Combined Treatment of Pancreatic Cancer with Mithramycin A and Tolfenamic Acid Promotes Sp1 Degradation and Synergistic Antitumor Activity

Zhiliang Jia¹, Yong Gao², Liwei Wang³, Qiang Li¹, Jun Zhang⁴, Xiangdong Le¹, Daoyan Wei¹, James C. Yao¹, David Z. Chang¹, Suyun Huang², and Keping Xie¹

Abstract

Mithramycin (MIT) and tolfenamic acid (TA) inhibit the activity of the transcription factor Sp1. In the present study, we investigated whether pancreatic cancer treatment with a combination of these compounds has a synergistic effect on Sp1 activity, tumor growth, and their underlying response mechanisms. Treatment of pancreatic tumor xenografts with MIT and TA produced dose-dependent antitumor activity, and significant antitumor activity of either compound alone was directly associated with systemic side effects. Combination treatment with nontoxic doses of both compounds produced synergistic antitumor activity, whereas treatment with a nontoxic dose of either compound alone lacked a discernible antitumor effect. Synergistic therapeutic effects correlated directly with synergistic antiproliferation and antiangiogenesis in vitro. Moreover, combination treatment resulted in Sp1 protein degradation, drastically downregulating expression of Sp1 and vascular endothelial growth factor. Our findings established that Sp1 is a critical target of TA and MIT in human pancreatic cancer therapy, rationalizing clinical studies to determine the effect of existing pancreatic cancer therapy regimens on Sp1 signaling in tumors and normal pancreatic tissue, and the ability of Sp1-targeting strategies to modify cancer responses. Cancer Res; 70(3); 1111–9. ©2010 AACR.

Introduction

Pancreatic cancer is currently the fourth leading cause of cancer-related deaths worldwide. The median survival duration from diagnosis to death is ~6 months, and the overall 5-year survival rate is <5% (1–3). A full understanding of the cellular and molecular mechanisms of the development and progression of pancreatic cancer is crucial for identifying new targets of effective treatment modalities for this deadly disease. Among the various potential targets are numerous proangiogenic and antiangiogenic factors released by tumor and host cells (4–6). These factors regulate angiogenesis, which determines the growth and metastasis of pancreatic tumors (6–8). Of the numerous angiogenic factors discovered thus far, studies have identified vascular endothelial growth factor (VEGF) as a key mediator of tumor angiogenesis (9–11). Authors have reported elevated expression of VEGF in human pancreatic tumor specimens (12, 13), that its expression level correlates with microvessel density (MVD; refs. 4, 6, 14–16), and that VEGF-targeted therapy significantly inhibits angiogenesis in and growth of pancreatic cancer in animal models (4, 6, 17).

Previous studies showed that Sp1 overexpression plays an important role in regulating the expression of VEGF and angiogenesis in pancreatic tumors and is directly correlated with poor prognoses for human pancreatic cancer (18–20). In addition, we have shown that neutralization of VEGF by treatment with bevacizumab (Avastin) leads to feedback activation of Sp1 and subsequent upregulation of expression of VEGF and other factors, leading to Avastin resistance, whereas blockade of Sp1 expression and function sensitizes tumors to Avastin and/or reverses Avastin resistance (21). Therefore, Sp1 seems to be a critical target for antiangiogenic therapy for pancreatic cancer.

Sp1 is a zinc finger transcription factor that is important to the transcription of many cellular and viral genes containing GC boxes in their promoters. Researchers have cloned transcription factors similar to Sp1 in their structural and transcriptional properties (Sp2, Sp3, and Sp4), thus identifying the Sp1 multigene family (22). Although Sp1 has been perceived to be a basal transcription factor since its discovery, increasing evidence suggests that it regulates a variety of biological functions, including cell survival, growth, and differentiation and tumor development and progression (20, 22–25). Consistently, mithramycin A (MIT) and tolfenamic
acid (TA) inhibit Sp1 activity and have antitumor effects in various tumor models.

The antitumor activity of MIT, an aureolic acid–type polypeptide produced by various soil bacteria of the genus Streptomyces, inhibits Sp1 activity (26–30). Its major underlying mechanism of action includes a reversible interaction with dsDNA with GC base specificity and selective regulation of transcription of genes having GC-rich promoter sequences (31–35). In comparison, TA, a potent inhibitor of prostaglandin biosynthesis and an inhibitor of leukotriene synthesis, is an effective, well-documented nonsteroidal anti-inflammatory drug used to treat migraines and was recently shown to facilitate Sp1 protein degradation (36–40). Therefore, the two compounds have distinct mechanisms of regulating Sp1 activity. In the present study, we sought to determine whether treatment with a combination of these two compounds has a synergistic effect on Sp1 activity and tumor growth in an animal model of pancreatic cancer. We also explored their underlying mechanisms.

