Tgfbr1 Haploinsufficiency Inhibits the Development of Murine Mutant Kras-Induced Pancreatic Precancer

Kevin Adrian,1 Matthew J. Strouch,1 Qinghua Zeng,3 Morgan R. Barron,1 Eric C. Cheon,4 Akiles Honasoge,1 Yanfei Xu,2 Sharbani Phukan,2 Maureen Sadim,2 David J. Bentrem,1 Boris Pasche,3 and Paul J. Grippo1

1Department of Surgery and 2Cancer Genetics Program, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; 3Division of Hematology/Oncology, Department of Medicine and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama; and 4Department of Surgery, Mount Sinai Hospital, University of Illinois at Chicago, Chicago, Illinois

Abstract

To dissect the role of constitutively altered Tgfbr1 signaling in pancreatic cancer development, we crossed Elastase-KrasG12D (EL-Kras) mice with Tgfbr1 haploinsufficient mice to generate El-Kras/Tgfbr1+/− mice. Mice were euthanized at 6 to 9 months to compare the incidence, frequency, and size of precancerous lesions in the pancreas. Only 50% of all El-Kras/Tgfbr1+/− mice developed preinvasive lesions compared with 100% of El-Kras (wild-type Tgfbr1) mice. The frequency of precancerous lesions was 4-fold lower in haploinsufficient than in control mice. Paradoxically, the precancerous lesions of El-Kras/Tgfbr1+/− mice were considerably larger than those in El-Kras mice. Yet, the mitotic index of precancerous cells and the observable levels of fibrosis, lipopatathy, and lymphocytic infiltration were reduced in El-Kras/Tgfbr1+/− mice. We conclude that Tgfbr1 signaling promotes the development of precancerous lesions in mice. These findings suggest that individuals with constitutively decreased TGFBR1 expression may have a decreased risk of pancreatic cancer. [Cancer Res 2009;69(24):OF1–6]

Introduction

Transforming growth factor-β (TGF-β) signaling plays dual roles in the etiology of pancreatic cancer (PC). Loss of TGF-β signals in both human (1–3) and mouse (4–6) pancreas has been associated with aggressive disease. Conversely, reduced TGFBR1 expression in human PC prevents TGF-β-mediated growth inhibition (7), and decreased TGFBR1 kinase activity in Panc1 cells attenuates growth, invasion, and metastasis in vitro and in vivo (8). The mechanism by which altered TGF-β signals can promote or inhibit PC development requires further investigation beginning at the receptor level.

In PC, the TGF-β pathway is altered at various levels including changes at the ligand, receptor, and intracellular messenger levels. Increased expression of all three TGF-β isoforms has been shown in PC, with the presence of TGFBR2 being associated with advanced disease (9). In addition, decreased expression of TGF-β receptors has been shown in some human PC (7, 10). Most of these alterations are infrequent as shown by 1% and 4% mutations in TGFBR1 and TGFBR2, respectively (11). The most common TGF-β-related mutation in PC (in excess of 50%) is loss of SMAD4 (12). Furthermore, a global genomic analysis of human PC has recently shown that at least one member of the TGF-β signaling pathway (including TGFBR2, SMAD3, and SMAD4) is mutated in all PC (2). These findings highlight the central role played by alterations in the TGF-β pathway during PC development and progression, although the mechanisms involved are not fully understood.

Most mouse models of PC show that loss of TGF-β pathway genes in mutant Kras-induced precancer leads to the development of more aggressive disease. LSL-KrasG12D mice with heterozygous or homozygous loss of either Smad4 (4, 6) or Tgfbr2 (5) alleles develop more aggressive PC at a greater incidence and a shorter latency. However, the effects of reduced Tgfbr1 on mutant Kras-induced precancerous lesions have not been established in vivo. Given the central role played by Tgfbr1, which initiates the TGF-β signaling cascade, and the novel evidence that constitutively decreased Tgfbr1 expression is a potent modifier of mouse (13) and human (14) colorectal cancer, and the recent findings that a TGFBR1 haplotype is associated with non–small cell cancer risk (15), we undertook this study to characterize the role of decreased TGFBR1 signaling in PC.

We chose to evaluate Tgfbr1 haploinsufficiency in a background of mutant Kras-induced pancreatic precancer. We hypothesized that partial loss of Tgfbr1 would lead to a more severe phenotype including increased frequency of precancerous lesions, perhaps acting as a potent modifier of cancer development. However, our results show that El-Kras/Tgfbr1 heterozygous null mice have a significantly reduced propensity of developing carcinoma in situ, although lesions that do form are larger and more advanced. This paradoxical response may be explained by the fact that loss of certain TGFBR1 function can inhibit the aggressive nature of cultured PC cells while suppressing tumor growth in vivo (8). These findings highlight the central role of TGFBR1 and underscore the dichotomous nature of TGF-β signals with respect to pancreatic precancer development.

