for Flag-CRD-BP were a kind gift of Dr. J. Ross (McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI). CRD-BP shRNA was described previously (16). In brief, we used the siRNA Target Finder and Design Tool to select siRNA sequences. The annealed shRNA inserts were cloned into the pSilencer 1.0-U6 siRNA expression vector in accordance with the recommendations of Ambion. β-Catenin

and pHR-HscCTf4 (wild-type) were a gift from Drs. K. Kinzler (The Sol Goldman Pancreatic Cancer Research Center, The Ludwig Center and The Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, MD) and B. Vogelstein (The Sol Goldman Pancreatic Cancer Research Center, The Ludwig Center and The Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, MD). GLI1 shRNAs were kindly provided by Dr. F. Aberger (Department of Molecular Biology, University of Salzburg, Salzburg, Austria), and 8×3′Gli BS-Luci (eight directly repeated copies of 3′Gli binding site from HNF3β). Floor plate enhancer cloned into pSilLucII was a gift of Dr. H. Sasaki (Laboratory of Developmental Biology, Institute for Molecular and Cellular Biology, Osaka University, Osaka, Japan). Plasmids for expression of β-galactosidase (pSV-40) and β-galactosidase) were purchased from Promega.

Tissue culture and transfections. 293T cells were obtained from ATCC; they were maintained in DMEM medium with 10% fetal bovine serum (FBS) and transfected with the calcium phosphate method (16). The cell lines HeLa, NIH3T3, HCT116, DLD1, HT-29, RKO, SW48, SW480, SW620, and CCD-841/CoTr were also obtained from ATCC and maintained in accordance with the manufacturer’s recommendations. The cancer cell lines DLD1D7Δ15 and LS174 T-L8 were gifts from Dr. H. Clevers (Hubrecht Laboratory and Utrecht University, Utrecht, the Netherlands). These cell lines are characterized by constitutive activation of the β-catenin/Tcf signaling. DLD1D7Δ15 cells carry a mutation in APC, whereas LS174 T-L8 cells have their mutation in β-catenin. Additionally, these cells carry a doxycycline-inducible dntCtf4 (17). They were maintained in RPMI medium with 5% FBS. All our tissue culture media contained 1% penicillin and streptomycin, 10 mmol/L HEPES (pH 7.6), 3 mmol/L MgCl2, 40 mmol/L KCl, 2 mmol/L DTT, 5% (v/v) glycerol, 0.5% (v/v) IGEPAL, and 0.5 volume of 7.5 mol/L ammonium acetate in UV cross-linking. Twenty micrograms of protein from the whole cell extract of 293T cells transfected with either Flag-CRD-BP expression vector or pCDN3.1 plasmid were incubated with 1.5 × 10^6 cpm of each RNA probe in 96-well plate at room temperature for 20 min in 20 μL of binding buffer [10 mmol/L HEPES (pH 7.6), 3 mmol/L MgCl2, 40 μmol/L KCl, 2 mmol/L DTT, 5% (v/v) glycerol, 0.5% (v/v) IGEPAL]. Heparin and yeast tRNA were added to final concentrations of 2.5 μg/μL and 50 ng/μL, respectively, for an additional 10 min. The 96-well plate was then placed on ice and irradiated at 254 nm UV light in a Stratalinker (Stratagen) for 30 min at a distance of 5 cm from the light source. RNA not associated with protein was digested with 100 units of RNase A (Sigma Aldrich) at 37°C for 15 min. The remaining RNA-protein complexes were incubated overnight with 2 μg of anti-Flag antibody and 25 μL of protein A/G-plus agarose beads (Santa Cruz Biotechnology). Immunoprecipitates were washed six times in lysis buffer, boiled with 20 μL of sample buffer, and separated in 8% SDS-PAGE. The gel was dried and exposed to X-ray film for a week.