Materials and Methods

Chemicals and reagents. MIT (1 mg/vial crystal powder; lot 055K4011) was purchased from Sigma Chemical Co. and diluted in sterile water. TA (powder; lot 110H0469) also was purchased from Sigma Chemical and mixed with corn oil. In our animal experiments, MIT (0.05–1.50 mg/kg body weight) was administered via i.p. injection twice a week or as indicated, and TA (10–80 μg/kg) was administered via oral gavage twice a week.

Cell lines and culture conditions. The human pancreatic adenocarcinoma cell lines BxPC3 and PANC-1 were purchased from the American Type Culture Collection. FG human pancreatic adenocarcinoma cells were also used as reported previously (18). The cell lines were maintained in plastic flasks as adherent monolayers in MEM supplemented with 10% fetal bovine serum, sodium pyruvate, nonessential amino acids, L-glutamine, and a vitamin solution (Flow Laboratories).

Animals. Female athymic BALB/c nude mice were purchased from The Jackson Laboratory. The mice were housed in laminar flow cabinets under specific pathogen-free conditions and used when they were 8 wk old. The animals were maintained in facilities approved by the Association for Assessment and Accreditation of Laboratory Animal Care International in accordance with the current regulations and standards of the U.S. Department of Agriculture, U.S. Department of Health and Human Services, and NIH.

Matrigel plug assay. A Matrigel plug angiogenesis assay was performed essentially as described previously (41, 42).
Matrigel (200 μL) containing 2 × 10⁶ cells was injected s.c. into nude mice (two injection sites per mouse). The Matrigel plugs were recovered from the mice 8 d after injection and carefully stripped of host tissues. After photography, the Matrigel plugs were weighed and homogenized in 1 mL of distilled water and then centrifuged at 10,000 rpm for 5 min. The supernatants were collected for hemoglobin concentration measurement using Drabkin solution (Sigma Chemical) and a Microplate Manager ELISA reader at 540 nm according to the manufacturer’s instructions. The relative hemoglobin concentrations were calculated and further normalized according to the weights of the plugs.

Western blot analysis. Whole-cell lysates were prepared from human pancreatic cancer cell lines and tumor tissue specimens (18). Standard Western blotting was performed using polyclonal rabbit antibodies against human and murine Sp1 and VEGF (Santa Cruz Biotechnology) and an anti-rabbit IgG antibody, which was a horseradish peroxidase–linked F(ab′)₂ fragment obtained from a donkey (Amer sham). Equal protein specimen loading was monitored by probing the same membrane filter with antibodies against β-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH; ref. 18). The probe proteins were detected using the Amersham enhanced chemiluminescence system according to the manufacturer’s instructions.

Immunohistochemical analysis and quantification of tumor MVD. Tissue sections were prepared and processed for immunostaining using specific antibodies against CD31 Sp1, VEGF, and proliferating cell nuclear antigen (PCNA) and appropriate secondary antibodies. The levels of gene expression and quantification of tumor MVD were evaluated as described previously (21).

Sp1 and VEGF promoter constructs and analysis of Sp1 and VEGF promoter activity. The minimal Sp1 and VEGF promoter reporters in pGL3 luciferase constructs were generated and used as described previously (18, 21). To examine transcriptional regulation of the Sp1 and VEGF promoters by TA and MIT, PANC-1 cells were seeded to ~80% confluence in six-well plates (in triplicate) and transiently transfected with 0.6 μg of minimal Sp1 or VEGF reporter plasmids and 0.3 μg of effector expression plasmids as indicated in each experiment using Lipofectamine (Invitrogen) according to the manufacturer's instructions. The reporter luciferase activity was measured 48 h later using a luciferase assay kit (Promega). Promoter activity was normalized according to the protein concentration as described previously (18, 21).