Materials and Methods

Mice. El-Kras transgenic and Tgfbr1+/− mice were generated as previously described (13, 16). El-Kras FVB male mice were bred to Tgfbr1+/− C57BL/6 females.

Histology and immunohistochemistry. Mouse pancreas was stained with H&E and scored for the presence of pancreatic precancer. Incidence
Antibodies for immunohistochemistry included pSMAD2 and pSMAD3 antibodies (Cell Signaling), Smad4, Tgfbr1, and Tgfbr2 (Santa Cruz Biotechnology), cleaved caspase-3 (Cell Signaling), and bromodeoxyuridine (BrdUrd) antibody (Chemicon/Millipore). TUNEL staining was performed using an ApopTag Peroxidase In situ Apoptosis Detection Kit (Millipore).

pSmad2 and pSmad3 staining was graded on a 0 to 3+ scale in a blinded manner by two investigators (M.J. Strouch and P.J. Grippo). BrdUrd and TUNEL were calculated as percentages of positive nuclei/cells per total nucleated cells.

Western analysis. Protein lysates were loaded onto a gradient SDS-polyacrylamide gel and transferred to a polyvinylidene difluoride Immobilon-P membrane (Millipore Corporation) which was blocked and incubated overnight with either Tgfbr1 or Tgfbr2 antibodies. The secondary antibodies used were either horseradish peroxidase–linked antirabbit IgG (Cell Signaling Technology) or horseradish peroxidase–linked antimouse IgG (Cell Signaling Technology). Blots were visualized by Supersignal West Femto Maximum Sensitivity Substrate (Pierce) and densitometric scanning.

Statistics. Data were expressed as mean ± SEM. Unpaired two-tailed t tests were used to analyze differences in mouse lesion incidence, frequency, size, and BrdUrd and TUNEL counts. Analysis of pSMAD2 and pSMAD3 staining was performed with a Pearson χ² analysis.

Results

Tgfbr1 haploinsufficiency and pancreatic precancer. Upon histologic examination, we noted a general decrease in lipatrophy (Fig. 1A), focal fibrosis (Fig. 1B), and lymphocytic infiltration (Fig. 1C) adjacent to a precancer lesion (*) in pancreata from EL-Kras (left) and EL-Kras/Tgfbr1+/- (right) mice. D, the pancreata of EL-Kras and EL-Kras/Tgfbr1+/- (Tgfbr1+/-) mice were scored for incidence, frequency, and size of precancerous lesions.
mice have pancreatic precancer (unpublished findings from 75 mice). In this study, six out of six EL-Kras mice and three out of six EL-Kras/Tgfbr1^{+/−} mice had precancerous lesions (P < 0.05; Fig. 1D). There was also a significantly higher frequency of precancerous lesions found in EL-Kras compared with EL-Kras/Tgfbr1^{+/−} mice (8.00 ± 1.18 versus 1.50 ± 0.67, respectively; P < 0.0001; Fig. 1D). However, when EL-Kras/Tgfbr1^{+/−} mice developed lesions, they were significantly larger than those seen in EL-Kras mice (4,522 ± 1,417 versus 334 ± 56 μm², respectively; P < 0.01; Fig. 1D).

Effect of Tgfbr1 haploinsufficiency on precancerous cellular proliferation and apoptosis. We next sought to determine if the decrease in frequency and increase in size of precancerous lesions was the result of altered mitotic and/or apoptotic indices between Tgfbr1 haploinsufficient and control mice. The rate of BrdUrd incorporation (cell mitosis) was assessed in cells within precancerous lesions from EL-Kras and EL-Kras/Tgfbr1^{+/−} mice. Immunohistochemistry for BrdUrd and TUNEL was scored as a percentage of positive nuclei/cells over total cells with nuclei per lesion per mouse (representative staining: BrdUrd in Fig. 2A and TUNEL in Fig. 2C). There was a trend towards reduced proliferation in EL-Kras/Tgfbr1^{+/−} mice compared with EL-Kras mice, which did not reach significance (7.65 ± 1.10 versus 4.90 ± 0.20, respectively; P = 0.067; Fig. 2B). The apoptotic rate of EL-Kras mice was significantly higher than that observed in EL-Kras/Tgfbr1^{+/−} mice (8.04 ± 0.56 versus 2.37 ± 0.51; P < 0.001; Fig. 2D), representing a nearly 3.5-fold difference. Samples were also stained with cleaved caspase-3 (data not shown) to verify TUNEL staining.