Real-time PCR. Real-time PCR for quantitative measurements in zebrafish embryos, primary human tissue samples (16), mouse tissue samples, and cell lines was done using SYBR Green PCR Core reagents (Applied Biosystems). Primer sequences for Glil, Glis, Glk, Axin2, Tcf2 (11), cyclin D1 (23), c-myc (24), and CRD-BP are in Supplementary Table S2. α-Tubulin was used as a reference gene for zebrafish (25) and GAPDH as a reference gene for human (16) and mouse samples.

Zebrafish strains and embryo culture. Adult zebrafish were maintained according to established methods (26). Embryos were obtained from natural matings and staged according to Kimmel and colleagues (27). Heterozygous Tg(hsGfpctf) embryos (28) at shield stage (6 hpf) were heat shocked at 37°C for 30 or 45 min, then incubated at 29°C until they reached tailbud stage (10 hpf). Embryos expressing GfpTcf were identified by green fluorescent protein (GFP) using a Leica MZFLIII stereozone, then lyzed for RNA extraction with Trizol (Invitrogen).

Results and Discussion

Wnt/β-catenin signaling induces expression of GLI1. To analyze the effect of Wnt/β-catenin signaling on the modulation of the Hh pathway, we studied the expression of the GLI family transcription factors in different cell types after Wnt/β-catenin signaling was either activated or inhibited. We observed an upregulation of GLI1 mRNA levels in HeLa cells treated with recombinant Wnt3A protein (Fig. 1A). Transfection of 293T cells with β-catenin and Tcf4 resulted in elevated expression of GLI1 mRNA and protein (Fig. 1B). Colorectal cancer cells DLD1D7Δ15 and LS174 T-L8, characterized by constitutive activation of the β-catenin/Tcf4

Luciferase reporter assays. NIH 3T3 cells, DLD1D7Δ15 cells, and 293T cells were transfected by lipofection with 8×3′GLI BS-Luci reporter plasmid, pSV-40 β-galactosidase (Promega), and different additional plasmids as indicated in the figures. Luciferase activity was estimated 48 h after transfection using luciferase reporter assay reagent (Promega). β-Galactosidase used for normalization was estimated by the β-galactosidase assay reagent (Pierce).

In vitro transcription of labeled RNA with α-32P. The fragments encompassing nucleotides 41-990, 973-1824, 1808-2730, and 2713-3600 of GLI1 cDNA were amplified by PCR downstream of the SP6 promoter using Pfu Turbo DNA polymerase (Stratagene). Primer sequences for PCR amplification are in Supplementary Table S1. The full-length GLI1 in the pcT7β vector was linearized immediately 3′ to the target DNA insert, and in vitro transcription was performed for the full-length mRNA as well as for the fragments using SP6 DNA-directed RNA polymerase to produce 5′-capped, uniformly labeled mRNAs according to the kit Riboprobe in vitro Transcription Systems (Promega). Radiolabeled probes were prepared using [α-32P]UTP (800 Ci/mmole; Amersharm). Following transcription, RNase-free DNase (Promega) was added to the mixture to remove the template DNA and the probe was precipitated with 0.5 volume of 7.5 mol/L ammonium acetate in 2.5 volumes of ethanol and resuspended in RNase-free water.

UV cross-linking. Twenty micrograms of protein from the whole cell extract of 293T cells transfected with either Flag-CRD-BP expression vector or pCDN3.1 plasmid were incubated with 1.5 × 10^6 cpm of each RNA probe in 96-well plate at room temperature for 20 min in 20 μL of binding buffer [10 mmol/L HEPES (pH 7.6), 3 mmol/L MgCl2, 40 μmol/L KCl, 2 mmol/L DTT, 5% (v/v) glycerol, 0.5% (v/v) IGEPAL]. Heparin and yeast tRNA were added to final concentrations of 2.5 μg/μL and 50 ng/μL, respectively, for an additional 10 min. The 96-well plate was then placed on ice and irradiated at 254 nm UV light in a Stratalinker (Stratagen) for 30 min at a distance of 5 cm from the light source. RNA not associated with protein was digested with 100 units of RNase A (Sigma Aldrich) at 37°C for 15 min. The remaining RNA-protein complexes were incubated overnight with 2 μg of anti-Flag antibody and 25 μL of protein A/G-plus agarose beads (Santa Cruz Biotechnology). Immunoprecipitates were washed six times in lysis buffer, boiled with 20 μL of sample buffer, and separated in 8% SDS-PAGE. The gel was dried and exposed to X-ray film for a week.