Chromatin immunoprecipitation. Chromatin was prepared from pancreatic cancer cells and pancreatic tumors as described previously (21). A chromatin immunoprecipitation (ChIP) assay was performed using a Chromatin...
Immunoprecipitation Assay kit (Upstate) according to the manufacturer’s instructions. Briefly, DNA cross-binding proteins were cross-linked with DNA and lysed in SDS lysis buffer. The lysate was sonicated to shear DNA to 200 to 500 bp. After preclearing with a salmon sperm DNA/protein A agarose 50% slurry for 30 min at 4°C, chromatin specimens were immunoprecipitated overnight with no antibody or an anti-Sp1 antibody (PEP2). The region from −224 to −53 bp of the Sp1 promoter was amplified using the following primers: sense, 5′-caggcacgcaacttagtc-3′; antisense, 5′-gtaaggaggaggagcag-3′. The region from −272 to +18 bp of the VEGF promoter was amplified using the following primers: sense, 5′-ccgcgggcgcgtgtctctgg-3′; antisense, 5′-tgccccaaagctgccgagcag-3′. PCR products were separated on a 1.5% agarose gel, stained with ethidium bromide, and visualized under UV light.

Statistical analysis. All in vivo experiments used five mice per group and were repeated at least once with similar results; one representative experiment is presented. The in vitro cytotoxicity experiments have been performed in triplicate for each and every time points and concentrations. The significance of the in vitro data was determined using the Student’s t test (two-tailed), whereas the significance of the in vivo data was determined using the two-tailed Mann-Whitney U test. P levels of ≤0.05 were deemed statistically significant.

Results

Antitumor effects of MIT and TA in xenograft mouse models of human pancreatic cancer. Previous studies showed that Sp1 activity is essential for VEGF expression and that VEGF plays a major role in pancreatic tumor angiogenesis (18, 43, 44). Treatment with both MIT and TA can downregulate Sp1, VEGF, and VEGF receptor expression (39, 40). However, whether these two drugs interact synergistically in regulating Sp1 activity and pancreatic tumor growth is unknown. We treated PANC-1 xenograft tumors in nude mice with different doses of MIT (0, 0.05, 0.40, and 1.50 mg/kg) or TA (0, 10, 40, and 80 mg/kg) twice a week (Fig. 1A). Both MIT and TA had dose-dependent antitumor activity. However, the body weights of the mice decreased in a dose-dependent manner (Fig. 1B), which indicated systemic cytotoxicity.

Next, we treated PANC-1 xenograft tumors in nude mice with nontoxic doses of MIT (0.05 mg/kg), TA (10 mg/kg), or both. We found that TA and MIT alone had marginal antitumor activity. In contrast, the combination of MIT and TA had significant antitumor activity (Fig. 2A). Furthermore, treatment with low doses of TA and MIT produced synergistic antitumor activity without any significant systemic side effects as indicated by a lack of significant weight loss (Fig. 2B). Therefore, combination administration of low doses of MIT and TA has a significant therapeutic benefit for pancreatic cancer.

Effects of treatment with MIT and TA on Sp1 and VEGF expression and recruitment of Sp1 into their promoters in vivo. To determine the molecular basis for the synergistic effect of treatment of pancreatic cancer with MIT and TA, we performed Western blot analysis using total protein lysates extracted from the PANC-1 tumor specimens collected from mice that received treatment with PBS, TA, MIT, or both TA and MIT as shown in Fig. 2. We also analyzed BxPC3
tumor specimens collected from mice that received the same treatment. As shown in Fig. 3A and B, expression of both Sp1 and VEGF protein was downregulated by treatment with the combination of TA and MIT. Furthermore, immunohistochemical staining showed that treatment with TA or MIT alone decreased expression of Sp1 and its downstream molecule VEGF in PANC-1 tumors (Supplementary Fig. S1). In addition, as indicated by CD31 staining, tumor MVDs were lower than those in the control group. However, treatment with MIT and TA dramatically reduced Sp1 and VEGF expression in the pancreatic tumors, which was consistent with the reduced MVDs. Furthermore, treatment with MIT and/or TA, especially the combination treatment, decreased PCNA protein expression in the tumors. These results suggested that the synergistic antitumor activity of the combination of MIT and TA may occur through not only an antiangiogenic effect but also direct inhibition of tumor cell proliferation.

