Efficient Tumor Targeting with High-Affinity Designed Ankyrin Repeat Proteins: Effects of Affinity and Molecular Size

Christian Zahnd1,2, Martin Kawe1,2, Michael T. Stumpp1,2, Christine de Pasquale3, Rastislav Tamaskovic1, Gabriela Nagy-Davidescu1, Birgit Dreier1, Roger Schibli3, H. Kaspar Binz1,2, Robert Waibel3, and Andreas Plückthun1

Abstract

Slow-clearing, tumor-targeting proteins such as monoclonal antibodies typically exhibit high tumor accumulation but low tissue contrast, whereas intermediate-sized proteins such as scFvs show faster clearance but only moderate tumor accumulation. For both, tumor targeting does not seem to improve further above an optimal affinity. We show here that with very small high-affinity proteins such as designed ankyrin repeat proteins (DARPins), these limits can be overcome. We have systematically investigated the influence of molecular mass and affinity on tumor accumulation with DARPins with specificity for HER2 in SK-OV-3.ip nude mouse xenografts. DARPins with a mass of 14.5 kDa and affinities between 270 nmol/L and 90 pmol/L showed a strong correlation of tumor accumulation with affinity to HER2, with the highest affinity DARPin reaching 8% ID/g after 24 hours and 6.5% ID/g after 48 hours (tumor-to-blood ratio >60). Tumor autoradiographs showed good penetration throughout the tumor mass. Genetic fusion of two DARPins (30 kDa) resulted in significantly lower tumor accumulation, similar to values observed for scFvs, whereas valency had no influence on accumulation. PEGylation of the DARPin increased the circulation half-life, leading to higher tumor accumulation (13.4% ID/g after 24 hours) but lower tumor-to-blood ratios. Affinity was less important for tumor uptake of the PEGylated constructs. We conclude that two regimes exist for delivering high levels of drug to a tumor: small proteins with very high affinity, such as unmodified DARPins, and large proteins with extended half-life, such as PEGylated DARPins, in which the importance of affinity is less pronounced. Cancer Res 70(4): 1595–605. ©2010 AACR.

Introduction

Therapeutic antibodies have been used in recent years for the targeting of solid tumors (1–3) to overcome the lack of specificity of classic anticancer drugs. Even though human antibodies are now available through a variety of technologies (4), the clinical efficacy of even some marketed anticancer antibodies is limited (5, 6), suggesting that additional effector mechanisms will be needed (1, 7). This argues for the construction of novel robust targeting molecules which can be engineered for enhanced efficacy, e.g., by facile linkage to additional effector molecules. For any effector function that could exert toxicity on normal cells, high tumor localization of the targeting molecule and sufficiently rapid elimination from healthy tissue is pivotal.

Tumor targeting proteins seem to be caught between two constraints. Slow-clearing, tumor-targeting proteins such as monoclonal antibodies with long half-lives typically exhibit high tumor accumulation but low tissue contrast (8). Intermediate-sized proteins such as scFvs show faster clearance but only moderate tumor accumulation (9, 10). It has been suggested that very high affinities might not be beneficial for increased targeting in either case (11, 12).

We show here that with very small high-affinity proteins such as designed ankyrin repeat proteins (DARPins), these limits can be overcome, and we present a systematic approach that establishes the observed tumor accumulation and targeting contrast as a function of affinity, targeting molecule size, and pharmacokinetics.

HER2-overexpressing breast tumors are well studied and thus represent a suitable reference point for evaluating alternative binding molecules in tumor localization studies. The overexpression of HER2 is correlated with an aggressive tumor phenotype (13) and it occurs in a broad range of human cancers, notably breast and ovarian cancers (14, 15). HER2 is a 185 kDa transmembrane glycoprotein receptor tyrosine kinase of the family of human epidermal growth factor receptors (HER; refs. 16, 17). It plays a key role in HER ligand-dependent tumor growth and could form different

Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

C. Zahnd, M. Kawe, and M.T. Stumpp contributed equally to this work.

Corresponding Author: Andreas Plückthun, Biochemisches Institut, Winterthurerstrasse 190, 8057 Zürich, Switzerland. Phone: 41-44-635-5570; Fax: 41-44-635-5712; E-mail: plueckthun@bioc.uzh.ch.

doi: 10.1158/0008-5472.CAN-09-2724
©2010 American Association for Cancer Research.

www.aacrjournals.org

Published Online First on February 2, 2010 as 10.1158/0008-5472.CAN-09-2724

© 2010 American Association for Cancer Research.

Cancer Research

Repeat Proteins: Effects of Affinity and Molecular Size

Therapeutic antibodies have been used in recent years for the targeting of solid tumors (1–3) to overcome the lack of specificity of classic anticancer drugs. Even though human antibodies are now available through a variety of technologies (4), the clinical efficacy of even some marketed anticancer antibodies is limited (5, 6), suggesting that additional effector mechanisms will be needed (1, 7). This argues for the construction of novel robust targeting molecules which can be engineered for enhanced efficacy, e.g., by facile linkage to additional effector molecules. For any effector function that could exert toxicity on normal cells, high tumor localization of the targeting molecule and sufficiently rapid elimination from healthy tissue is pivotal.

Tumor targeting proteins seem to be caught between two constraints. Slow-clearing, tumor-targeting proteins such as monoclonal antibodies with long half-lives typically exhibit high tumor accumulation but low tissue contrast (8). Intermediate-sized proteins such as scFvs show faster clearance but only moderate tumor accumulation (9, 10). It has been suggested that very high affinities might not be beneficial for increased targeting in either case (11, 12).