Real-time PCR. Real-time PCR for quantitative measurements in zebrafish embryos, primary human tissue samples (16), mouse tissue samples, and cell lines was done using SYBR Green PCR Core reagents (Applied Biosystems). Primer sequences for Glil, Glis, Glk, Axin2, Tcf2 (21), cyclin D1 (23), c-myc (24), and CRD-BP are in Supplementary Table S2. α-Tubulin was used as a reference gene for zebrafish (25) and GAPDH as a reference gene for human (16) and mouse samples.

Zebrafish strains and embryo culture. Adult zebrafish were maintained according to established methods (26). Embryos were obtained from natural matings and staged according to Kimmel and colleagues (27). Heterozygous Tg(hsGfpctf) embryos (28) at shield stage (6 hpf) were heat shocked at 37°C for 30 or 45 min, then incubated at 29°C until they reached tailbud stage (10 hpf). Embryos expressing GfpTcf were identified by green fluorescent protein (GFP) using a Leica MZFLIII stereozone, then lysed for RNA extraction with Trizol (Invitrogen).

Results and Discussion

Wnt/β-catenin signaling induces expression of GLI1. To analyze the effect of Wnt/β-catenin signaling on the modulation of the Hh pathway, we studied the expression of the GLI family transcription factors in different cell types after Wnt/β-catenin signaling was either activated or inhibited. We observed an upregulation of GLI1 mRNA levels in HeLa cells treated with recombinant Wnt3A protein (Fig. 1A). Transfection of 293T cells with β-catenin and Tcf4 resulted in elevated expression of GLI1 mRNA and protein (Fig. 1B). Colon...
signaling, carry doxycycline-inducible dominant-negative Tcf4 mutant (dnTcf4). Both of these cell lines showed a significant reduction in GLI1 expression in the presence of doxycycline at the RNA and protein levels (Fig. 1C). Similarly, blocking canonical Wnt signaling with dnTcf in zebrafish embryos resulted in reduction of gli1 mRNA levels (Fig. 1D). These results show that Wnt/β-catenin signaling induces GLI1 expression to the extent similar to other Wnt-regulated genes (axin2 and Tcf; Supplementary Fig. S1A–C) and this induction is evolutionarily conserved and not cell type restricted. Our findings corroborate a recent study that suggested enhancement of GLI transcriptional activity by β-catenin in different human cancer cells (14). Our results also show that GLI1 induction is Tcf dependent, as overexpression of the dominant-negative form of Tcf inhibited GLI1 expression in DLD1Δ15 and LS174 T-L8 cells and in zebrafish embryos.