Effects of treatment with MIT and/or TA on Sp1 and VEGF protein levels in human pancreatic cancer cells. To further confirm the effect of treatment with MIT and TA on gene expression in pancreatic cancer cells, we incubated PANC-1 and BxPC3 cells in a medium alone or a medium containing MIT and/or TA. Total protein lysates were harvested from the cell cultures, and the level of Sp1 and VEGF protein expression was determined using Western blot analysis. Equal protein specimen loading was monitored by probing the same membrane filter with an anti-GAPDH antibody.

A, PANC-1 cells were treated with MIT (0.01, 0.05, and 0.10 μmol/L) and protein specimens were harvested after 24 h of treatment. B, PANC-1 cells were treated with TA (5, 10, and 20 μmol/L) and protein specimens were harvested after 24 h of treatment. C, PANC-1 cells were treated with MIT (0.05 μmol/L) and TA (5 μmol/L) and protein specimens were harvested after 12 h of treatment. Note that the control groups (without MIT and/or TA treatment) were set to be 100%.

Synergistic cytotoxicity of MIT and TA in human pancreatic cell lines in vitro. To assess the direct cytotoxicity of MIT and TA, we treated FG cells with MIT (0.03, 0.050, 0.100, 0.200, or 0.400 μmol/L) and/or TA (2.5, 5.0, 10.0, 20.0, or 40.0 μmol/L) for 24 to 48 hours. Both drugs exhibited concentration-dependent cytotoxicity as determined using a MTT assay (Fig. 5A). We then optimized the drug concentrations so that neither agent alone had an extensive cytotoxic effect. Under this condition, the combination of MIT and TA had substantial cytotoxic effects. To determine the potential synergistic effect of combination treatment with MIT and
TA, we subjected the MTT cell viability data to further statistical analysis using the Loewe additivity model, which is among the best general reference models used to evaluate drug interactions (45). We used the S-PLUS/R software program to evaluate the interaction between MIT and TA in this model (Supplementary Fig. S2). We used Chou and Talalay’s median-effect equation to perform the calculation (46). Supplementary Fig. S3 shows the estimated interaction indices from the corresponding fitted dose-effect curve (Fig. 5B). Synergy between MIT and TA occurs when the interaction index is <1, whereas antagonism occurs when the interaction index is >1 (45). As shown in Fig. 5B, four of the five 24-hour and all five of the 48-hour data points were in the synergistic area, indicating that the combination of MIT and TA had a synergistic cytotoxic effect in FG cells. We also confirmed this synergy in BxPC3 cells (Supplementary Fig. S4).

Effects of treatment with MIT and TA in vitro. We treated PANC-1 cells with 50 μmol/L TA and/or 0.1 μmol/L MIT. Western blot analysis confirmed that Sp1 expression was downregulated in these cells. We then used an endothelial cell tube formation assay to determine the angiogenic potential of the supernatants of the PANC-1 cells. We assessed the degree of tube formation as the percentage of cell surface area versus the total surface area (Fig. 6A). We obtained representative photomicrographs of tube formation by human umbilical vein endothelial cells in the supernatants in situ (Fig. 6A). Treatment with MIT and/or TA reduced the capacity of supernatants of the PANC-1 cells to stimulate tube formation by endothelial cells compared with that of supernatants of control PANC-1 cells. We confirmed this impaired angiogenic potential using an in vivo Matrigel plug assay (Fig. 6B). Our data suggested that treatment with MIT and/or TA impaired the angiogenic potential of PANC-1 cells.

Effects of treatment with MIT and TA on recruitment of Sp1 into the Sp1 and VEGF promoters in human pancreatic cancer cells in vitro. In this set of experiments, we sought to determine whether treatment with TA and/or MIT regulated Sp1 and VEGF expression at the transcriptional level. We transfected Sp1 and VEGF promoter reporter constructs into PANC-1 cells and then incubated them in a medium alone or a medium containing 5 μmol/L TA or 0.01 μmol/L MIT. In vitro, treatment with TA or MIT at the given dose resulted in low levels of suppression of Sp1 and VEGF promoter activity, whereas treatment with the combination of TA and MIT significantly suppressed this activity. However, further deletion of Sp1-binding sites eliminated the ability of...
MIT to suppress Sp1 and VEGF promoter activity (Supplementary Fig. S5). Finally, we performed a ChIP assay using pancreatic tumors formed by PANC-1 cells in nude mice that received treatment as described in Fig. 2. Treatment with TA or MIT at the given dose had a minor effect on inhibition of Sp1 recruitment to its own reporter and the VEGF promoter, whereas treatment with TA combined with MIT at the same dose significantly decreased Sp1 recruitment to these two promoters (Supplementary Fig. S6). These results suggested that treatment with TA and MIT at low doses results in insignificant transcriptional suppression of Sp1 and VEGF mRNA transcription activated by Sp1, whereas treatment with TA combined with MIT at the same doses produces synergistic transcriptional suppression of Sp1 and VEGF transcription.