Analysis of Tgfbr1/Tgfbr2 ratio in whole mouse pancreas from EL-Kras/Tgfbr1^{+/−} mice. Western analysis was used to determine the relative levels of Tgfbr1 (Fig. 3A) compared with
Tgfbr2 (Fig. 3C). Immunohistochemical staining of precancerous lesions from EL-Kras and EL-Kras/Tgfbr1+/− (Fig. 3D) mice displays a modest reduction in Tgfbr1 staining in precancerous lesions, although the change is quite subtle. Overall Tgfbr1 immunostaining of normal parenchyma was similar between the groups. Immunostaining for Tgfbr2 was modestly increased throughout the pancreas and focally increased in regions of precancerous lesions when comparing EL-Kras to EL-Kras/Tgfbr1+/− (Fig. 3D) mice.

To establish a Tgfbr1/Tgfbr2 ratio, relative levels of Tgfbr1 (53 kDa) and Tgfbr2 (75 kDa) were determined in the same lane of total protein loaded (Fig. 3). The average of each group (four mice) was compared with each other to show that the Tgfbr1/Tgfbr2 ratio for EL-Kras to EL-Kras/Tgfbr1+/− (Fig. 3D) mice. Interestingly, this reduction was not due to reduced Tgfbr1 but to increased Tgfbr2 in EL-Kras/Tgfbr1+/− mouse pancreas.

Downstream effects of Tgfbr1 haploinsufficiency. Next, we sought to determine whether Tgfbr1 haploinsufficient mice had concomitant decreased levels of pSmad2 and pSmad3 in pancreatic parenchyma and precancerous lesions. Using immunohistochemistry, we observed decreased staining in both the pancreatic parenchyma and precancerous lesions of EL-Kras/Tgfbr1+/− mice compared with EL-Kras mice (Fig. 4A and B). χ² analysis of staining intensity for both pSmads showed a significantly stronger parenchymal staining in EL-Kras mice compared with EL-Kras/Tgfbr1+/− mice (P < 0.01 and P < 0.05, respectively; Supplemental Fig. S1). We observed Smad4 staining in pancreatic islets although with no detectable staining in exocrine tissue. The only difference was the presence of infrequent nuclear staining of islet cells in EL-Kras mice not observed in EL-Kras/Tgfbr1+/− mice (Fig. 4C).

Discussion

In PC, the role that TGF-β signaling plays, particularly regarding TGFBR1 and TGFBR2, is poorly understood. More information is available regarding the role of SMAD4, in which its loss occurs in about half of all PC (11) with reduced survival following surgery (3) and, in combination with mutant Kras expression, promotes PC in mice (4, 6). This indicates that abrogation of TGF-β signaling downstream of SMAD4 enhances disease aggressiveness. The role of decreased TGFBR1 expression during the early stages of PC development is essentially unknown.

In this in vivo study, we examined the role of constitutively decreased Tgfbr1 signaling on mutant Kras-induced precancer. We observed a significantly decreased incidence and frequency of precancerous lesions, along with decreased fibrosis and inflammation, in EL-Kras/Tgfbr1+/− mice compared with EL-Kras mice. Tgfbr1 haploinsufficiency recapitulates the human condition because reduced protein level is observed in cancerized ducts of the pancreas compared with robust levels in neighboring parenchyma (7). Two recent reports suggest that constitutively decreased TGFBR1 expression is a potent modifier of colon cancer risk in mice (13) and humans (14). These findings were the impetus behind our initial hypothesis. We have previously shown that Tgfbr1 can promote mutant Kras-induced precancer yet suppress tumor formation while enhancing metastasis (8). The ability of TGF-β signals to both
restrain and enhance cancer progression is a well-documented phenomenon (17, 18). In fact, there is evidence of a paradoxical nature within this in vivo investigation: reduced incidence and frequency but increased size of precancerous lesions in EL-Kras/Tgfbr1−/− mice. The presence of larger lesions implies an earlier time of onset and/or reduced apoptosis, which was evident in this study with a nearly 3.5-fold decrease in the apoptotic rate. Possible explanations for the phenotypic differences between EL-Kras/Tgfbr1−/− and EL-Kras mice include: cell types targeted with these acquired mutations, stage of cellular transformation, potential independent signaling of each receptor, additional genetic mutations, the Tgfbr1/Tgfbr2 protein ratio, the interaction between mutant Kras and reduced Tgfbr1 expression, or a combination of these mechanisms, which are currently being assessed in our laboratories.

