Tumoricidal NK Cells by Virus-Infected Dendritic Cells

Jeanette E. Boudreau1,2, Kyle B. Stephenson1,2, Fuan Wang1, Ali A. Ashkar1, Karen L. Mossman1, Laurel L. Lenz1, Kenneth L. Rosenthal1, Jonathan L. Bramson1, Brian D. Lichty1, and Yonghong Wan1

Abstract

There is increasing evidence that natural killer (NK) cells play an important role in antitumor immunity following dendritic cell (DC) vaccination. Little is known, however, about the optimal stimulation of DCs that favors NK activation in tumor-bearing hosts. In this study, we demonstrate that treatment with toll-like receptor (TLR) ligands and infection with a mutant vesicular stomatitis virus (VSV-ΔM51) both induced DC maturation. Further, inoculation of these DCs led to robust NK-mediated protection against tumor challenge. Strikingly, only VSV-ΔM51-infected DCs were capable of suppressing the growth of established tumors, suggesting that additional signals provided by viral infection may be required to activate tumoricidal NK cells in tumor-bearing hosts. VSV-ΔM51 infection of DCs induced greater type I interferon (IFN I) production than TLR ligand treatment, and disruption of the IFN I pathway in DCs eliminated their ability to induce NK activation and tumor protection. However, further studies indicated that IFN I alone was not sufficient to activate NK cells, especially in the presence of a tumor, and DC-derived IL-15 was additionally required for tumoricidal NK activation. These results suggest that induction of IFN I by VSV-ΔM51 allows DCs to overcome tumor-associated immunosuppression and facilitate IL-15-mediated priming of tumoricidal NK cells. Thus, the mode of DC maturation should be carefully considered when designing DC-based cancer immunotherapies.

Introduction

Dendritic cell (DC)-based cancer vaccines have been widely used to prime antigen-specific T cell responses to tumors. This approach has shown significant promise in both preclinical animal models and clinical trials (1–3). However, a clear relationship between the induction of antigen-specific T cell responses and clinical outcome remains to be fully established. In fact, several recent clinical trials have shown that natural killer (NK) cell responses following vaccination with DCs or DC-derived exosomes correlated more closely with positive clinical outcomes than T cell responses (4–6). Our own preclinical data also demonstrate that activation of NK cells is a necessary step for maximal antitumor immunity, especially in animals with established tumors (7). Furthermore, the induction of an immunosuppressive environment during tumor development and the outgrowth of antigen-loss variant tumor cells create difficult obstacles for current approaches that only aim at T cell activation (2, 8, 9). Therefore, DC-based cancer vaccines may be improved by the inclusion of strategies that activate complementary immune components and elicit a proinflammatory tumor microenvironment.

NK cells are important for maintenance of homeostasis and prevention of tumorigenesis (10). However, although NK cells are capable of eliminating transformed cells without prior stimulation (11), evidence from previous studies indicates that NK cells must be additionally activated to provide protection against otherwise fatal tumor challenges in several different mouse models (12–15). The cross talk between DCs and NK cells has been well documented, and reports from our group and others have demonstrated that DC vaccines can potently activate NK cells (7, 12, 13, 16). However, similar to T cells, NK cells are also subject to regulation by tumor-associated immunosuppressive mechanisms and conceivably it would be more difficult to elicit NK activity in tumor-bearing hosts even with DC vaccines (17–20). Indeed, we have shown that lipopolysaccharide (LPS)-matured DCs can effectively prime NK cells against tumor challenge but failed to induce NK-mediated protection in tumor-bearing animals. Interestingly, however, infection of DCs with an interferon-inducing mutant of vesicular stomatitis virus (VSV-ΔM51; ref. 21) rendered them capable of activating NK-mediated antitumor activity in mice with pre-existing tumors (7). It appears that the mode of DC activation is critical for DC:NK interaction and that VSV-ΔM51 infection can provide additional signals enabling DC to prime NK cells in the tumor cell environment.
In this work, we extend our previous studies to confirm the superiority of VSV-ΔM51-infected DCs in activating tumoricidal NK cells and investigate the underlying mechanisms. We demonstrate that VSV-ΔM51 potently and uniquely induces high-level IFN I production, which is critical for autocrine signaling in DCs and subsequent induction of antitumor immunity in vivo. Furthermore, we revealed that IL-15, a cytokine induced by IFN I, is required for the NK activation and tumor protection generated by VSV-ΔM51-infected DCs in tumor-bearing hosts.