Discussion

In this study, we found that treatment with the combination of MIT and TA at low doses synergistically downregulated the expression of Sp1 and VEGF and produced synergistic antitumor effects in xenograft mouse models of human pancreatic cancer. This therapeutic effect was consistent with suppression of the activity of Sp1 and downregulation of the expression of its downstream proangiogenic molecule, VEGF. Our experimental results indicated that MIT targets Sp1 at the transcriptional level by inhibiting Sp1 recruitment into the Sp1 sites of its own promoter, whereas TA facilitates Sp1 protein degradation (Supplementary Fig. S7). This study is the first to show synergistic downregulation of expression of the transcription factor Sp1 and an enhanced therapeutic index resulting from the combined administration of two drugs having distinct mechanisms of action in pancreatic cancer.

Angiogenesis plays an important role in the growth and metastasis of pancreatic tumors. We have shown that both Sp1 and VEGF are important to pancreatic tumor angiogenesis (18, 21). Other studies have shown that VEGF-targeting antiangiogenic therapies inhibit pancreatic tumor growth in mouse models. Researchers have developed strategies targeting VEGF receptors, including the use of anti-VEGF antibodies, to directly interfere with its signal effect (47, 48). However, resistance to anti-VEGF antibodies occurs in both animal models and humans. Although the mechanisms of this resistance are not entirely clear at present, a previous study by our group suggested that upregulation of Sp1 expression may play a critical role (21). Specifically, treatment with Avastin increased Sp1 protein expression and activity in pancreatic tumors and significantly upregulated expression of VEGF. In contrast, treatment with MIT, which inhibits Sp1 expression, inhibited VEGF expression in the tumors and sensitized them to the antitumor activity of Avastin (21). However, downregulation of Sp1 protein expression in pancreatic tumors requires prolonged treatment with MIT, increasing the occurrence of systemic side effects (21). Studies have suggested that MIT inhibits Sp1 expression via direct competition for Sp1 recruitment into Sp1 sites of the Sp1 promoter (21, 32). Although MIT can effectively block Sp1...
mRNA synthesis, the abundance and strong stability of the Sp1 protein in pancreatic tumor cells prevent MIT from rapidly downregulating Sp1 protein expression. In the present study, we showed that TA can promote Sp1 protein downregulation, which is consistent with a previous finding of TA-facilitated Sp1 degradation (38). More importantly, combined treatment with MIT and TA, neither of which has significant effects on Sp1 protein expression, substantially downregulated Sp1 protein expression, which was consistent with the synergistic antitumor effect in our mouse model.

Studies have shown that several nonsteroidal anti-inflammatory drugs have antiangiogenic activity in a wide variety of xenograft models, including celecoxib (19) and TA (40). Although Sp1 is the primary target of these drugs, they clearly induce degradation of other members of the Sp1 family, such as Sp3 and Sp4 (39, 40). Experimental results showed that via activation of proteosome-dependent degradation of Sp proteins, celecoxib and TA exhibited growth-inhibitory effects via an antiangiogenic strategy (19, 39, 40). However, downregulation of Sp1 expression by MIT-based treatment is primarily involved in transcriptional repression of Sp1 expression (21). Therefore, MIT and TA have distinct mechanisms of action in regulation of Sp1 expression and activity, which is the molecular basis for their synergistic antiangiogenic and antitumor activity.

In addition to its reported antiangiogenic function that is consistent with our finding using cDNA microarray analysis (Supplementary Fig. S8), downregulation of Sp1 may alter the expression of genes important to cell survival, a mechanism that is likely responsible for the antitumor activity of TA and MIT. For example, TA-based treatment activates Sp protein degradation, decreases Sp protein binding to the survivin promoter, and inhibits survivin expression in pancreatic cancer cells and subsequently sensitizes the cells to radiotherapy (39, 49). Consistently, our results showed that TA inhibits tumor cell growth in vitro and that this effect is synergistic with that of MIT. Altered survivin expression may be one of the mechanisms underlying the cytotoxic effect of TA and MIT.