CRD-BP binds to the coding region of GLI1 mRNA and stabilizes it. To investigate the mechanism of GLI1 regulation by Wnt/β-catenin signaling, 293T cells transfected with β-catenin/Tcf were treated with actinomycin D to inhibit transcription, and GLI1 mRNA expression was determined. In contrast to the regulation of the Wnt transcriptional target axin2 (29–31), this treatment did not prevent β-catenin/Tcf–dependent GLI1 induction in 293T cells (Supplementary Figs. S2A and B), suggesting that up-regulation of GLI1 is posttranscriptional. Further studies using doxycycline-regulated expression of GLI1 showed that Wnt signaling stabilizes GLI1 mRNA in cells (Fig. 2A). We have previously reported that Wnt/β-catenin signaling induces the expression of mRNA binding protein, CRD-BP (16). This protein was shown to bind and stabilize different mRNAs, including the mRNA of the proto-oncogene c-myc (32), the mRNA of the β-TrCP1 ubiquitin ligase receptor (16, 33), and the mRNA of MDR1, the multidrug resistance P-glycoprotein gene (34). We sought to determine whether GLI1 mRNA expression could be affected by CRD-BP as well. We found that GLI1 mRNA half-life was drastically increased when CRD-BP was overexpressed (Fig. 2A). Overexpression of CRD-BP also upregulated steady-state levels of GLI1 mRNA and protein (Fig. 2B). Because CRD-BP is an mRNA binding protein, we hypothesized that it might directly bind to GLI1 mRNA and induce its stabilization. Indeed, CRD-BP interacted directly with GLI1 mRNA, with the strongest binding observed within the first ~900 bases (41–990) of the coding region of GLI1 mRNA (Fig. 2C). Overall, these results suggest that, upon Wnt/β-catenin signaling activation, CRD-BP is upregulated and then binds to the GLI1 mRNA and stabilizes it. CRD-BP did not target GLI2 and GLI3 mRNAs. These data are anticipated because β-catenin/Tcf4 that upregulates CRD-BP expression (16) could not induce GLI2 and GLI3 mRNA expression (Supplementary Fig. S2C).

Wnt/β-catenin signaling induces the expression and transcriptional activity of GLI1 in a CRD-BP–dependent manner. CRD-BP knockdown largely prevented β-catenin/Tcf–dependent GLI1 upregulation in 293T cells, as well as in NIH3T3 cells (Fig. 2D and Supplementary Fig. S3). Moreover, downregulation of CRD-BP by shRNA prevented the induction of GLI1 transcriptional activity by the Wnt/β-catenin signaling (Fig. 3A). Doxycycline-induced
inhibition of β-catenin/Tcf4 signaling resulted in downregulation of GLI1-dependent transcription, whereas CRD-BP was able to upregulate GLI1-dependent transcriptional activity in DLD1Δ15 colorectal cancer cells, regardless of the status of Wnt/β-catenin signaling (Fig. 3B). Knockdown of GLI1 abrogated CRD-BP–controlled regulation of GLI-dependent transcription (Fig. 3C), confirming the specificity of the CRD-BP role in GLI1 regulation. These results show that control of GLI1 expression and activity by the Wnt/β-catenin signaling depends on CRD-BP.