Materials and Methods

Mice

Female 6 to 8 week old C57BL/6 mice were obtained from Charles River Laboratories. IFNAR^{−/−}, MyD88^{−/−}, TLR4^{−/−}, IL-15^{−/−}, IL15Rα^{−/−}, IRF3^{−/−}, and IRF7^{−/−} mice were bred in the McMaster central animal facility. All procedures conformed to the guidelines established by the Canadian Council on Animal Care and were approved by the McMaster Animal Research Ethics Board.

Recombinant vesicular stomatitis virus

Production of recombinant vesicular stomatitis viruses (VSV-ΔM51) has been previously described (7). VSV-ΔM51 possesses a deletion mutation in the coding region for the matrix protein, impairing its ability to inhibit the host cells’ antiviral immune response (21), VSV-ΔM51 encoding a bicistronic construct of murine IL-15 and IL-15 receptor alpha (VSV-IL15/Rα) was constructed by cloning murine IL-15 and murine IL15Rα flanking the GTX Internal Ribosome Entry Site (IRES). Production of IL-15 was confirmed using the IL-15 duoset ELISA, according to manufacturer’s instructions (R&D Systems) and IL15Rα surface expression was confirmed by flow cytometry (anti-IL15Rα; clone N-19, Santa Cruz Biotechnology; data not shown).

Dendritic cell culture and activation

Culture of dendritic cells from bone marrow has been described previously (22). DCs were activated by incubation with either 10 μg/mL CpG (sequence 1826, DC/CpG), 10 μg/mL LPS (DC/LPS), 25 μg/mL polyI:C, (DC/polyI:C), or by infection with 25 PFU/cell VSV-ΔM51-MT (DC/VSV) for 4 hours, as described elsewhere (7). Cells were harvested and washed thrice using cold PBS prior to experimental use. For in vivo experiments, 1 × 10⁶ DCs were inoculated by subcutaneous (s.c.) footpad injection.

Tumor cells and challenge model

The growth and propagation of B16F10-OVA cells have been described previously (7, 12). This cell line was obtained from Dr. Kenneth Rock (University of Massachusetts Medical School), and propagated in G418 to maintain ovalbumin (OVA) expression. Intracellular staining for gp100 (clone: HMB-45) and E LISPot using OT-1 cells as effectors have been carried out within the past 12 months to validate this cell line. To establish lung tumor nodules, 1 × 10⁶ tumor cells were inoculated by intravenous (i.v.) tail vein injection. Tumor cells were injected either 7 days after DC inoculation (prophylactic model) or 10 days before DC injection (therapeutic model). Mice were euthanized 21 days after tumor challenge, and lungs were collected and fixed in 4% paraformaldehyde. The number of tumor nodules was counted using a dissecting microscope. In the event that individual tumor nodules could not be accurately distinguished, lungs were assigned a value of 1,000, based on an attempted count of tumor burden.

FACS analysis for surface marker expression and intracellular cytokines

All flow cytometry reagents were obtained from BD Pharmingen, unless otherwise noted. Following stimulations or mock treatments, DCs were treated with FcBlock prior to staining with surface antibodies: anti-CD11c (clone HL3), anti-CD40 (clone 3/23), anti-CD86 (clone GL1), and anti-MHC II (clone 25-9-17). To assess cytokine production by DCs, cells were incubated in the presence of GolgiPlug for 12 hours after infection or treatment, then fixed and permeabilized using the cytotox/cytopermit kit from BD Pharmingen, according to manufacturer’s instructions. Intracellular stains were performed using anti-TNF-α (clone MP6-XT22) or anti-IL-12 (p40/p70; clone C15.6) mAbs. NK cells were surface stained using anti-NK1.1 (clone PKH136) and anti-CD3 (clone 145–2C11). Intracellular staining of NK cells was completed using anti-IFNγ (clone XMGI1.2). All samples were examined using a BD FACS Canto flow cytometer (BD Pharmingen) and analyzed using FlowJo 9.0.1 software (TreeStar).

Type I IFN bioassay

Quantification of type I IFN production by DCs by IFN bioassay has been described (7).

