Tumor and Stem Cell Biology

ADAMTS1 Contributes to the Acquisition of an Endothelial-like Phenotype in Plastic Tumor Cells

Carmen Casal1, Antoni Xavier Torres-Collado2, María del Carmen Plaza-Calonge1, Estefanía Martino-Echarri1, Santiago Ramón y Cajal3, Federico Rojo4, Arjan W. Griffioen5, and Juan Carlos Rodríguez-Manzaneque1

Abstract
Cancer stem cells have been hypothesized to explain tumor plasticity, including the capability to adopt distinct differentiation commitments. Among the mechanisms of tumor neovascularization, the ability of some malignant cells to mimic an endothelial phenotype has been recognized by a capacity to form matrix-enriched pseudovascular structures. In addition to the expression of genes associated with an endothelial nature, the molecular dynamism of specific microenvironments may also be critical. Here, we report the identification of the extracellular protease ADAMTS1 as a critical molecule for tumor cells to acquire endothelial-like properties. In a fibrosarcoma model, ADAMTS1 increased tumor growth rate in an angiogenesis-independent manner, influencing the tumor cells to display an exclusive endothelial-like gene signature. We documented the relevant expression of ADAMTS1 in aggressive and highly plastic melanoma and Ewing sarcoma cells. Notably, inhibiting ADAMTS1 action compromised the endothelial mimetic attributes observed in this setting. Our findings provide insights into how the tumor microenvironment can elicit endothelial mimicry by tumor cells.

Introduction
Events of tumor neovascularization are a basic principle during tumor progression. Although the process of angiogenesis has been recognized as the major protagonist, alternative mechanisms have been highlighted in literature (1). Among these specialized mechanisms is the plasticity of some tumor cells to acquire endothelial-like (EL) properties to align and form pseudovascular structures (2). This phenomenon was first described in aggressive melanomas and is called vasculogenic mimicry (VM; ref. 3), due to genotypic and phenotypic characteristics that are reminiscent of embryonic vasculogenesis. Another example of tumor plasticity is the process of cellular differentiation from cancer stem cells (CSC). Thus far, most of the research about CSCs hypothesizes that these cells possess proliferative and self-renewal potential that is necessary to generate a new emerging tumor. Like normal tissue stem cells, CSCs are expected to display a range of differentiation capabilities, a feature that has not been deeply studied. Importantly, research with various types of sarcoma tumors has revealed their mesenchymal-like differentiation properties. For example, the origin of Ewing sarcomas, the second most frequent bone tumor in young people, has provoked an interesting debate. First named as “endothelioma” of the bone by James Ewing (4), DNA microarray studies later confirmed their endothelial and neural crest-derived origin (5). Indeed, published reports underlined the mesenchymal stem cell features in Ewing tumors and in other bone and soft tissue cancers (6–8).

The role of the microenvironment for tumor plasticity has been studied under various conditions. First, the importance of mechanical and physical properties of the matrix has been reported to play a main role in stem cell commitment (9) and tumorigenesis (10). Second, emerging studies have shown that aggressive tumor cells can be reprogrammed in embryonic microenvironments (11). As for the stem cell niche, its characterization has been limited to cellular components (12) although the role of extracellular factors, including proteases, requires further attention.

ADAMTS1 represents the first described member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases (13). It has been reported to display antiangiogenic properties (14, 15), however, its mechanism of action during tumor progression seems controversial. Protumorigenic and prometastatic roles of ADAMTS1 have been proposed by induction of a
stonal reaction (16) and by its activity on epidermal growth factor–like ligands (17, 18).

Here, we report that the overexpression of ADAMTS1 in a fibrosarcoma model caused an increased tumor growth rate that is angiogenesis independent. A closer analysis showed a relevant staining of periodic acid-Schiff (PAS)/laminin 5γ2–positive loops and an exclusive EL gene signature in tumor cells. We further observed the presence of ADAMTS1 protease in aggressive melanoma and Ewing sarcoma cells, previously characterized by their capacity to mimic vasculogenic-related events. Our studies showed both mesenchymal and EL commitments of Ewing tumor cells. Finally, the inhibition of ADAMTS1 compromised their endothelial mimesis.