Interestingly, this regulation of GLI-dependent transcriptional activity seems to be independent of upstream Hh signaling, as neither inhibitor (cyclopamine) nor activator (SAG) of SMO had any effect on either basal or Wnt- and CRD-BP–regulated GLI-luciferase (Fig. 3B). These data, whereas confirming a previous observation that upstream Hh pathway inhibitors do not affect GLI transcriptional activity in colorectal cancer cells (19), suggest a novel, SMO-independent, mode of regulation of GLI transcriptional outcome by Wnt signaling pathway.
GLI1 contributes to β-catenin and CRD-BP–dependent proliferation of colorectal cancer cells. Several reports point to the involvement of Hh signaling in the genesis of colorectal cancers (13, 15), where the role of Wnt signaling is well established. Enhancement of GLI transcriptional activity by β-catenin has been shown in different human cancer cells (14), although the mechanism of this activation is not clear. Interestingly, a recent study reported the absence of canonical Hh signaling in a variety of epithelial (including colorectal) cancer cells (19). However, GLI1 protein was also found to be overexpressed in some colorectal cancers independently of Shh signaling (35, 36). Taken together, these studies imply that Wnt signaling controls Hh signaling in colorectal cancers. In cancer cells, Hh is primarily a proliferative stimulus (37) and GLI1 is a transcriptional mediator of Hh signaling (38). Because GLI1 is also upregulated by the Wnt/β-catenin signaling, we sought to investigate whether GLI1 contributes to Wnt/β-catenin–dependent proliferation of human colorectal cancer cells. To assess this function of Wnt/β-catenin–mediated upregulation of GLI1, we tested whether GLI1 coexpression could rescue Wnt/β-catenin–dependent colony formation when this pathway is inhibited. GLI1 could indeed partially rescue the ability of DLD1D7Δ15 and LS174 T-L8 cells to form colonies when Wnt/β-catenin signaling was inhibited by doxycycline treatment–induced expression of dnTcf4 (Fig. 4A). Interestingly, ectopic expression of GLI1 failed to induce cyclin D1 and c-myc mRNA expression in the absence of Wnt signaling (Supplementary Fig. S4A), suggesting that the partial rescue of the ability of DLD1D7Δ15 and LS174 T-L8 cells to form colonies by GLI1 is probably independent of cyclin D1 and c-myc. In addition, although the knockdown of CRD-BP may affect the proliferation of colorectal cancer cells through multiple mechanisms, our data showed that overexpression of GLI1 resulted in attenuation of the inhibitory effect of CRD-BP shRNA in colony formation in colorectal cancer cells DLD1D7Δ15 and LS174 T-L8 (Fig. 4B). This indicates that GLI1 contributes to Wnt- and CRD-BP–dependent proliferation of DLD1D7Δ15 and LS174 T-L8 cells. GLI1 did not affect the expression of cyclin D1 and c-myc mRNA in these experiments either (Supplementary Fig. S4B), which also suggests that other target genes are involved in partial rescue of these cells to form colonies by GLI1. GLI1 contribution to the growth of colorectal cancer cells was not limited to DLD1D7Δ15 and LS174 T-L8 cells: Knockdown of GLI1 (using two independent GLI1-targeting shRNA constructs) drastically decreased the ability of SW480, SW620, and HCT116 cells to form colonies (Supplementary Fig. S5A and B), indicating a requirement for GLI1 in proliferation and survival of colorectal cancer cells. Our data support previous findings that showed the involvement of GLI1 in colorectal cancer cell proliferation (13, 15). In contrast, another study showed that GLI1 overexpression suppressed proliferation of SW480 and HCT116 colorectal cancer cells with activated Wnt signaling (7). These cells exhibit high levels of endogenous GLI1 (Supplementary Figure 3. Wnt/β-catenin signaling induces the expression of GLI1 in a CRD-BP–dependent manner. A, NIH 3T3 cells were grown in six-well plates and cotransfected with 8×3′GLI BS-LucII reporter plasmid and pSV-40-galactosidase, and irrelevant shRNA or CRD-BP shRNA plasmid, and then treated with Wnt-3A (100 ng/mL) for 15 h as indicated. Forty-eight hours after transfection, luciferase activity was estimated using luciferase reporter assay reagent (Promega). β-Galactosidase was used for normalization and estimated using the β-galactosidase assay reagent (Pierce). B, DLD1D7Δ15 cells were grown in a six-well plate and cotransfected with 8×3′GLI BS-LucII reporter plasmid, pSV-40 β-galactosidase, and Flag-CRD-BP or empty plasmid and then treated with doxycycline (1 μg/mL) for 24 h, cyclopamine (10 μmol/L) for 24 h, or SAG (3 nmol/L) for 30 h as indicated. Luciferase activity was estimated as in A. C, 293T cells grown in a six-well plate were cotransfected with 8×3′GLI BS-LucII reporter plasmid, pSV-40 β-galactosidase, and Flag-CRD-BP or empty plasmid and irrelevant shRNA or GLI1 shRNA (shGLI1-C). Luciferase activity was estimated as in A. *, P < 0.01, compared with controls in Student’s t test.
Fig. S5, and, perhaps, overexpression of GLI1 does not represent relevant pathophysiologic conditions. On the other hand, knockdown of GLI1 expression in a variety of colorectal cancer cells, including SW480 and HCT116, resulted in dramatic inhibition of colony formation (Supplementary Fig. S5A), further supporting the importance of GLI1 for the proliferation of colorectal cancer cells.

