MST1 is a Multifunctional Caspase-Independent Inhibitor of Androgenic Signaling

Bekir Cinar¹,², Filiz Kisaayak Collak¹,², Delia Lopez³, Seckin Akgul⁴, Nishit K. Mukhopadhyay³, Murat Kilicarslan⁵, Daniel G. Gioeli⁶, and Michael R. Freeman³

¹Departments of Medicine-Hematology/Oncology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048. ²Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095. ³Bilkent University, 06800 Bilkent, Ankara, Turkey. ⁴University of Amsterdam, 1012 WX Amsterdam, The Netherlands. ⁵Department of Microbiology and the Cancer Center, University of Virginia Health System, Charlottesville, VA 22908. ⁶Urological Diseases Research Center, Children’s Hospital Boston; Departments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.

Running Title: Regulation of AR Signaling by MST1

Correspondence:
Bekir Cinar, Ph.D.
Departments of Medicine-Hematology/Oncology and Biological Sciences
Samuel Oschin Comprehensive Cancer Institute
Cedars-Sinai Medical Center
University of California Los Angeles
8750 Beverly Blvd., Atrium 103
Los Angeles, CA 90048
Office (310) 423-8658
Fax (310) 423-8543
E-mail bekir.cinar@cshs.org
Abstract

The MST1 serine-threonine kinase, a component of the RASSF1-LATS tumor suppressor network, is involved in cell proliferation and apoptosis and has been implicated in cancer. However, the physiologic role of MST1 in prostate cancer is not well understood. Here, we investigated the possibility of a biochemical and functional link between androgen receptor (AR) and MST1 signaling. We showed that MST1 forms a complex with, and antagonizes, AR transcriptional activity as demonstrated by co-immunoprecipitation (co-IP), promoter reporter analysis and molecular genetic methods. In vitro kinase and site-specific mutagenesis approaches indicate that MST1 is a potent AR kinase; however, surprisingly, the kinase activity of MST1 and its pro-apoptotic functions were shown not to be involved in inhibition of AR. MST1 was also found in AR-chromatin complexes, and enforced expression of MST1 reduced the binding of AR to a well-characterized, androgen-responsive region within the prostate specific antigen (PSA) promoter. MST1 suppressed prostate cancer cell growth in vitro and tumor growth in mice. Because MST1 is also involved in regulating the AKT1 pathway, this kinase may be an important new link between androgenic and growth factor signaling and a novel therapeutic target in prostate cancer.
Introduction

The serine-threonine kinase MST1 or STK4 (mammalian sterile STE20-like kinase 1), a homolog of Hippo (Hpo/hpo) in Drosophila, was originally identified as a pro-apoptotic protein (1). MST1 is related to three paralogs (MST2, MST3, and MST4) with a conserved structure consisting of N-terminal catalytic (MST1-N) and C-terminal regulatory (MST1-C) domains and other functional sites, including caspase cleavage sites and nuclear export signals (2, 3). MST1 or MST2 can be activated by autophosphorylation of a unique threonine residue (Thr-183 in MST1 and Thr-180 in MST2) in the activation loop or by caspase-3 cleavage in response to a wide range of cell death stimuli (4).

In addition to their pro-apoptotic function, MST1 and its closest paralog MST2 have been demonstrated to play an important role in mammalian development (5, 6), cell cycle progression and tumorigenesis (7-10). For example, hpo deficiency in the developing Drosophila eye results in massive overgrowth due to an accelerated rate of proliferation and failure of developmental apoptosis (11-13). Likewise, MST1 or MST2 deficiency in mice is embryonically lethal (5). Loss or reduction of MST1 and MST2 expression has also been correlated with poor cancer prognosis (14). Recent genetic studies have indicated that liver-specific deletion of MST1 and MST2 in mice resulted in liver enlargement, cancer and resistance to TNF-α induced apoptosis (7, 9, 10). Previous studies suggest that cross talk between androgen receptor (AR) and MST1 signaling may have important biological consequences in prostate cancer (PCa) (15, 16). We wanted to
investigate whether MST1 functionally intersects with AR signaling to regulate the growth of PCa cells.

Here we demonstrate that MST1 is a novel negative regulator of AR signaling. Our data suggest that MST1 attenuates AR activity via a mechanism that involves protein complex formation between AR and MST1 in a manner that is independent of its kinase activity. Furthermore, we provide evidence that enforced MST1 expression suppressed PCa cell growth, sensitized androgen-independent C4-2 cells to PI3K inhibition, and attenuated tumor growth in vivo. These findings suggest that loss of MST1 signaling may promote hyperactivation of AR and may be associated with the emergence of the castration-resistant phenotype.

Materials and Methods

Plasmid Constructions, Antibodies and Reagents

The construction of HA- or Myc-tagged MST1-wt and Myc-MST1-N and Myc-MST1-C forms was described previously (15). For the construction of Doxycycline-inducible HA-MST1 plasmid, PCR-amplified HA-tagged MST1-wt cDNA was inserted into BamHI and MluI enzyme sites in the pRetro-X-Pur vector (Clontech Laboratories, Inc., Mountain View, CA), designated as pRXTP-HA-MST1. The construction of GST-AR DBD/HR (AR DNA binding domain and hinge region) was described previously (17). MST1 and AR point mutations were generated using the QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The orientation and fidelity of all constructs were confirmed by DNA sequencing. Note that names of antibodies and reagents and
their sources are provided in the supplementary information section.