We show here that with very small high-affinity proteins such as designed ankyrin repeat proteins (DARPins), these limits can be overcome, and we present a systematic approach that establishes the observed tumor accumulation and targeting contrast as a function of affinity, targeting molecule size, and pharmacokinetics.

HER2-overexpressing breast tumors are well studied and thus represent a suitable reference point for evaluating alternative binding molecules in tumor localization studies. The overexpression of HER2 is correlated with an aggressive tumor phenotype (13) and it occurs in a broad range of human cancers, notably breast and ovarian cancers (14, 15). HER2 is a 185 kDa transmembrane glycoprotein receptor tyrosine kinase of the family of human epidermal growth factor receptors (HER; refs. 16, 17). It plays a key role in HER ligand-dependent tumor growth and could form different

Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

C. Zahnd, M. Kawe, and M.T. Stumpp contributed equally to this work.

Corresponding Author: Andreas Plückthun, Biochemisches Institut, Winterthurerstrasse 190, 8057 Zürich, Switzerland. Phone: 41-44-635-5570; Fax: 41-44-635-5712; E-mail: plueckthun@bioc.uzh.ch.

doi: 10.1158/0008-5472.CAN-09-2724
©2010 American Association for Cancer Research.

www.aacrjournals.org

Published Online First on February 2, 2010 as 10.1158/0008-5472.CAN-09-2724

© 2010 American Association for Cancer Research.
types of heterodimers with other family members, notably HER3 (16, 18).

Recently, we have developed combinatorial libraries of a new class of small proteins, termed "designed ankyrin repeat proteins" (19, 20) that can act as an alternative to antibodies, as they are particularly robust to engineering. They are based on a very different structure (Supplementary Fig. S1) and are built from consecutive 33-amino acid repeats, each forming a β-turn followed by two antiparallel α-helices. In each repeat, seven residues were randomized, and these internal repeats are flanked by constant capping repeats, to give one contiguous polypeptide chain with a randomized binding surface. The proteins contain no cysteine, can be expressed in soluble form and with the same high yield from E. coli (24). For PEGylation of the DARPins, a cysteine was introduced at the penultimate position and the protein was allowed to react with maleimide-PEG of 20, 40, or 60 kDa. The scFv fragment 4D5 was expressed and purified in E. coli SB556 as previously described (26). HER2 (first 631 amino acids of the mature protein) was kindly provided by Dr. Tim Adams and coworkers (CSIRO, Melbourne, Australia).

His-tag-specific 99mTc-labeling of the DARPins. The radioactive labeling of the DARPin with 99mTc(CO)3 at the His-tag was performed essentially as previously described (ref. 27; Supplementary Methods).

Tumor cell lines. For all biodistribution studies, the human ovarian carcinoma cell line SK-OV-3.ip was used (kindly provided by Ellen Vitetta, University of Texas, Dallas, TX). For some cell binding experiments and control biodistribution studies, SK-OV-3 (HTB-77; European Collection of Animal Cell Cultures, Salisbury, United Kingdom) and BT474-cells (HTB-20) were also used where indicated.

Affinity-determination of DARPins on human BT474 tumor cells. DARPin-superfolder-GFP fusions were constructed and binding to cells was measured by fluorescence-activated cell sorting by following the on-rate and the off-rate and calculating K_d as their ratio (Supplementary Figs. S5-S6). To minimize internalization, cells were preincubated with 0.2% NaN3 for 30 min at 37°C. To minimize rebinding during the dissociation phase, a large excess (50 nmol/L) of unlabeled DARPin G3 was added as competitor.

Biodistribution studies of DARPins. Female CD1-Foxn1/nu mice (Charles River), 6 to 8 wk old, were engrafted with human SK-OV-3.ip tumor cells subcutaneously injected at the lateral flanks (106 cells, mixed with BD Matrigel Matrix HC; BD Biosciences). The studies were started 2 to 3 wk after tumor inoculation, when the tumors had reached a size of 50 to 300 mm. Each mouse received a single dose of 8 to 10 μg of 99mTc(CO)3-labeled DARPin variant (37 MBq/mouse) intravenously, administered in 100 μL. Mice ($n = 3$ per time point and construct) were sacrificed after 1, 4, 24, 48, and 72 h after injection, organs were removed and the accumulated radioactivity was measured in a gamma-scintillation counter (Supplementary Methods).

Tumor autoradiography. Twenty-four hours after 10 μg (37 MBq) of the 99mTc(CO)3-labeled DARPin variant injection, the SK-OV-3.ip tumors (0.5 cm diameter) were cut into three layers (rim, middle section, rim). The slices were put on a Kodak X-Omat Blue film for 4 h and also analyzed with a Packard InstantImager.

Single photon emission computed tomography imaging studies. Single photon emission computed tomography (SPECT) imaging experiments were performed with an X-SPECT system (Gamma Medica, Inc.) with a single head SPECT device and a computed tomography (CT) device. 24 h after injection of the 99mTc(CO)3-labeled DARPin. The DARPin (370–555 MBq/200 μL = 10–15 mCi/200 μL) was administered via a lateral tail vein (further details in the Supplementary Methods).

For high-resolution images, tumors were scanned with a pinhole collimator (tungsten-based collimator, 1 mm diameter). The SPECT field of view was reduced to 30 × 30 mm and the acquisition time was increased to 4 h.

Materials and Methods

Protein expression and purification. All details are described in the Supplementary Methods and Figs. S2 to S4. Briefly, all DARPin constructs were expressed in E. coli XL1-Blue and purified essentially as previously described (24). For PEGylation of the DARPin, a cysteine was introduced at the penultimate position and the protein was allowed to react with maleimide-PEG of 20, 40, or 60 kDa. The scFv fragment 4D5 was expressed and purified in E. coli SB536 as previously described (26). HER2 (first 631 amino acids of the mature protein) was kindly provided by Dr. Tim Adams and coworkers (CSIRO, Melbourne, Australia).