Materials and Methods

Cell culture

Human Ewing sarcoma (EW7, SIM/EW27, and RD-ES) and human melanoma (MUM2B, MUM2C, C8161, and C81-61) cell lines (provided by Dr. Griffioen, VU University Medical Center, Amsterdam, the Netherlands) were cultured in RPMI with 10% fetal bovine serum (FBS), 5 mmol/L L-glutamine, and 1% penicillin-streptomycin. Human fibrosarcoma HT1080 cells (from the American Type Culture Collection) were cultured in DMEM with 10% FBS, 5 mmol/L L-glutamine, and 1% penicillin-streptomycin. All cells were maintained at 37°C, 5% CO2. Full-length human ADAMTS1 used for stable clones was described elsewhere (19). If required, conditioned medium was concentrated with Strataclean Resin (Stratagene). Cell layer was harvested with radioimmunoprecipitation assay buffer [20 mmol/L Tris-HCl (pH 8), 150 mmol/L NaCl, 0.1% SDS, 1% NP40, 1 mmol/L EDTA]. For capillary-like formation assays, 25 μL of Matrigel (BD Biosciences) were spread onto eight-chamber BD Falcon glass culture slides (BD Biosciences) or onto 96-well plate. Cells were seeded at 2.5 × 104 cells per well (high density) in eight-chamber slides and at 5 × 104 cells per well (low density) in 96-well plates, and maintained with RPMI-1% FBS. Tissue inhibitor of metalloprotease (TIMP) treatments were performed with 1 μmol/L TIMP1 or TIMP3 (R&D Systems) added to Matrigel before polymerization. For cocultures, either human umbilical vascular endothelial cell (HUVEC) or EW7 cells were labeled with 20 μg/mL of Cell Tracker CM-Dil (C7000, Molecular Probes). HUVEC (1.5 × 105) were cocultured with 1.0 × 104 EW7 cells in an eight-chamber culture slide coated with Matrigel. After 24 hours, cells were fixed with 4% formaldehyde and stained with 4',6-diamidino-2-phenylindole (DAPI). Images were captured with an AxioCam MRM digital camera (Zeiss) attached to an Axiovert 40CFL microscope (Zeiss).

In vitro three-dimensional tubulogenesis fibrin gel bead assay

The fibrin gel bead assay was adapted from the described for endothelial cells (20). Here, EW7 sarcoma cells were allowed to attach to Cytodex-3 microcarrier beads (GE Healthcare) by incubation in complete medium for 4 hours at 37°C (1 × 10³/2,500 beads). Coated beads were suspended in a larger volume of medium and incubated under agitation for 3 days. Finally, beads were embedded in a fibrin matrix (50 beads/mL). Pictures were captured at the indicated times with ×5 and ×20 objectives using an Axiocam ICC3 digital camera (Zeiss) attached to an Axiovert 40CFL microscope (Zeiss).

Generation of ADAMTS1-knockdown cells

Stable shRNA (short hairpin RNA)–mediated knockdown clones were achieved with MISSION vectors (Sigma). Briefly, 293T cells were co-transfected (with FuGENE 6) with lentivirus envelope and gag-pol elements (provided by Dr. Recio, Vall d’Hebron University Hospital Research Institute, Barcelona, Spain) in addition to lentiviral MISSION shADAMTS1 or MISSION nontarget shRNA control vectors. Viruses were used to infect target cells in the presence of 8 μg/mL polybrene. Different shADAMTS1 clones were selected with 0.5 μg/mL puromycin.