Lysate preparation and western blotting

DCs were infected and harvested at the indicated time points, and washed using cold PBS. Cells were resuspended in RIPA lysis buffer supplemented with the protease inhibitor tablet (Roche Diagnostics) and phosphatase inhibitor cocktails I and II (Sigma-Aldrich). Protein concentrations were quantified by Bradford assay, and proteins were separated on 7.5% acrylamide gels. Following transfer, membranes were probed using antiphospho STAT-1 (tyr 701, Millipore) and anti-β-actin (Sigma-Aldrich). Membranes were incubated with fluorochrome-conjugated antirabbit and antimouse secondary antibodies and analyzed using the Odyssey Infrared Imaging system (LiCor).

NK:DC coculture

DCs were treated with toll-like receptor (TLR) ligands or infected with VSV-ΔM51 for 4 hours, washed thrice and resuspended in fresh media. NK cells were purified from naïve C57BL/6 spleens using a negative selection NK cell enrichment kit (Stemcell Technologies) according to the manufacturer’s instructions. NK purity was typically >85% (data not shown). NK cells and DCs were seeded at a 1:1 ratio (5 × 10⁵ of each cell type) into 96-well V-bottom plates. For cocultures involving tumor cells, 1 × 10⁵ cells were added...
at the beginning of the coculture period. Cells were allowed to interact for 12 hours and GolgiPlug was added to wells after the first 6 hours of culture. In some experiments, a blocking antibody for the IL-15 receptor β (AbD Serotech) or IgG2b isotype control was used to pretreat NK at 40 μg/mL at room temperature before coculture with DC/VSV.

Statistical analysis

Tumor burdens and DC maturation were compared using a Kruskall–Wallis nonparametric analysis, with Dunn’s post hoc test. For all analyses, P < 0.05 was considered to be statistically different from chance alone.

Results

DC/VSV uniquely activates NK cells for therapeutic anticancer activity

We (12), and others (13, 23), have demonstrated that DCs can activate NK cells for protection against a subsequent tumor challenge. Administration of ex vivo-cultured DCs by intraplantar injection leads to initial accumulation of activated NK cells in the draining lymph nodes, which subsequently circulate through the peripheral blood to spleen and lungs (12, 13). More recently, we reported that DCs infected with an interferon-inducing mutant of vesicular stomatitis virus (VSV-ΔM51), but not matured with LPS, could effect reduction of established lung metastatic tumors in vivo by activating tumoricidal NK cells (7). Depletion of NK cells fully abrogated tumor protection, even when tumor-specific T cells were activated, demonstrating that this phenomenon is indeed NK-dependent (7). We have also ruled out a possible role of VSV-ΔM51 as an oncolytic virus in this model, demonstrating that VSV-ΔM51 infection was abortive in DCs and inoculation of VSV-ΔM51 alone was not sufficient to impact B16F10 tumors (7). In the present investigation, we aimed to determine whether VSV-ΔM51 infection was indeed superior to TLR ligand exposure to mature DCs for activation of antitumor immunity in vivo. To that end, we compared four strategies for DC activation for their ability to elicit tumor protection: TLR stimulation using LPS (DC/LPS), CpG (DC/CpG), or polyI:C (DC/polyI:C), and infection with VSV-ΔM51 (DC/VSV). The dose of each agent was determined by its ability to induce maximal DC maturation with minimum toxicity (7) and data not shown). As expected, each of these maturation strategies primed DCs to activate proinflammatory tumor protection in vivo (P < 0.05). In hosts bearing preexisting tumors, however, DC/VSV evoked significantly greater tumor protection than DCs matured by TLR ligation (DC/TLR; Fig. 1A; P < 0.05). To determine if this effect was attributable to enhanced maturation of DCs following VSV-ΔM51 infection, we compared prototypical markers of DC activation induced by the various stimuli. Proinflammatory cytokine production (IL-12 and TNF-α, Fig. 1B) and surface markers (CD40, MHC II, and CD86, Fig. 1C) were upregulated by each maturation strategy. Although the absolute levels were variable among treatments, the difference for cytokine production and CD86 expression did not reach statistical significance. Higher CD40 level was induced by both VSV-ΔM51 and LPS (P < 0.05), and VSV-ΔM51 induced slightly greater MHC II expression compared with all TLR ligands (P < 0.05).

Since VSV-ΔM51 is a potent IFN I inducer, we also examined IFN I production induced by viral infection and TLR ligation (21). Indeed, VSV-ΔM51 stimulated 10- to 100-fold greater production of IFN I by DCs compared with TLR ligation (Fig. 1D).