His-tag-specific 99mTc-labeling of the DARPins. The radioactive labeling of the DARPin with 99mTc(CO)3 at the His-tag was performed essentially as previously described (ref. 27; Supplementary Methods).

Tumor cell lines. For all biodistribution studies, the human ovarian carcinoma cell line SK-OV-3.ip was used (kindly provided by Ellen Vitetta, University of Texas, Dallas, TX). For some cell binding experiments and control biodistribution studies, SK-OV-3 (HTB-77; European Collection of Animal Cell Cultures, Salisbury, United Kingdom) and BT474-cells (HTB-20) were also used where indicated.

Affinity-determination of DARPins on human BT474 tumor cells. DARPin-superfolder-GFP fusions were constructed and binding to cells was measured by fluorescence-activated cell sorting by following the on-rate and the off-rate and calculating K_d as their ratio (Supplementary Figs. S5-S6). To minimize internalization, cells were preincubated with 0.2% NaN3 for 30 min at 37°C. To minimize rebinding during the dissociation phase, a large excess (50 nmol/L) of unlabeled DARPin G3 was added as competitor.

Biodistribution studies of DARPins. Female CD1-Foxn1/nu mice (Charles River), 6 to 8 wk old, were engrafted with human SK-OV-3.ip tumor cells subcutaneously injected at the lateral flanks (106 cells, mixed with BD Matrigel Matrix HC; BD Biosciences). The studies were started 2 to 3 wk after tumor inoculation, when the tumors had reached a size of 50 to 300 mm. Each mouse received a single dose of 8 to 10 μg of 99mTc(CO)3-labeled DARPin variant (37 MBq/mouse) intravenously, administered in 100 μL. Mice ($n = 3$ per time point and construct) were sacrificed after 1, 4, 24, 48, and 72 h after injection, organs were removed and the accumulated radioactivity was measured in a gamma-scintillation counter (Supplementary Methods).

Tumor autoradiography. Twenty-four hours after 10 μg (37 MBq) of the 99mTc(CO)3-labeled DARPin variant injection, the SK-OV-3.ip tumors (0.5 cm diameter) were cut into three layers (rim, middle section, rim). The slices were put on a Kodak X-Omat Blue film for 4 h and also analyzed with a Packard InstantImager.

Single photon emission computed tomography imaging studies. Single photon emission computed tomography (SPECT) imaging experiments were performed with an X-SPECT system (Gamma Medica, Inc.) with a single head SPECT device and a computed tomography (CT) device. 24 h after injection of the 99mTc(CO)3-labeled DARPin. The DARPin (370–555 MBq/200 μL = 10–15 mCi/200 μL) was administered via a lateral tail vein (further details in the Supplementary Methods).

For high-resolution images, tumors were scanned with a pinhole collimator (tungsten-based collimator, 1 mm diameter). The SPECT field of view was reduced to 30 × 30 mm and the acquisition time was increased to 4 h.

Kaw et al., unpublished experiments.
Results

Constructs and labeling. In this study, we investigated how efficiently DARPinGs could be enriched at a tumor site, and determined their biodistribution as a function of affinity and hydrodynamic size. We used a previously described DARPinG specific for HER2, i.e., H10-2-G3 (24), or G3 in short. It has a molecular weight of 14.5 kDa and consists of an NH2-terminal capping repeat, two internal repeats carrying the binding residues, and a COOH-terminal capping repeat (Supplementary Fig. S1). Being derived from an affinity maturation experiment, we could construct the presumed progenitor and its evolutionary intermediates. We therefore had at our disposal DARPinGs binding to the same epitope on HER2, with affinities ranging from 90 pmol/L to 270 nmol/L. They are named by indicating the amino acid(s) exchanged in G3 (ref. 24; Supplementary Fig. S1).

We expressed these DARPinGs in E. coli and purified them as described (19, 20). They were monomeric on gel filtration (Supplementary Fig. S2) and were labeled with 99mTc(CO)3 on the NH2-terminal His-tag (27).

The proteins were also derivatized with PEG of different sizes (20–60 kDa) at a unique engineered COOH-terminal cysteine (Supplementary Figs. S3-S4). The PEG20-containing proteins eluted at an apparent molecular weight of >300 kDa, whereas proteins with large molecular weight remained on the column, even after 24 hours. PEGylation had previously been shown to have no effect on the off-rate (26, 28). PEGylation had previously been shown to have no effect on the off-rate (26, 28). PEGylation had previously been shown to have no effect on the off-rate (26, 28). PEGylation had previously been shown to have no effect on the off-rate (26, 28). PEGylation had previously been shown to have no effect on the off-rate (26, 28).

Table 1. Affinities and kinetic parameters of anti-HER2 DARPinGs investigated

<table>
<thead>
<tr>
<th>DARPin*</th>
<th>BT474 cells†</th>
<th>BIACORE‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_on/10^6 (mol/L)^-1 s^-1</td>
<td>k_off/10^-3 s^-1</td>
</tr>
<tr>
<td>G3</td>
<td>10.3 ± 2.76</td>
<td>0.069 ± 0.02</td>
</tr>
<tr>
<td>G3-D</td>
<td>7.51 ± 0.57</td>
<td>0.22 ± 0.02</td>
</tr>
<tr>
<td>G3-AVD</td>
<td>3.96 ± 2.1</td>
<td>3.3 ± 1.5</td>
</tr>
<tr>
<td>G3-HAVD</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>G3-G3</td>
<td>10.0 ± 3.55</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Abbreviation: nd, not determined.