Tumor xenograft assays

Nu/Nu BALB/c mice (5 per group) were s.c. injected in the right flank with 5 × 10⁶ cells per 200 μL. Mice weight and tumor size were assessed every 3 days after cell injection. Tumor volumes were calculated by the equation D³π/6 in which D is the tumor diameter at its widest and d at its smallest (21). Test subjects were sacrificed after 21 days following proper guidelines.

Immunoblot analysis

Samples were subjected to SDS-PAGE and transferred to nitrocellulose and polyvinylidene difluoride membranes. After blocking with 5% low-fat milk, membranes were incubated with the monoclonal antibody mouse anti-human ADAMTS1 [clones 5D4E11B5 and 3E4G6B4 (provided by Dr. Iruela-Arispe, University of California, Los Angeles, Los Angeles, CA)]. Signal was detected with the SuperSignal WestDura kit (Pierce).

Immunohistochemistry

Antigen retrieval was approached in two different ways: (a) Proteinase K: 20 minutes at 37°C, for VE-cadherin and laminin 5γ2 antibodies, and (b) Tris-EDTA (10 mmol/L Tris, 1 mmol/L EDTA; pH 8): 10 minutes at 650 Watt microwave followed by 10 minutes at room temperature for CD31 antibodies. Later, sections were blocked and incubated with the following primary antibodies: polyclonal rat anti-mouse CD31 (9F1; 1:10 dilution), monoclonal mouse anti-human laminin 5γ2 (1:100 dilution; Novocastra), polyclonal rabbit anti–FVIII-related antigen (Chemicon), polyclonal rabbit anti-human VE-cadherin (1:100 dilution; Cayman Laboratories), and monoclonal mouse anti-human ADAMTS1 (clone 3E4G6B4). Final visualization was obtained with the Envision...
system (DAKO). PAS staining (Sigma) was done following standardized methods. Microvessel density was determined by the Chalkley morphometry analysis (immunostaining with anti-FVIII-related antigen antibody). For frozen tissue sections, visualization was obtained by incubation with 3,3′-diaminobenzidine. For phalloidin staining, Phalloidin-Texas red was added to fixed and permeabilized cells for 45 minutes and slides were mounted with the Vectashield mounting media with DAPI (Vector).

RNA isolation and reverse transcription-PCR analysis

Total RNA was isolated from cells and tissue sections using the NucleoSpin RNA II kit (Macherey-Nagel) followed by RNase-free DNase treatment (Macherey-Nagel). cDNA synthesis was done with 1 μg of total RNA using the iScript cDNA synthesis kit (Bio-Rad). Reverse transcription-PCR (RT-PCR) was performed using EcoTaq DNA polymerase (Byoline) with the specific primers (Supplementary Table S1). Quantitative RT-PCR (qRT-PCR) was done using the Power SYBR Green PCR Master Mix (Applied Biosystems) using 7500 Real-time PCR System with the specific primers (Supplementary Table S2). The expression of each target gene was normalized to the expression of glyceraldehyde-3-phosphate dehydrogenase or β-actin.

Results

Effects of ADAMTS1 expression in an HT1080 fibrosarcoma model and analysis of neovascularization and related features

To study the role of this protease during tumor progression, HT1080 fibrosarcoma cells were modified to overexpress ADAMTS1 protein (Fig. 1A). The s.c. injection of modified and control cells in nude mice induced the development of a tumor mass, which was monitored over a period of 21 days. Although initial growth rate was similar for both cases, significant differences were detected at day 10 and at day 21, when the animals were sacrificed. Mice injected with ADAMTS1-HT1080 cells developed significantly larger tumors (final volume, \(v_f = 2.65 \pm 1.36 \text{ cm}^3 \)) compared with tumors produced by control cells (\(v_f = 1.31 \pm 0.44 \text{ cm}^3 \); Fig. 1B), differences that were corroborated by the final tumor mass (Fig. 1C).