Tumor protection activated by DC/VSV is dependent on the IRF-3 signaling pathway

DCs sense VSV-ΔM51 infection via both TLR4 and intracellular interferon signaling (24, 25). Therefore, the increased IFN I production and surface marker expression induced by VSV-ΔM51-infected DCs, compared with TLR ligands, may be attributable to the engagement of multiple signaling pathways. To discern the relative contributions of the TLR and interferon signaling pathways for DC activation, we derived DCs from mice deficient for IFN I induction (IRF3−/−) or TLR4 signaling (TLR4−/− or MyD88−/−). DCs were infected with VSV-ΔM51 and used to treat mice bearing 10-day established lung tumors. As shown in Figure 2A, tumor protection was lost when DCs were deficient for IRF-3 (P < 0.05), but was still generated by TLR4−/− or MyD88−/−. Interestingly, VSV-ΔM51 infection of IRF-3−/−, TLR4−/−, or MyD88−/− DCs still promptly upregulated surface maturation markers and production of TNF-α and IL-12 (Fig. 2B and C). LPS and CpG exposure, however, failed to induce maturation of TLR4−/− or MyD88−/− DCs, respectively, confirming functional impairment of these pathways (data not shown). Together, these results imply that redundant mechanisms exist for upregulation of prototypical markers of DC maturation. In contrast, IFN I production was decreased by 2 logs in IRF-3−/− DCs compared with WT cells, but was not affected by deletion of MyD88 or TLR4 (Fig. 2D). Thus, IRF-3 is nonredundant and indispensable for high-level IFN I production and antitumor activity generated by VSV-infected DCs.

Autocrine/paracrine IFN I is required for DC activation

Our results demonstrate that IRF-3−/− DCs produce significantly less IFN I after VSV-ΔM51 infection which correlates with loss of DC/VSV-generated antitumor activity. IRF-3 initiates IFN I production; however, maximal IFN I production requires IRF-7 activation, which is induced by autocrine/paracrine IFN I signaling (26). To determine whether IFN I signals to DCs after VSV-ΔM51 infection, we measured STAT-1 phosphorylation by western blotting. Activation of this protein was obvious by 4 hours postinfection and persisted for at least 24 hours, confirming that DCs both make and respond to IFN I in response to VSV-ΔM51 infection (Fig. 3A). To determine whether autocrine/paracrine IFN I signaling and high-level IFN I production in DCs are relevant for priming antitumor activity, we conducted our in vivo tumor challenge model using DCs that lacked IFNAR or IRF-7. Loss of either IFN I signaling or IRF-7 activity abrogated the antitumor effect of the DC/VSV (Fig. 3B), and corresponded with a drastic reduction in IFN I production (Fig. 3C). These results demonstrate that autocrine IFN I signaling and high-level IFN
I production are critically required to generate antitumor immunity in vivo.

Tumor cells inhibit NK cell activation by IRF-3 or IRF-7 deficient DCs in vitro

Our in vivo results indicate that IRF-3, IRF-7, and IFNAR are critical for high-level IFN I production and in vivo tumor protection. To further delineate their role in DC activation of NK cells, we developed an in vitro DC:NK coculture system. After extensive analysis with different ratios and incubation times, we found that a 1:1 ratio of naïve NK cells:DC/VSV resulted in activation of IFN-γ expression within the NK cells by 12 hours (Fig. 4). Neither mock-treated, nor TLR ligand-activated DCs were able to activate NK cells to produce IFN-γ under the same conditions, confirming that VSV-ΔM51 infection is indeed superior to other approaches for facilitating DC-mediated activation of NK cells.