*DarpinGs with mutations affecting the affinity and bivalent DARPinG (see text).
†Association and dissociation kinetics were determined on BT474 cells by following the mean fluorescence intensity with fluorescence-activated cell sorting as a function of time, as shown in Supplementary Fig. S5. This table summarizes the data extracted from Supplementary Fig. S5. The error on cell binding rates reflects the differences between independent experiments, whereas the error on off-rates is the statistical error on fitting.
‡For comparison, the data previously obtained by surface plasmon resonance are shown as well (17). The error shown for the surface plasmon resonance measurements only reflects the statistical error upon data fitting.
§For bivalent binding, avidities are not constants but depend on coating density. Measurements by C. Gehring and H.K. Binz (unpublished data).
measured (1×10^{-6} s$^{-1}$; Supplementary Fig. S5), which directly shows bivalent binding on cells. As a control, we also measured G3-E2_5 (data not shown), and its dissociation rate matches that of G3, as expected from its single HER2-binding site.

Blood clearance in healthy BALB/c mice. For the unmodified DARPin G3, at 7.5 minutes, 90% of the radioactivity had already disappeared from the blood (Fig. 1A), suggesting a half-life of <3 minutes in which both tissue distribution and clearance through the kidney occurs. There may be an additional slow phase with only 5% amplitude and a half-life of 80 to 90 minutes (Fig. 1A). The bivalent DARPins are cleared almost as rapidly as well (Fig. 1A), suggesting, to a large extent, first-pass clearance for these small DARPins.

The serum clearance of PEGylated DARPins shows two slow phases. The initial phase (\sim1 day) might suggest a tissue distribution phase, before the even slower terminal plasma elimination (Fig. 1B; Supplementary Tables ST4 and ST5). The slowest phase correlates with the size of the PEG molecule (PEG20, \sim19 hours; PEG40 and PEG60, \sim50 hours). Therefore, as with many other PEGylated proteins, the terminal half-life is mostly determined by the hydrodynamics of the PEG molecule, preventing glomerular filtration and reducing the apparent volume of distribution at early times (see Discussion).

Tumor localization of unmodified DARPins. The targeting properties of the various constructs were examined in nude mice xenografted with human ovarian carcinoma SK-OV-3.ip cells, subcutaneously injected at the lateral flanks. Control experiments showed no significant differences with SK-OV-3 tumors (Supplementary Table ST1).

We first compared the biodistribution of 14.5 kDa DARPins after 1, 4, 24, and 48 hours (Fig. 2A, Table 2). Their half-life was very short, consistent with the measurements in BALB/c mice with shorter time points (Fig. 1A). Nonetheless, high tumor localization values were observed, \sim8% ID/g for the construct with the highest affinity after 4 hours. Even after 48 hours, this value was still \sim6.5% ID/g.

Because of the very low blood levels even after only 4 hours, very high tumor-to-blood values were reached (30 after 4 hours, >60 at 24 hours and beyond). The tissue distribution of the unmodified DARPin G3 was measured in eight different experimental series, all falling within 1 SD from the mean (Fig. 2A).

For the other unmodified DARPins with lower affinity (Table 1), tumor accumulation was lower, and proportional to affinity (Fig. 2A; Table 2). There was no indication of a leveling-off at high affinity, an effect which has been observed with bigger targeting reagents (refs. 11, 12; see Discussion).

The control DARPin E3_5 (20) with no affinity to HER2 was also tested (Fig. 2C; Supplementary Table ST1), and after 24 hours, only 0.46% ID/g was located at the tumor, showing that localization depends on specific binding to HER2.

Tumor localization of DARPin-linker-DARPin constructs. Both the bivalent G3-G3 construct, and a monovalent G3-E2_5 construct, in which the second DARPin had no affinity with HER2, were investigated. In both cases, the amount observed at the tumor was lower than for the monovalent G3 (Fig. 2C; time course in Supplementary Table ST2). Because G3-G3 and G3-E2_5 show essentially the same tumor uptake (Supplementary Table ST2), the higher avidity of G3-G3 seems to neither contribute to additional tumor retention nor could an additional barrier effect explain the lower tumor accumulation. Instead, we propose this lower accumulation to be an effect of the higher molecular weight (see Discussion).

Tumor localization of PEGylated DARPins. Cys-containing derivatives were made, giving equally high yields in production as their parent molecules, and coupling of PEG20 was almost quantitative. Tumor accumulation for G3-PEG20 after 24 hours reaches 13.4% ID/g (Fig. 2B; Table 2; Supplementary Table ST3) and shows much slower tumor accumulation.
Tumor values stay very high throughout the experiment (Supplementary Tables ST3 and ST6). This slow accumulation suggests that the protein in the blood acts as a reservoir from which slow extravasation to the tumor occurs over a long duration. The slow off-rates from HER2 allow a slow but steady build-up.

The second difference to the non-PEGylated proteins is that tumor accumulation seems to depend less on affinity than for the non-PEGylated DARPin (Fig. 2B). Only the lowest-affinity binder \((K_D = 270 \text{ nmol/L}) \) is just slightly above the background of a nonbinding control (see above), illustrating that tumor enrichment is dependent on specific binding to HER2. Due to the slower blood clearance, the tumor-to-blood ratios at early times are much smaller, and the highest values (~20) are only reached after 72 hours (Supplementary Table ST6).

We also compared the tumor accumulation of DARPin G3, coupled to PEG20 and PEG60 (Supplementary Table ST3). The PEG60 construct seemed to be retained slightly more at the tumor site after 48 hours, suggesting a role of the serum reservoir in an extended tumor loading phase.