Detailed histologic and immunohistochemical evaluation of these tumor specimens was approached to observe any changes in blood vessel development. The initial detection of mouse vessels was achieved by staining with the endothelial-specific markers anti-FVIII-related antigen (Fig. 1D) and anti-mouse CD31 (Fig. 2A, a–b). The results showed relevant changes between the two groups. Contrast to the final tumor mass, the density of mouse vessels decreased in ADAMTS1 overexpressors compared with control xenografts (Fig. 1D). In an attempt to reconcile the differences between tumor growth and vessel density, the relevance of alternative mechanisms of neovascularization was evaluated. PAS staining, a known method used in various tumor models, was performed to identify vascular and pseudovascular networks (3). Although positive PAS staining was visualized in all cases, networks resembling the described VM structures were mainly detected in tumors derived from ADAMTS1-overexpressing cells (Fig. 2A, c–d). Because this staining procedure does not provide specific molecular information, immunostaining of the tumors with human laminin 5γ2 and VE-cadherin antibodies was performed; these are proteins reported to be overexpressed and important in VM events (22). The laminin 5γ2 pattern observed in the tumors derived from ADAMTS1-overexpressing cells was similar to that observed by PAS staining (Fig. 2A, e–f). VE-cadherin was also present in ADAMTS1-overexpressing tumors.
whereas its expression was practically absent in control samples (Fig. 2A, g–h).

The expression of various genes implicated in the VM phenomenon and ADAMTS1 substrates TFPI-2 and nidogens 1 and 2 was evaluated by RT-PCR. Importantly, all the designed oligonucleotides were specific for human sequences; thus, detected levels will originate from the grafted human cells. Levels of the endothelial-specific genes VE-cadherin, Tie1, and laminin 5γ2 were upregulated in ADAMTS1-overexpressing tumors (Fig. 2B and C), supporting our previous results from the staining procedures (Fig. 2A). Surprisingly, the expression of these endothelial-specific genes was also detected in control tumors (Fig. 2B). To determine the source of this gene expression, we evaluated control HT1080 cells and compared them with endothelial cells (Fig. 2D). With the exception of VE-cadherin, RNA levels of all these molecules were detected in HT1080 parental cells, suggesting that this sarcoma-derived cell line already possessed the potential to be driven into an EL lineage. This property was acquired when cells were implanted into the animals in the presence of the protease ADAMTS1.
With regards to the phenomenon of tumor plasticity and the acquisition of an EL phenotype, we decided to analyze several melanoma and sarcoma cellular models that have already been described as positive for these events (2).

Presence of ADAMTS1 in sarcoma and melanoma cells

We explored the presence of ADAMTS1 in several melanoma and Ewing sarcoma cell lines that have already been classified as positive (MUM2B, C8161, and EW7) or negative (MUM2C, C81-61, RD-ES, and SIM) for their capacity to mimic an EL phenotype. Importantly, the expression of endogenous **ADAMTS1** is increased significantly in cells that exhibit EL properties (EL+ cells; Supplementary Fig. S1; Fig. 3A). Additional genes that were analyzed included *laminin 5γ2* and *TFPI-2*, which have already been shown to be differentially expressed in EL+ cells (23). Protein levels of ADAMTS1 were also evaluated (Fig. 3B). Phorbol 12-myristate 13-acetate (PMA) treatment was used to upregulate endogenous ADAMTS1 (24). ADAMTS1 protein levels were detected in the conditioned medium of EL+ cell lines, whereas very low or no detectable levels were detected in the nonaggressive cells. To confirm the activity of ADAMTS1, COOH-terminal cleavage of TFPI-2 in those cell lines was analyzed; the results revealed that the cleavage of TFPI-2 did coincide with the endogenous expression of ADAMTS1 (Supplementary Fig. S2).