To determine whether IFN I signaling was required in this coculture system, we used IRF-3−/−, IRF-7−/−, or IFNAR−/− DCs. IFNAR−/− DCs infected with VSV-ΔM51 could not activate NK cells (Fig. 5A), confirming a requirement for autocrine/paracrine IFN I signaling in DCs. Surprisingly, however, IRF-3−/− and IRF-7−/− DCs, which did not produce high levels of IFN I, retained the capacity to activate NK cells in vitro, at levels similar to WT controls (Fig. 5A). We reasoned that in vitro DC:NK cocultures may not be subjected to the same immunosuppression imposed in vivo by the presence of a tumor. Thus, the small amount of IFN I produced by DCs in the absence of IRF-3 or IRF-7 could be sufficient to prime DCs for activation of NK cells in tumor-free, but not tumor-bearing conditions. To address this possibility, we repeated the in vitro experiments with tumor cells included in the coculture. As shown in Figure 5B, the presence of tumor cells did not impede the ability of VSV-ΔM51-infected WT DCs to activate naïve NK cells in vitro. However, VSV-ΔM51-infected DCs that lacked IRF-3 or IRF-7 were compromised in their ability to activate NK cells when tumor cells were present, presumably due to the loss of high-level IFN I production. These results demonstrate that although a high concentration of IFN I may not be necessary for NK cell activation under tumor-free conditions, it is critical for activation of NK cells in the stringent environment imposed by tumor cells.
Since both our *in vivo* and *in vitro* results pointed to a critical role for IFN I production and signaling within VSV-ΔM51-infected DCs, we decided to assess whether IFN I could directly activate NK cells in culture. We first set up a coculture using the conditions described above, but separated DCs and NK cells using a transwell system. As an additional approach, we transferred the supernatant from VSV-ΔM51-infected DCs directly to NK cells in culture. We found that DC-derived IFN I does not directly activate NK cells.

Since both our *in vivo* and *in vitro* results pointed to a critical role for IFN I production and signaling within VSV-ΔM51-infected DCs, we decided to assess whether IFN I could directly activate NK cells in culture. We first set up a coculture using the conditions described above, but separated DCs and NK cells using a transwell system. As an additional approach, we transferred the supernatant from VSV-ΔM51-infected DCs directly to NK cells in culture. We found that DC-derived IFN I does not directly activate NK cells.
onto naïve NK cells in separate wells without a transwell membrane. In both cases, NK cells were exposed to soluble factors secreted by VSV-ΔM51-infected DCs, but the cells were not in direct contact. NK cells could not be activated across a transwell or by supernatant transferred from DC/VSV (Fig. 6), demonstrating that soluble factors produced by DCs, including IFN I, are not sufficient for NK activation by DC/VSV. These results suggest that an additional signal, which is dependent on direct cell-to-cell contact, is required for DC/VSV:NK activation.

IL-15 is required for tumoricidal NK activation

IL-15 is a surface-bound cytokine, presented by myeloid DCs via its receptor, IL15Rα, to the β and γ receptors on NK cells (27). We hypothesized that IL-15 could be mediating the interaction between DC/VSV and NK cells because it is a potent inducer of NK cell activation, and induced by IFN I (26–28). We infected DCs derived from IL-15−/− bone marrow and used them in coculture with naïve NK cells. As shown in Figure 7A, IL-15−/− DCs elicited NK cell activation, but to a lesser extent than WT DCs. When tumor cells were included in the coculture wells, NK activation by the IL-15−/− DCs was completely abrogated. To confirm this finding with WT DCs, we pretreated naïve NK cells with an antibody to block the IL-15 receptor β chain prior to coculture. Once again, loss of IL-15 signaling abrogated NK cell activation by VSV-ΔM51-infected DCs when cultured in the presence of tumor cells (Fig. 7B). Together, these findings demonstrate that IL-15 signaling is important for mediating the potent activation of NK cells by DC/VSV.

IL-15 signaling mediates NK:DC interaction in vivo

To determine whether IL-15 was similarly required for NK cell activation in vivo, we used VSV-ΔM51-infected WT, IL-15−/−, or IL15Rα−/− DCs for inoculation of tumor-bearing mice. As shown in Figure 7C, loss of IL-15 signaling in DCs, either through impaired cytokine production or trans presentation, abrogated tumor protection in vivo. Finally, to further confirm the critical role for IL-15 in vivo, we constructed a recombinant VSV-ΔM51 virus that coexpresses...
IL-15 and IL15Rα (VSV-IL15/Rα). When VSV-IL15/Rα was used to infect IL-15−/− DCs prior to inoculation into tumor-bearing mice, tumor protection was restored to the level achieved by WT DCs infected with VSV-ΔM51. Thus, our results demonstrate that IL-15 production by DC/VSV is critical for mediating direct interaction with, and activation of, tumoricidal NK cells in the presence of tumor cells.