Organ distribution. The distribution to liver and kidney gives information about the preferred elimination pathway of the DARPin. As expected, the small DARPin are eliminated predominantly via the kidney. 99mTc(CO)3 is a residualizing labeling reagent which remains in the kidney cells following endocytosis (31, 32) due to the high stability of the 99mTc label at the His-tag of the proteins (27) and the inability of the cell to excrete this label. High kidney values are observed for all monovalent DARPin (Table 2), as for scFv fragments (27, 31, 32) and camel VHH domains (33). For the constructs with two linked DARPin, predominant elimination via the kidney is seen as well, but the values are somewhat lower and the liver values correspondingly slightly higher (Supplementary Table ST2), even though this is not reflected in a significantly longer serum half-life.

The PEGylated proteins gave rise to a much lower percentage of label found in the kidney (Table 2). As expected from similar studies with PEGylated antibody fragments (10, 26), PEGylated DARPin are thus eliminated to a greater extent via the liver.

Organ distribution in healthy BALB/c mice. After 24 hours, similar values for kidney accumulation and only low liver accumulation were found as in tumor-bearing nude mice.
Table 2. Tissue distributions of DARPinss in SK-OV-3.ip tumor bearing mice

<table>
<thead>
<tr>
<th>Organ</th>
<th>1 h</th>
<th>4 h</th>
<th>24 h</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>0.72 ± 0.05</td>
<td>0.30 ± 0.06</td>
<td>0.13 ± 0.02</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>Heart</td>
<td>0.90 ± 0.03</td>
<td>0.51 ± 0.10</td>
<td>0.32 ± 0.04</td>
<td>0.27 ± 0.05</td>
</tr>
<tr>
<td>Lung</td>
<td>1.79 ± 0.14</td>
<td>0.70 ± 0.12</td>
<td>0.38 ± 0.06</td>
<td>0.34 ± 0.09</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.05 ± 0.19</td>
<td>1.79 ± 0.61</td>
<td>0.96 ± 0.21</td>
<td>0.37 ± 0.18</td>
</tr>
<tr>
<td>Kidney</td>
<td>267.75 ± 239.49</td>
<td>145.65 ± 110.66</td>
<td>29.44 ± 32.85</td>
<td>19.49 ± 31.84</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.33 ± 0.10</td>
<td>0.62 ± 0.17</td>
<td>0.59 ± 0.30</td>
<td>0.34 ± 0.11</td>
</tr>
<tr>
<td>Colon</td>
<td>0.85 ± 0.25</td>
<td>0.45 ± 0.10</td>
<td>0.43 ± 0.16</td>
<td>0.24 ± 0.05</td>
</tr>
<tr>
<td>Liver</td>
<td>7.96 ± 0.55</td>
<td>7.27 ± 1.04</td>
<td>4.61 ± 0.59</td>
<td>3.78 ± 0.91</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.48 ± 0.06</td>
<td>0.27 ± 0.03</td>
<td>0.17 ± 0.03</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Bone</td>
<td>1.61 ± 0.22</td>
<td>1.11 ± 0.05</td>
<td>0.81 ± 0.15</td>
<td>0.79 ± 0.21</td>
</tr>
<tr>
<td>Tumor</td>
<td>9.12 ± 1.77</td>
<td>8.04 ± 2.85</td>
<td>8.06 ± 2.38</td>
<td>6.46 ± 0.96</td>
</tr>
<tr>
<td>T:B</td>
<td>12.67 ± 62.80</td>
<td>71.78 ± 26.62</td>
<td>3.34 ± 14.86</td>
<td>27.85 ± 0.65</td>
</tr>
<tr>
<td>G3-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>0.67 ± 0.10</td>
<td>0.34 ± 0.11</td>
<td>0.13 ± 0.04</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Heart</td>
<td>0.58 ± 0.09</td>
<td>0.41 ± 0.14</td>
<td>0.20 ± 0.02</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>Lung</td>
<td>1.12 ± 0.33</td>
<td>0.53 ± 0.13</td>
<td>0.14 ± 0.20</td>
<td>0.20 ± 0.06</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.10 ± 0.11</td>
<td>0.88 ± 0.05</td>
<td>0.56 ± 0.06</td>
<td>0.35 ± 0.11</td>
</tr>
<tr>
<td>Kidney</td>
<td>195.00 ± 155.99</td>
<td>91.82 ± 60.69</td>
<td>10.49 ± 37.08</td>
<td>6.05 ± 9.28</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.85 ± 0.28</td>
<td>0.41 ± 0.03</td>
<td>0.15 ± 0.12</td>
<td>0.20 ± 0.08</td>
</tr>
<tr>
<td>Colon</td>
<td>0.52 ± 0.06</td>
<td>0.45 ± 0.09</td>
<td>0.22 ± 0.06</td>
<td>0.13 ± 0.02</td>
</tr>
<tr>
<td>Liver</td>
<td>4.74 ± 0.88</td>
<td>4.45 ± 1.18</td>
<td>2.45 ± 0.31</td>
<td>1.76 ± 0.23</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.32 ± 0.02</td>
<td>0.22 ± 0.06</td>
<td>0.11 ± 0.02</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>Bone</td>
<td>0.94 ± 0.01</td>
<td>0.54 ± 0.01</td>
<td>0.29 ± 0.08</td>
<td>0.36 ± 0.02</td>
</tr>
<tr>
<td>Tumor</td>
<td>7.65 ± 0.97</td>
<td>4.61 ± 2.17</td>
<td>3.73 ± 1.13</td>
<td>3.05 ± 1.20</td>
</tr>
<tr>
<td>T:B</td>
<td>11.42 ± 13.56</td>
<td>28.69 ± 50.83</td>
<td>3.15 ± 10.77</td>
<td>17.52 ± 28.47</td>
</tr>
<tr>
<td>G3-AVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>0.57 ± 0.00</td>
<td>0.25 ± 0.03</td>
<td>0.10 ± 0.01</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Heart</td>
<td>0.60 ± 0.05</td>
<td>0.40 ± 0.07</td>
<td>0.23 ± 0.02</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>Lung</td>
<td>0.87 ± 0.08</td>
<td>0.37 ± 0.31</td>
<td>0.31 ± 0.04</td>
<td>0.19 ± 0.04</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.64 ± 0.13</td>
<td>1.40 ± 0.26</td>
<td>0.87 ± 0.05</td>
<td>0.87 ± 0.13</td>
</tr>
<tr>
<td>Kidney</td>
<td>195.57 ± 163.00</td>
<td>89.35 ± 58.22</td>
<td>27.65 ± 12.72</td>
<td>10.53 ± 15.76</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.89 ± 0.27</td>
<td>0.55 ± 0.18</td>
<td>0.23 ± 0.01</td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>Colon</td>
<td>0.59 ± 0.06</td>
<td>0.50 ± 0.16</td>
<td>0.28 ± 0.03</td>
<td>0.15 ± 0.02</td>
</tr>
<tr>
<td>Liver</td>
<td>6.84 ± 0.80</td>
<td>6.13 ± 1.13</td>
<td>3.65 ± 0.84</td>
<td>2.22 ± 0.08</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.33 ± 0.03</td>
<td>0.24 ± 0.02</td>
<td>0.13 ± 0.02</td>
<td>0.09 ± 0.08</td>
</tr>
<tr>
<td>Bone</td>
<td>0.98 ± 0.12</td>
<td>0.76 ± 0.16</td>
<td>0.46 ± 0.02</td>
<td>0.39 ± 0.08</td>
</tr>
<tr>
<td>Tumor</td>
<td>4.90 ± 1.37</td>
<td>4.26 ± 0.63</td>
<td>2.41 ± 0.17</td>
<td>1.38 ± 0.21</td>
</tr>
<tr>
<td>T:B</td>
<td>8.60 ± 2.45</td>
<td>17.04 ± 4.56</td>
<td>24.10 ± 4.11</td>
<td>23.00 ± 7.33</td>
</tr>
<tr>
<td>G3-HAVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>0.89 ± 0.16</td>
<td>0.43 ± 0.04</td>
<td>0.15 ± 0.03</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>Heart</td>
<td>0.95 ± 0.16</td>
<td>0.59 ± 0.07</td>
<td>0.32 ± 0.06</td>
<td>0.22 ± 0.04</td>
</tr>
<tr>
<td>Lung</td>
<td>1.30 ± 0.10</td>
<td>0.81 ± 0.23</td>
<td>0.35 ± 0.03</td>
<td>0.25 ± 0.02</td>
</tr>
</tbody>
</table>