In addition, we analyzed the expression of **ADAMTS1** in EW7-derived xenografts, a known EL+ tumor type (23), to
determine the effect of a microenvironment on ADAMTS1. qRT-PCR was performed and compared with EW7 and SIM cell lines. In addition to ADAMTS1, endothelial-related markers Tie1 and VE-cadherin were also evaluated as a measure of the progression of this tumor plasticity phenomenon. These analyses confirmed the presence of ADAMTS1 in xenografts at comparable levels with its basal expression in cell culture (Fig. 3C). Finally, the presence of ADAMTS1 in tumor sections was evaluated by immunohistochemistry. Given the extracellular features of ADAMTS1, its localization in situ does not display well-defined patterns. A detailed study of tumor sections revealed distinct areas with various degrees of ADAMTS1 expression. Although those areas with high vessel density, determined by CD31 staining, presented a homogeneous positive signal for ADAMTS1 (Fig. 3D, top), the analysis of zones with a decreased density of CD31+ vessels, which is reminiscent of the reported EL+ events (23), revealed a more restricted pattern of ADAMTS1 staining. This is probably associated with extracellular reservoirs (pointed by arrows in Fig. 3D, bottom).

These results clearly indicated a high intratumor variability, which makes it difficult to track the expression of ADAMTS1 in human tumors. However, review of various public microarray analyses of human sarcomas allowed us to assess the role of protease ADAMTS1 (Supplementary Fig. S3).

Plasticity of sarcoma tumor cells
EW7 cells have a potential mesenchymal origin. This potential was shown by its ability to differentiate into an adipogenic and osteogenic lineage when maintained under proper conditions (Fig. 4A). The ability of these cells to acquire an EL phenotype was assessed through a series of Matrigel experiments (Fig. 4B). In addition, fibrin-based three-dimensional models were used to study the formation of endothelial-derived tubules (20). Importantly, formation of multicellular tubular structures by EW7 cells was observed in this assay (Fig. 4B).

To further prove the capacity of EW7 cells to share common properties with endothelial cells, EW7 cells were...
coclutured with HUVECs in Matrigel. One of the cell types was stained with a fluorescent cell tracker to distinguish between the two cell types. Close analysis of the resulting capillary-like structures (Fig. 4C) confirmed the ability of EW7 cells to mimic the endothelial phenotype, which is characterized by aligning themselves, even individual cells (pointed with yellow arrows in Fig. 4C), in structures mainly formed by endothelial cells.

Impairment of capillary-like formation by the inhibition of ADAMTS1 and the use of specific metalloproteinase inhibitors

We have shown that overexpression of ADAMTS1 enhanced an EL phenotype in HT1080 fibrosarcoma cells. The next step was to investigate whether downregulation of this protease have an inhibitory effect on the endothelial properties of these cells. Therefore, we inhibited ADAMTS1 expression in EW7 cells by shRNA technology (Fig. 5A) and then evaluated the effect of its absence on the formation of capillary-like structures. At low cellular density (Fig. 5B), a clear delay over time and impairment of formation of structures were observed in cells with inhibited expression of ADAMTS1. However, cultures at high density required a deeper evaluation. Although all cells were apparently capable of forming capillary-like structures, knockdown ADAMTS1 cells displayed a loose appearance at brightfield capture, which was reminiscent of an ameboid-like conformation with no robust cell-cell contacts (Fig. 5C). To better visualize the impaired cell-cell contacts, the distribution of actin stress fibers was evaluated by phalloidin staining. In knockdown cells, actin fibers were accumulated at the border, more obvious at higher magnifications; in contrast, control cells displayed a more dispersed actin distribution (Fig. 5C). Knockdown ADAMTS1 cells appeared detached among themselves and the capillary-like structures that they formed were more fragile and unstable. No alterations were detected for VE-cadherin and laminin 5γ2 proteins (Supplementary Fig. S4).

We extended this characterization by the treatment of control cultures in Matrigel with specific protease inhibitors. ADAMTS1 is specifically inhibited by TIMP3 but not by TIMP1 (19). No obvious differences were observed at 4 hours of treatment; however, a 24-hour exposure to TIMP3 induced a clear effect (Fig. 5D). The formation of capillary-like structures was delayed and disrupted.