In this study, Tgfbr1 haploinsufficiency also resulted in decreased Smad signaling in pancreatic parenchyma and precancer. Findings in rat gastric epithelial cells indicate that the phosphorylation status of SMAD2 and SMAD3 can have a profound effect on cell phenotype. Activated ras leads to sustained c-Jun-NH2-kinase activation, leading to reduced phosphorylation of Smad2 and Smad3 and subsequent enhanced invasive potential (17). In addition, Tgfbr1-dependent fibrogenesis is mediated through Smad1 (not Smad2/3) and requires Erk1/2 activation, which is a downstream ras event (19). Crosstalk between activated ras and altered Tgfbr1-mediated TGF-β signaling is likely responsible for the effects observed in preinvasive lesions in mouse pancreas and this interaction needs to be considered in future studies.

The Tgfbr1/Tgfbr2 ratio may also play a key role in the effects observed in EL-Kras/Tgfbr1−/− mouse pancreas, as changes in this ratio may invoke cellular and tissue modifications (19), which were initially reported in skin epithelium (20). As for mutant Kras-induced pancreatic preinvasive lesions, reduced levels of Tgfbr2 lead to aggressive cancer (5), and in our model system, increased frequency and severity of precancerous lesions (21). Hence, even a modest increase in the Tgfbr1/Tgfbr2 ratio has a dramatic biological effect as early stage lesions advance or give rise to cancer. In this study, a decrease in this ratio seems to reverse the phenotype, although with some caveats (larger lesions). Findings in human PC are less clear, as reports vary regarding the expression of TGFBR1 and TGFBR2 in cancer cells. In 12 PC cell lines, an increase in TGFBR1 expression has been observed (22). In human cancer samples, initial reports indicated high levels of TGFBR1 in normal duct cells with low or nondetectable levels in cancer cells; the converse was true for TGFBR2 (7). Another report shows that high

![Figure 4. Effect of Tgfbr1 haploinsufficiency on downstream TGF-β signaling. Representative pancreas staining of pSmad2 (A), pSmad3 (B), and Smad4 (C) in EL-Kras (left) and EL-Kras/Tgfbr1−/− (right; Tgfbr1−/−) mice (arrowhead, infrequent nuclear staining).](image-url)
expression of both TGFBR1 and TGFBR2 in human PC samples correlates with advanced disease (23). Exactly how all this affects the Tgfr1/Tgfr2 ratio has not been evaluated until this study, in which the loss of one allele only modestly affects the levels of Tgfr1 but has a more profound effect in increasing the levels of Tgfr2. In EL-Kras mice, decreased Tgfr1/Tgfr2 ratio may inhibit early precancer development but promote cell survival once lesions do arise.

The observation that Tgfr1 haploinsufficiency leads to a reduction of mutant Kras-derived preinvasive lesions of the pancreas supports the novel concept that a delicate balance in TGF-β signaling between its cancer-suppressing and cancer-promoting attributes plays a central role in the early stages of precancer development. These findings also suggest that individuals with constitutively decreased TGFR1 expression may have a lower risk for developing PC.

Disclosure of Potential Conflicts of Interest

B. Pasche has filed a patent related to TGFR1 signaling and colorectal cancer risk. The other authors disclosed no potential conflicts of interest.

Acknowledgments

Received 5/8/09; revised 10/12/09; accepted 10/12/09; published OnlineFirst 12/1/09.

Grant support: The research described herein was generously supported by the Walter S. Mander Foundation (Chicago, IL), the Jeannik M. Littlefield-AACR Grant in Metastatic Colon Cancer Research (grant nos. CA112528 and CA108741), institutional funds from The University of Alabama at Birmingham, and funds provided by the Barnum Foundation and Zell Family Foundation at Northwestern University.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We acknowledge consultation with Drs. Christopher Klug and Kyoko Kojima on Smad4 immunostaining of mouse pancreas.

References

Tgfbr1 Haploinsufficiency Inhibits the Development of Murine Mutant Kras-Induced Pancreatic Precancer

Kevin Adrian, Matthew J. Strouch, Qinghua Zeng, et al.

Cancer Res Published OnlineFirst December 1, 2009.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-09-1705

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2009/11/30/0008-5472.CAN-09-1705.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.