(Continued on the following page)
mice (Supplementary Tables ST4–ST5). The same correspondence between BALB/c mice and tumor-bearing nude mice was found for the biodistribution of G3-PEG20 derivatives, showing that the nude mouse phenotype has no influence on the biodistribution of DARPins.

Imaging the distribution of radioactivity within the tumor. We investigated the penetration of the highest affinity DARPin G3 by imaging slices of a SK-OV-3.ip tumor 24 hours after injection, using both X-ray film (Fig. 3A and B) and a Packard InstantImager (Fig. 3C and D). Clearly, the protein penetrates the whole tumor mass quite evenly, with a potentially slightly stronger staining near the rim of the tumor, which might have been expected for high-affinity molecules (see Discussion).

SPECT/CT imaging studies. A whole-body SPECT/CT of a mouse bearing tumors left and right of the shoulders was detected in tumors localized on both shoulders. Significantly more accumulation of radioactivity was found in the kidneys of the mouse injected with the Pegylated DARPin.

A high-resolution SPECT/CT image (Fig. 4C) of a SK-OV-3.ip tumor on the right hind leg, 24 hours after targeting with DARPin G3, showed accumulation of the radioactivity in the tumor with some preferential detection at the rim. Because the field of view in this study is reduced to 30 × 30 mm, the nonspecific accumulation in nontargeted organs such as the kidney is not visible.

Discussion

The four goals of this study were to (a) quantitatively test the ability of DARPins to target tumors in mice, (b) examine the optimal DARPin tumor targeting format, (c) evaluate the dependence of targeting on DARPin affinity, and (d) examine the relationship between size, valency, and affinities for the most effective tumor targeting, and to derive general principles for targeting molecules by comparing the results with other reports on targeting HER2.

We will argue in the following that the favorable uptake values of unmodified DARPin are a combination of high affinity and small size, which allows efficient extravasation and retention at the tumor. These targeting properties also capitalize on the lack of aggregation of DARPin (refs. 19, 21, 34; Supplementary Figs. S7–S10). Biophysical stability has been previously shown to directly improve tumor targeting (35).

Higher tumor accumulation values can be reached by IgGs by virtue of their FcRn-mediated long serum half-life (36), but with a correspondingly long tissue half-life and more limited tumor penetration.

Influence of affinities on unmodified DARPin. The total amount located at the tumor is directly proportional to affinity, and there is no leveling off with affinity (Fig. 2A). This was found over the whole time range measured. The serum half-life seems to be, as expected, comparable for the DARPin point mutants investigated, and thus these higher tumor enrichments also parallel higher tumor-to-blood ratios, proportional to affinity. Because the on-rates are very similar among the DARPin, both on cells and on pure proteins (Table 1; except for the binder with the lowest affinity; ref. 24), total build-up and retention at the tumor seems to be governed by the dissociation rates from the target.