Discussion

Although most cancer vaccines are primarily designed to elicit antigen-specific T cells, increasing evidence points to a critical role for NK cells in vaccine-induced antitumor immunity (7, 12, 13, 29, 30). DC vaccines are particularly effective in activating NK cells that can modulate both innate and adaptive antitumor activities (7, 12, 13, 30). More interestingly, we have demonstrated that once activated, NK cells provide protection against tumor challenge for at least 20 days, implying that NK cells are much more related to lymphocytes than generally appreciated (12, 31–33). However, little is known about DC activation of NK cells in tumor-bearing hosts. In the present investigation, we showed that TLR ligation using CpG, LPS, or polyI:C enabled DCs to induce NK-mediated tumor protection but failed to significantly impact established tumors. However, VSV-ΔM51 infection rendered DCs capable of activating tumoricidal NK cells in cancer-bearing animals. We identified that the superiority of DC/VSV was due to high-level IFN I production and autocrine/paracrine signaling, which were critical for activation of NK cells to combat pre-existing tumors. Furthermore, IL-15, a cell-bound cytokine induced by IFN I, is essentially required to mediate the interaction between DC/VSV and NK cells in tumor-bearing environments.

It has been shown that VSV-ΔM51 infection promotes DC maturation via TLR4 and intracellular IFN I signaling (24, 25). However, these pathways appear to be redundant for DC maturation in our studies since DCs devoid of TLR4, MyD88, or IRF-3 could generate a "mature" phenotype following VSV-ΔM51 infection. Immunization with either DC/TLR or DC/VSV activated prophylactic immunity, suggesting that maturation with TLR agonists or VSV-ΔM51 infection is sufficient to activate NK cells in the absence of the tumor. The requirement of IFN I for VSV-ΔM51-infected DCs to prime tumoricidal activity in mice with pre-existing tumors is not through further induction of DC maturation but instead that IFN I may be required as an additional mechanism to overcome tumor-induced immunosuppression.

Figure 6. NK activation by VSV-infected DCs is dependent on cell-cell contact. NK cells were cultured with VSV-ΔM51-infected DCs, either together, to allow for cell-to-cell contact (i) or across a transwell insert (ii). iii, supernatant from DCs infected with VSV-ΔM51 for 10 hours was transferred to naïve NK cells. IFN-γ production was measured 6 hours later. Representative FACS plots are shown.

Figure 7. NK activation by DC/VSV in tumor-bearing mice is mediated through an IL15-dependent mechanism. A, WT or IL-15−/− DCs were cocultured with naïve NK cells in the presence or absence of tumor cells. Representative FACS plots are shown. B, DCs were cultured at a 1:1 ratio with naïve NK cells, either with no pretreatment (i), pretreatment with 40 μg/mL anti-IL15Rα (ii), or Rat IgG2a isotype control, as described in Materials and Methods. IFN-γ production was measured as an indicator of NK cell activation 12 hours after the beginning of the coculture period. Representative FACS plots are shown. C, mice bearing 10-day old lung tumors were inoculated with VSV-ΔM51-infected DCs that had been derived from WT, IL-15−/−, or IL15Rα−/− mice. An additional group of mice was treated with IL-15−/− DCs infected with VSV-ΔM51 carrying a bicistronic construct of IL-15 and IL15Rα. Lungs were collected and fixed 21 days following tumor challenge and the number of tumor nodules was counted using a dissecting microscope. *, significantly reduced tumor burden compared with IL-15−/− DC/VSV, IL15Rα−/− DC/VSV, and PBS-treated mice (P < 0.05). Data are representative of duplicate experiments with 3 to 5 mice per group.
In myeloid DCs, IFNβ production is initiated via activation of IRF-3. Activation of IRF-7 following initial IFN I signaling through IFNAR leads to production of IFNα (26, 34). Our results show that IRF-3, IRF-7, and IFNAR are required to generate antitumor activity, but soluble factors alone are insufficient to directly activate NK cells. This observation does not necessarily rule out the possibility that the IFN I produced by DC/VSV may nonetheless contribute to antitumor activity in vivo. In fact, IFN I has been used effectively for the treatment of both solid and hematologic malignancies (35, 36). The effect of IFN I cancer treatment is likely attributable to a number of mechanisms. For example, IFN I can assist in maintaining T cell viability in the tumor microenvironment, reinforce NK activity, and activate endogenous DCs for tumor antigen cross-presentation (37–40). IFN I may also alter the tumor directly, for example, by inducing upregulation of MHC I molecules on tumor cells (38, 41). A recent report demonstrated that IFN I signaling in bone marrow cells elicited production of the type III IFN, IL-28, which, upon binding to tumor cells, induced upregulation of target killing ligands for NK cells (42). Finally, a number of studies have demonstrated that tumor cells engineered to produce IFN I are unable to resist T and NK cell-mediated killing, in contrast to their parental counterparts (37, 43), suggesting that IFN I may assist in altering tumor-induced immunosuppression. Thus, although IFN I produced by VSV-ΔM51-infected DCs does not directly mediate NK cell activation, it may contribute to the overall success of DC/VSV-mediated tumor rejection.