Finally, we investigated the potential regulation of the EL properties by the protease ADAMTS1 in the fibrin-based tubular assay (as showed in Fig. 4B). Comparative experiments with ADAMTS1-knockdown cells were performed. These experiments were done with low concentrations of serum (1%) to avoid the main proliferative response of these tumor cells, which would mask any differentiation-like process. Primary sprouts were evaluated at 24 hours; its formation was clearly inhibited in ADAMTS1-knockdown cells, as observed under the microscope (Fig. 6A). Quantification of the number of sprouts per bead (Fig. 6B) confirms a strong difference between control and inhibited cells.

Discussion

The current concept of tumor neovascularization is far from the classic view that explained such process solely by the growth of new vessels from preexisting ones (1, 24). In our attempt to contribute to the understanding of the mechanisms of action of ADAMTS1 during tumor progression, we obtained strong evidence that supports its participation in events of tumor plasticity that lead to alternative mechanisms of vascularization.

In the context of a fibrosarcoma model, we observed that although tumor growth was clearly increased in the presence of ADAMTS1, a close evaluation of vascularization revealed the presence of angiogenesis-independent networks. Although the participation of ADAMTS1 during tumor progression seemed controversial in literature, it is certainly striking that our tumor model displayed both a protumorigenic effect and an antiangiogenic response, as revealed by the decreased vascular density in those same tumors.

The analysis of the angiogenesis-independent networks showed similar characteristics to those previously identified in distinct tumor types. In addition to the enrichment with extracellular matrix components, we observed a clear upregulation of key proteins such as laminin 5γ2 and VE-cadherin, which is accompanied by a gene signature reminiscent of an endothelial nature. These characteristics were already associated with events of VM in melanoma (2). Surprisingly, our particular genetic characterization of HT1080 fibrosarcoma cells revealed the endogenous presence of endothelial-related genes. As far as we know, this EL phenotype of HT1080 cells has not been studied or reported. However, a plastic behavior of these cells has been described in a proteolytic-dependent manner (25, 26). Our work suggests that ADAMTS1 activity drives HT1080 plasticity to a definitive EL lineage.

After the evaluation of our xenografts and the initial characterization of ADAMTS1 on melanoma and Ewing sarcoma cells, we believed that we were facing an example of VM and tumor plasticity. The ability of tumor cells to differentiate into a specific cellular lineage, EL in our case, recapitulates many of the mechanisms that a normal stem cell undergoes to cause an endothelial cell and, by extension, a vascular structure. According to the nature of ADAMTS1, we can assume that its proteolytic-derived microenvironment modifications represent relevant clues to modulate phenotypic properties of tumor cells. ADAMTS1 exemplifies the capacity of extracellular matrix proteases to alter physical matrix properties; however, more studies are needed to further address this matter. Thus, it is important to identify the substrates of ADAMTS1 in a particular setting. Here, we showed the required coexpression of TFPI-2, which has already been reported as important for VM progression (27), and of the glycoprotein nidogen-1, a basic component of the vascular basement membrane, and identified as promoter of human embryonic stem cells assembly (28).