DARPin constructs with additional domains. The bivalent molecule did not show improved targeting over the monomeric one, but instead lower accumulation, despite its extremely slow off-rate, in turn demonstrating that binding...
on cells is really bivalent. Tumor accumulation was equally low for a two-domain DARPin with only one functional site. This suggests that the lower accumulation was governed by molecular size, and not by a barrier effect of this high-avidity construct. For both DARPin-DARPin fusions (molecular weight, 30 kDa), tumor accumulations (<2% ID/g) were very similar to those of monovalent anti-HER2 scFv fragments (molecular weight 25 kDa) with affinities on cells of 1 to 320 nmol/L in similar SK-OV-3 models (9, 10, 26, 37, 38).

The influence of PEGylation. The depot function of the PEGylated molecules in serum, evidenced by their prolonged terminal half-life (∼19 hours), probably coupled with slow extravasation and diffusion, leads to a slower build-up on the tumor, and limits the achievable tumor-to-blood ratios.

The importance of affinity for the extent of tumor accumulation is diminished for the PEGylated constructs, compared with the underivatized constructs. Similarly, for whole antibodies, affinity did not seem to increase total tumor accumulation above a certain threshold affinity (11).

A pure physical effect has been proposed to contribute to the tumor uptake of large macromolecules and nanoparticles, termed enhanced permeability and retention (39, 40). However, because the PEGylated variant with $K_D = 270$ nmol/L (Fig. 2B) showed almost no tumor accumulation, we can conclude that specific binding with reasonable affinity is essential and the enhanced permeability and retention effect is insignificant.

PEGylated monomeric and dimeric scFv constructs showed similar tumor accumulation (26) as PEGylated DARPins, and thus, it is largely determined by hydrodynamic properties of the PEG. However, because of their robustness and the unique cysteine, PEGylated DARPins are easier to prepare.

Comparison to antibody scFv fragments. We restrict our discussion to targeting studies of HER2 in SK-OV-3 tumors, and where the affinity on cells has been measured, because to pure antigen, it is potentially different (28–30). With the scFv 4D5 (refs. 10, 26; $K_D = 9–29$ nmol/L on cells), tumor accumulations of 1% to 1.77% ID/g were obtained after 24 hours.

Figure 3. Ex vivo autoradiogram of SK-OV-3.ip tumor slices imaged with 99mTc(CO)$_3$-labeled DARPin G3, 24 h after i.v. injection. The slices were put on Kodak X-Omat Blue film and exposed for 4 h (A, rim; B, middle section). The radioactivity was also recorded with a Packard InstantImager (C, rim; D, middle section).

Figure 4. Whole body SPECT/CT (low resolution, high sensitivity) scans after i.v. injection of labeled DARPins. A, coronal section of a mouse with two SK-OV-3.ip tumors on both shoulders injected with 99mTc(CO)$_3$-labeled DARPin G3. Mouse A (G3; whole body activity of 18.5 MBq) was scanned after 22 h with an acquisition time of 32 min. B, mouse with two SK-OV-3.ip tumors on both shoulders injected with 99mTc(CO)$_3$-labeled DARPin G3-PEG20. C, three-dimensional SPECT/CT (high resolution, low sensitivity, pinhole collimator) scan of a SK-OV-3.ip tumor located at the right hind leg 24 h after i.v. injection with 99mTc(CO)$_3$-labeled DARPin G3 with an acquisition time of 4 h. In all experiments, the same dose of radioactivity was injected (555 MBq).
The scFv C6.5 ($K_D = 70$ nmol/L on cells) was evolved to $K_D = 3.8$ nmol/L, however, only marginally changing tumor accumulation from 1.32% to 1.42% ID/g (41), or from 0.80% to 1.48% ID/g (38). The nanomolar K_D of these monovalent scFv on cells, compared with the picomolar DARPin, might contribute to the lower accumulation observed.

scFv fragments have been converted to bivalent and tetra-valent miniantibodies by fusing self-assembling peptides to the COOH terminus (10, 26), but tumor accumulation was only moderately increased to 2.84% ID/g for the tetramer. A 135 kDa trivalent molecule, made via barnase-barstar fusions and being above the renal filtration threshold, showed a higher increase (7.04% ID/g; ref. 42) and a longer terminal half-life.

When the scFv fragment C6.5 and its high-affinity derivative were converted to diabodies (functional affinity on cells 3.4 and 0.49 nmol/L, respectively), 6.48% and 3.18% ID/g were reported. Note that the higher avidity molecule performed worse (41). The evolved monovalent C6.5 scFv ($K_D = 3.8$ nmol/L on cells) only lead to 1.42% ID/g on the tumor. Size does not seem to be the crucial difference, however, because a monovalent scFv and the corresponding diabody with only one functional site showed the same tumor accumulation (37). A more efficient internalization of the particular bivalent diabody might lead to a better retention of label, even at a similar functional affinity.

In mice with kidneys removed (12, 38), tumor accumulation of all fragments was increased. In this artificial model, no further increase in tumor accumulation was found beyond a functional affinity of $\sim 10^{-5}$ mol/L, with even a drop for one data point at 10^{-11} mol/L. The high-affinity molecules predominately localized at the periphery of the tumor, whereas the low-affinity molecules—at the same total dose—localized diffusely throughout the tumor.

This peripheral location is consistent with the “shrinking core model” (8, 43), in which antigens are occupied starting from the tumor outside and progressing to the inside. Every antigen encountered is occupied and remains so, if the off-rate is low, whereas the molecules dissociate and transiently rebind further inward (but also leave the tumor), if the off-rate is faster. This concept has been originally proposed for whole antibodies in similar form (11).