The Wnt/β-catenin pathway is an important player in colorectal carcinogenesis. We next assessed the expression of GLI1 in primary human colorectal tumor samples and colorectal cancer cell lines. We found that all human colorectal tumor samples previously characterized by an activation of β-catenin and high levels of CRD-BP overexpressed GLI1 mRNA to different extents (Fig. 4C). Similarly, we have found a positive correlation between activation of β-catenin signaling and expression of CRD-BP and GLI1 in a panel of established colorectal cancer cell lines (Supplementary Fig. S5A). We also analyzed Apc Min+/− mice, heterozygous for a nonsense mutation in the APC locus that predisposes them to the development of multiple adenomas throughout the entire intestinal tract (40), for expression of Gli1. These mice overexpressed Gli1 in their intestinal tumors but not in the normal intestine (Fig. 4D and Supplementary Fig. S6).

These findings further support both a role for GLI1 in colorectal cancer formation and its regulation by Wnt/β-catenin signaling. Increased expression of GLI1 mRNA was previously reported in human colonic adenocarcinomas (13); however, its association with Wnt/β-catenin signaling was not studied. Two other studies observed that the upregulation of GLI1 expression in colorectal carcinomas was not always consistent with the expression pattern of Shh, suggesting that the Hh pathway might be activated by other regulatory mechanisms in colorectal carcinomas (35, 36). Another study reported that Indian hedgehog (Ihh) signaling stimulates colonic epithelial differentiation and inhibits proliferation by antagonizing Wnt signaling (6); however, Yauch and colleagues have recently shown that Hh ligands failed to activate canonical Hh signaling in tumor epithelial cells (19), suggesting that the observed upregulation of GLI1 in colorectal cancer cells may not be a result of activation of upstream Hh signaling. A body of evidence points to a regulatory role of Wnt and Hh pathways in stem cell development in epithelia, including those of the intestine (reviewed in ref. 37). Additionally, recent studies suggest that colorectal tumors might arise from intestinal stem cells (41). Taken together, it is likely that cross-talk between
the Wnt and Hh pathways exists in the development of colorectal cancers and one proposed mechanism of this interaction involves control of GLI1 expression by both pathways.

Wnt and Hh are pivotal pathways similar to each other in several respects (42, 43). These pathways interact at multiple levels in embryonic organ patterning as well as in the development of some cancers. It is likely that different mechanisms are used for this cross-talk in different contexts. In this study, we identify a novel mechanism by which Wnt signaling regulates Hh signaling and show that this mechanism uses GLI1 mRNA stabilization. To the best of our knowledge, this is the first study that shows posttranscriptional regulation of the Hh signaling by the Wnt/β-catenin signaling pathway. It is also the first study to identify CRD-BP as a mechanistic link between the two pathways. Altogether, this work sheds light on the regulatory role of Wnt signaling in controlling Hh signaling and offers significant new insight on the involvement of the two pathways in colorectal cancer development. These findings suggest CRD-BP as a valuable candidate drug target for therapy in cancers associated with deregulation of Wnt/β-catenin and Hh signaling pathways.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Received 4/23/09; revised 8/25/09; accepted 9/18/09; published OnlineFirst 11/3/09.

Support grant: support (V.S. Spiegelman) and grant (Y. Grinblat).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. F. Aberger, H. Clevers, K. Kinzler, J. Ross, H. Sasaki, and B. Vogelstein for their generous gifts of reagents; Dr. S. Fuchs for critical reading of the manuscript; and Dr. K. Spiegelman for help with the manuscript preparation.

References
Wnt Signaling Stimulates Transcriptional Outcome of the Hedgehog Pathway by Stabilizing GLI1 mRNA

Felicite K. Noubissi, Srikanta Goswami, Nicholas A. Sanek, et al.

Cancer Res Published OnlineFirst November 3, 2009.