Our experiments demonstrate that NK activation by DC/VSV is mediated by contact-dependent IL-15 signaling, both in vitro and in vivo. IL-15 signaling is important for NK cell development (44, 45), and potently activates NK cells for IFN-γ production and cytotoxicity (46–48). IL-15Rα chaperones IL-15 and mediates its presentation on the surface of DCs (27), thus, DC: NK interactions mediated by IL-15 require cell-to-cell contact. Our observation is in agreement with recent findings by Vujanovic and colleagues, who report that membrane-bound IL-15 and TNF-α mediate activation between adenovirus-infected DCs and NK cells (48).

IL-15 is critical for clearance of several virus infections, including HSV (49) and MCMV (46). IL-15 production and NK cell activation may be a common outcome of virus infection of DCs, endorsing virus infection as a strategy to mature DCs for the use as cancer vaccine platforms. Additionally, viruses can be used to transduce DCs with tumor-associated antigens to prime antigen-specific immunity (1, 7, 50), and thus, virus infection of DCs should facilitate efficient antitumor immunity by activation of both antigen-specific T cells and tumoricidal NK cells.

Our in vitro results demonstrated that IRF3−/−, IRF7−/−, IFNAR−/−, and IL-15−/− DCs could activate NK cells, unless tumor cells were also present in the coculture wells. Moreover, each of these knockout cell types showed similar IL-12 and TNF-α production and phenotypic maturation following VSV-ΔM51 infection (Figs. 1, 2 and data not shown). These results demonstrated that redundant pathways exist for DC activation, but intact interferon and IL-15 signaling are critical for productive activation of NK cells in the presence of tumor cells. Although the exact mechanisms by which tumor cells suppress IFN-γ production by NK cells during NK/DC interaction remain elusive, studies from others have suggested that tumor cell-derived cytokines or exosomes decrease NK activities (17–20). Our results suggest that the inclusion of strategies, such as VSV-ΔM51 infection, to enhance innate interferon and IL-15 production may assist in developing robust DC-based therapies with the capacity to activate NK cells in tumor-bearing individuals.

Successful cancer immunotherapy will require the development of strategies capable of activating immunity in immunosuppressed tumor-bearing individuals, and which do not rely exclusively on specific tumor-associated antigen expression. Our results demonstrate that NK cells activated by DC/VSV, but not DC/TLR, can dramatically reduce the burden of pre-existing tumors, via IFN I- and IL-15-mediated mechanisms. Thus, the mode of DC activation is an important determinant to the outcome of DC-based cancer therapies. Therefore, these cancer vaccines could be improved if designed to engage and activate NK cells in addition to priming T cells.

Disclosure of Potential Conflicts of Interest
The authors declare that they have no conflict of interest.

Acknowledgments
The authors wish to thank Natasha Kazhdan and Liang Zhang for excellent technical assistance, and Patrick Paladin for helpful discussions.

Grant Support
This work was funded by grants from the Canadian Institutes of Health Research [MOP-67066], the Ontario Cancer Research Network to Y. Wan and a grant from the Canadian Cancer Society (Grant 2051) to B.D. Lichty and the National Institutes of Health (Grant AI065638) to L.L. Lenz. J.E. Boudreau is supported by a studentship from the Natural Sciences and Engineering Research Council of Canada (NSERC). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 17, 2010; revised January 19, 2011; accepted February 3, 2011; published OnlineFirst February 9, 2011.

40. Tough D. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma 2004;45:257–64.

IL-15 and Type I Interferon Are Required for Activation of Tumoricidal NK Cells by Virus-Infected Dendritic Cells

Jeanette E. Boudreau, Kyle B. Stephenson, Fuan Wang, et al.

Cancer Res Published OnlineFirst February 9, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-10-3025

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.