As our experimental results showed, single-agent MIT is significantly cytotoxic when it has a significant antitumor effect using mouse body weight change as the measurement of systemic side effect. When we administered MIT and TA together, Sp1 protein expression was synergistically downregulated through different level and tumor growth was significantly inhibited. However, we observed no detectable cytotoxic effects of MIT and TA. Our data suggested that administration of the combination of TA and MIT may achieve the highest therapeutic index.

Collectively, our results suggest that MIT competes Sp1 recruitment to Sp1 sites in both Sp1 and VEGF promoters. TA does not have this competing ability, but it downregulates Sp1 protein expression by directly targeting Sp1 at the protein level (Supplementary Fig. S9). The use of low-dose MIT in combination with low-dose TA is an important novel strategy of targeting the angiogenic molecule Sp1 at both the transcriptional and the protein degradation level. Treatment with the combination of MIT and TA in clinical studies is a rational step forward in the development of effective targeted therapies for pancreatic cancer as well as other cancers.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Don Norwood for editorial comments.

Grant Support

National Cancer Institute, NIH, Pancreatic Cancer Specialized Program of Research Excellence grants 1P20-CA101936-01-PF4 and SPO1-CA129956 (K. Xie) and M.D. Anderson Cancer Center Institutional Start-up Funds (D.Z. Chang).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 9/2/09; revised 11/23/09; accepted 11/30/09; published OnlineFirst 1/19/10.

References

28. Hall TJ, Schaeublin M, Chambers TJ. The majority of osteoclasts re-
quire mRNA and protein synthesis for bone resorption in vitro. Bio-

29. Hall TJ, Schaeublin M, Chambers TJ. The majority of osteoclasts re-
quire mRNA and protein synthesis for bone resorption in vitro. Bio-

30. Romsing LL, Bahadori HR, Carbonne GM, McGuffie EM, Catapano
CV, Rohr J. Inhibition of c-src transcription by mithramycin: struc-
ture-activity relationships of biosynthetically produced mithramycin
analogue using the c-src promoter as target. Biochemistry 2003;

31. Chatterjee S, Zaman K, Ryu H, Conforto A, Ratan RR. Sequence-
selective DNA binding drugs mithramycin A and chromomycin A3
are potent inhibitors of neuronal apoptosis induced by oxidative stress

Mithramycin inhibits S1P binding and selectively inhibits transcriptional
activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin

33. Tagashira M, Kitagawa T, Isonishi S, Okamoto A, Ochiai K, Ohtake Y.
Mithramycin represses MDRI gene expression in vitro, modulating

34. Duvenger V, Murphy AM, Sheehan D, et al. The anticancer drug mi-
thramycin A sensitises tumour cells to apoptosis induced by tumour

35. Koutsodontis G, Kardassis D. Inhibition of p53-mediated tran-

acid is as effective as ergotamine during migraine attacks. Lancet

37. Parantainen J, Hakkarainen H, Vapaatalo H, Gothoni G. Prostaglan-

acid and caffeine: a useful combination in migraine. Cephalalgia

and pancreatic cancer growth, angiogenesis, and Sp protein degra-

40. Abdelrahim M, Baker CH, Abbruzzese JL, et al. Regulation of vascu-
lar endothelial growth factor-receptor-1 expression by specificity
proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Res 2007;
67:3286–94.

asessing angiogenesis and angiogenic agents using reconstit-
tuted basement membrane, heparin, and fibroblast growth factor.

42. Akhtar N, Dickerson EB, Auerbach R. The sponge/Matrigel angi-

endothelial cell mitogen related to PDGF. Science 1989;246:
1309–12.

44. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascu-

45. Debiase L, Kovalchuk M, Ferrara N. Endothelial angiopoietin-1 is

46. Debiase L, Kovalchuk M, Ferrara N. Endothelial angiopoietin-1 is

47. Debiase L, Kovalchuk M, Ferrara N. Endothelial angiopoietin-1 is

48. Debiase L, Kovalchuk M, Ferrara N. Endothelial angiopoietin-1 is
Combined Treatment of Pancreatic Cancer with Mithramycin A and Tolfenamic Acid Promotes Sp1 Degradation and Synergistic Antitumor Activity

Zhiliang Jia, Yong Gao, Liwei Wang, et al.

Cancer Res Published OnlineFirst January 19, 2010.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-09-3282

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2010/01/18/0008-5472.CAN-09-3282.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.