Taken together, these studies with scFv monomers and multimers have found increased tumor accumulation with increasing valency, and in some cases, functional affinity. The extent, however, varied significantly between constructs. Higher molecular weight is favorable only if it brings the molecule above the renal filtration threshold by increasing the terminal half-life. Nonetheless, the data have also suggested that an increase in functional affinity beyond a certain threshold is not useful for molecules the size of an scFv and its multimers. We show here that some of these limitations are not found for smaller high-affinity molecules such as DARPins.

Comparison to other scaffolds targeting HER2. Affibodies and other small scaffolds have also been selected to bind to HER2 (44), and one such molecule with $K_D = 50$ nmol/L has been affinity-matured to 22 pmol/L (measured on purified HER2). To our knowledge, the affinity on whole cells has not been reported. The evolved affibody showed tumor uptake reaching 8.6% ID/g after 24 hours (45).

The original monovalent affibody ($K_D = 50$ nmol/L) was also made bivalent (functional affinity ~ 3 nmol/L), but bivalent binding on cells was not tested. The tumor uptake was 2.6% ID/g after 12 hours (46), significantly less than for the evolved monomer, with the caveat that the labeling method was not always the same.

Tumor localization of single-domain antibodies directed against HER2 has not been reported. Two camel VHH domains, specific for epidermal growth factor receptor ($K_D = 2.3$ and 5.7 nmol/L *in vitro*), were reported with tumor uptake of 9.1% ID/g and 6.1% ID/g, measured 1.5 hours after injection (33).

Taken together, these results support our hypothesis that predicts favorable targeting properties for molecules which combine high affinity with small molecular size.

The importance of molecular weight. The molecular weight influences at least three parameters critical for targeting (a) capillary extravasation, (b) diffusion, and (c) renal clearance (8, 36).

There may be a rather steep dependence of tumor vascular permeability on molecular weight (47), with smaller molecules showing significantly greater permeability, even in tumor capillaries. This has been well known for normal capillaries (48). For proteins with a Stokes-Einstein radius of 40 Å, only very low levels are found outside the plasma, whereas proteins of 20 Å almost completely equilibrate with interstitial fluid or lymph. DARPins would probably behave like the latter (49), and because of the measured steep molecular weight dependence, have significantly higher permeability than scFv fragments and other larger constructs. In earlier work, permeability varied only 2-fold for substances between 25 and 160 kDa (scFv to full IgG; ref. 50), but recent work suggests much stronger trends when extending studies to smaller molecular weights (47). The capillary permeability may be the limiting parameter controlling the flow of antibodies reaching the tumor (8).

Because of the lack of lymphatic drainage in a tumor, proteins are moving from the capillary to the tumor center by diffusion, with negligible convection (8). The diffusion coefficient of an scFv and a PEGylated scFv differs only by a factor of 2 (28), and the differences between DARPin and scFv would be smaller still. Nonetheless, hindered diffusion through tumor interstitial space might augment this difference.

The underivatized DARPins are cleared through the kidney, giving rise to a rather short serum half-life and an observable accumulation of radioactivity in the kidney, very similar to scFv fragments or cameld VHH domains (see above).

An increase in molecular weight seems to be beneficial for tumor uptake only once the molecule is brought above the renal filtration cutoff (42). The addition of a nonfunctional binding site is neither beneficial for scFvs (37) nor DARPins (see above).
There are two modes of efficient targeting. Our conclusions are consistent with a mathematical model (36) published after the submission of this article. First, DARPin and presumably other small, very soluble proteins with picomolar affinity, also show high tumor accumulation with very fast clearance through the liver and kidney. This is probably due to high extravasation and tumor penetration, and requires a very slow off-rate from the target, leading to efficient tumor retention. Targeting is proportional to affinity and no plateau with affinity was seen, suggesting that still higher affinities might further increase tumor targeting.

Second, very large proteins such as monoclonal antibodies or PE-gylated DARPinS achieve even higher tumor loads due to the long circulation and (slow) equilibration with the tumor, but the elimination from blood and nontumor tissue is also slow, and tumor-to-tissue ratios remain lower.

Intermediate size molecules (fused DARPinS, scFv fragments) show lower tumor accumulation because elimination through the kidney is equally rapid, but extravasation, and perhaps tumor diffusion, is diminished. The very tight binding of a bivalent DARPin does not compensate this effect.

Disclosure of Potential Conflicts of Interest
C. Zahnd, M. Kawe, M.T. Stumpf, H.K. Binz, and A. Plückthun are shareholders of Molecular Partners AG, which is commercializing the DARPin technology.

Acknowledgments
We thank Christian Gehringer and Frank Zoller for help in plasmid constructions, Martin Schwill for help in the fluorescence labeling, as well as Dr. Patrik Forrer, Dr. Patrick Amstutz, and Prof. Dr. Uwe Zangemeister-Wittke for helpful discussions. The DARPin technology is commercialized by Molecular Partners AG, Wagnistrasse 14, 8952 Schlieren, Switzerland (http://www.molecularpartners.com).

Grant Support
Kommission für Technologie und Innovation, Gebert-Rüf-Stiftung (GIBS-051/04; M.T. Stumpf), Swiss Cancer League (Krebshilfe Schweiz; KLS-01686-02-2005), Oncomusée (OCS-02129-08-2007), and University of Zurich.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 9/14/09; revised 11/20/09; accepted 12/9/09; published OnlineFirst 2/2/10.

References

Efficient Tumor Targeting with High-Affinity Designed Ankyrin Repeat Proteins: Effects of Affinity and Molecular Size

Cancer Res Published OnlineFirst February 2, 2010.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-2724

Supplementary Material Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/02/01/0008-5472.CAN-09-2724.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.