Although our initial results could be oriented to both melanoma and sarcoma tumor models, we decided to focus in sarcoma whose mesenchymal origin has provoked a relevant
Figure 5. Impairment of capillary-like formation by the inhibition of ADAMTS1 and by specific metalloproteinase inhibitors. A, qRT-PCR and Western blot analysis for ADAMTS1 in control (EWC1) and knockdown-ADAMTS1 (EWA1 and EWA2) EW7 cells (*, P < 0.05, one-way ANOVA, Tukey’s Multiple Comparison posttest). B, control and knockdown cells were cultured in Matrigel at low density. Brightfield pictures were taken at indicated time points with a ×10 objective. C, control and knockdown cells were cultured in Matrigel at high density. Cells were stained with phalloidin and DAPI at 18 h. Brightfield images (a, d, and g) were taken at ×10 magnification. Fluorescent images showed phalloidin and DAPI staining at ×10 (b, e, and h) and ×100 (c, f, and i). D, Matrigel assay with EW7 wild-type cells using TIMP3 and TIMP1. Pictures were captured at 4 and 24 h. All images were taken at ×10 magnification.
debate in relation with CSC hypotheses (6–8, 29). In fact, the capacity of sarcoma cells to differentiate into mesenchymal-derived phenotypes has been shown in literature (30, 31). We were also able to reproduce this feature in our tumor model. An endothelial origin of Ewing tumors has also been proposed (4, 5) and the derivation of an endothelial lineage from mesenchymal progenitors has been shown (32, 33). In this context, it is mandatory to consider the aberrant nature of those tumor cells, whose plastic capabilities are under discussion. For example, van der Shaft and colleagues (23) suggested a hypoxic environment as a leading force that enhances the presence of alternative circulatory networks in Ewing sarcomas. Importantly, ADAMTS1 has been found to be regulated by hypoxia in endothelial cells (34). The convergence of embryonic and tumorigenic pathways has also been highlighted to determine this phenotypic plasticity (11). As for ADAMTS1, its contribution during embryonic development has been reported for myocardial morphogenesis (35) and its genetic deletion results in morphologic defects in various tissues (36). Although this role has not been extensively studied, our current results encourage new approaches to obtain a better perspective of ADAMTS1 activity during morphogenesis and cellular differentiation.

Here, we achieved the characterization of EL properties of EW7 tumor cells in Matrigel assays; moreover, we added unique information as the coculture approach with nontumorigenic endothelial cells. The evaluation of these assays confirmed the capacity of sarcoma cells to interact directly with endothelial cells and mimic their properties by alignment and formation of capillary-like structures in an apparently arbitrary pattern. These results supported the existence of bona fide functional interactions among endothelial and tumor cells in an in vivo context, as previously reported for human melanoma cells in a mouse model of ischemic limbs (37), and it also suggest that the VM phenomenon could consist of hybrid tumor-endothelial structures, with relevant consequences for the best understanding of its functionality (38).

In addition, we investigated the EL capabilities of Ewing tumor cells in the three-dimensional fibrin gel method that has been widely established to study the multistage formation of endothelial tubular structures (20). As noted in the main text, we did not obtain the same degree of success as for endothelial cells. However, it is important to notice that EW7-derived EL structures did not require the addition of fibroblast and/or additional growth factors, suggesting their autonomy, at least during initial stages of tube formation.

More important were our findings that both Matrigel and fibrin gel functional procedures were compromised by the
inhibition of ADAMTS1, as shown by shRNA technology and by treatment with specific protease inhibitors. The contribution of extracellular proteases during tumor progression has been extensively evaluated. However, the complexity of their actions became evident after the failure of various clinical trials with protease inhibitors. In fact, the characterization of the substrates for every protease is of high significance in the field (39) and, by extension, the design of more specific inhibitors (40).

In conclusion, the dynamism of tumor microenvironment is crucial for the behavior of tumor cells, providing cues for proliferation, migration, and, as supported by this manuscript, differentiation of aberrant cells. Our findings also suggest the existence of functional CSCs, with major consequences for tumor progression contributing to an alternative mechanism of neovascularization, a phenomenon that requires a thoughtful characterization to help improve current therapies.

References

ADAMTS1 Contributes to the Acquisition of an Endothelial-like Phenotype in Plastic Tumor Cells

Carmen Casal, Antoni Xavier Torres-Collado, María del Carmen Plaza-Calonge, et al.

Cancer Res Published OnlineFirst May 18, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-4197

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/05/17/0008-5472.CAN-09-4197.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.