Cell Transfections, Reporter Assays, and Immunocytochemistry

LNCaP and C4-2 were cultured in RPMI 1640 medium and HEK 293T and COS-7 cells were cultured in DMEM at 37°C in 5%CO₂ incubator. Media were supplemented with 10% FBS and 1% penicillin/streptomycin. RNAi (siRNA) transfections with DharmaFECT 2 and plasmids transfections with Lipofectamine 2000 were performed according to the manufacturer’s instructions (Invitrogen). Luciferase reporter gene activities were measured using the Luciferase Assay System from Promega (Madison, WI) and a BMG Labtech microplate reader (Cary, NC). Immunocytochemistry was performed as described previously (15). Relative luciferase units were normalized to total protein and the result presented as luciferase (Luc) activity. Cells were imaged at 63X with a Plan-Apochromat oil immersion lens on an Axioplan 2 Apotome epifluorescence microscope (Zeiss, Germany). Immunohistochemistry (IHC) was performed using reagents from DAKO (Carpinteria, CA) and images were acquired at 20X with Nikon Imaging System (Japan).

Establishment of TetON-Inducible Cells

Retroviruses carrying Tet-repressor or HA-MST1 expression constructs were produced in HEK 293T cells expressing viral packaging proteins and then viral particles were concentrated using PEG-it solution. LNCaP parental cells or its castration-resistant subline, C4-2, were first infected with retrovirus encoding pRetroX-TetON advanced plasmid, followed by selection with Geneticin (G418, 500 μg/ml) to generate the TetON
cells. The LNCaP/ or C4-2/TetON cells were then infected with retrovirus encoding pRXTP-HA-MST1 vector, followed by Puromycin selection (3 μg/ml) to generate TetON inducible MST1 expressing cells. The inducible system allows fine control of MST1 expression. All protocols and procedures were performed according to the manufacturer’s instructions (Clontech Laboratories, Inc., Mountain View, CA).

Protein Analyses

Cell lysis was performed in buffer consisting of 20 mM HEPES, pH 7.4, 150 mM NaCl, 0.5% NP-40, 1 mM EDTA, protease inhibitors and phosphatase inhibitor. For immunoprecipitation, cleared lysates were incubated with antibody overnight at 4°C. Antibody-antigen complexes were collected on Protein A- or G-sepharose and washed three times with cell lysis buffer. Immunoprecipitates were resolved by SDS-PAGE. PBST (0.1% Tween-20) containing 5% (w/v) skim milk powder or PBST containing 5% IgG free BSA (Sigma) was used in membrane blocking and antibody dilutions. Signals were visualized by chemiluminescence. GST-AR DBD/HR and its mutant forms were expressed in bacteria with IPTG induction and protein purification was performed with GST-sepharose using a standard protocol. Cytoplasmic and nuclear fractions were prepared as described (18).

ChIP Assays

Chromatin Immunoprecipitation (ChIP) was performed as described previously (19). Briefly, LNCaP or C4-2/HA-MST1 cells grown in serum-starved conditions were treated with R1881 (1 nM) or EtOH (vehicle) overnight. Dox -/+ used to induce MST1
expression in C4-2/HA-MST1 cells. DNA enriched with anti-MST1, -AR, or –Pol II antibody were quantified by semi-quantitative PCR using primer sets surrounding the AREIII region within the androgen responsive element enhancer (ARE) core (AREc) or AREI of the PSA promoter (18).

Kinase, Cell Death, and Cell Proliferation Assays

For *in vitro* kinase assay, the recombinant, pre-activated MST1 protein kinase was incubated with purified GST-AR DBD/HR fusion protein and 10 μCi 32P-γ-ATP or 100 μM unlabeled-ATP. The reaction mixture was resolved on SDS–PAGE and autoradiographed. Cell-Death ELISA and BrdU incorporation assays were performed to assess cell death and cell proliferation, respectively, according to the manufacturer’s instructions (Roche Molecular Diagnostics).

Animal Studies

C4-2/Vector or C4-2/HA-MST1 cells mixed with Matrigel (1-to-1 ratio) were inoculated subcutaneously in athymic nude mice (CD-1 *nu/nu*; Charles River Laboratories, Wilmington, MA). 1 x 10⁶ cells/100 μl were used per injection per site (right and left flanks). Mice were treated with Dox (0.5 mg/ml) in drinking water to induce MST1 expression for 12 weeks. Institutional Animal Care and Use Committee (IACUC) policies and guidelines were strictly applied. Tumor volumes were assessed by caliper according to procedures described previously (20). Mice were sacrificed and evaluated for tumor growth anatomically and tumor tissues extracted from mice were fixed in 10% formaldehyde for the construction of histological sections or “snap” frozen...
at -80°C. The expression of MST1 was verified in histological sections by immunohistochemistry using anti-HA antibody.

Statistics

Data are represented as mean +/- SEM. Student t-test (2-tailed) was used between the data pairs where it is appropriate. A p-value less than or equal to 0.05 was considered significant.

Results

MST1 binds and attenuates AR activity

To determine whether the MST1 kinase biochemically and functionally intersects with AR signaling, we employed cellular and biochemical approaches using prostate and non-prostate cancer cell lines that express either native, stable or transient AR. Co-immunoprecipitation (Co-IP) and western blot experiments demonstrated that MST1 interacts with endogenous AR in LNCaP cells (Figure 1A, upper panel) and ectopically expressed human AR in HEK 293 cells (Figure 1A, lower panel). Similarly, endogenous MST1 could also be found in the AR protein complex from PC3-hAR cells that were engineered to express near-physiological levels of stable his-tagged human AR (18), as shown by Ni-NTA precipitation and western blot experiments (Supplementary Figure S1A and S1B).
To test whether the binding of MST1 has an impact on AR activity, we conducted AR-dependent promoter-reporter assays (18, 21) using knockdown and induction approaches. MST1 knockdown by a gene-specific small interfering RNA (siRNA) (15) resulted in the upregulation of basal and androgen-stimulated AR-responsive PSA promoter reporter activation, by at least 2-fold in comparison to siRNA control (Figure 1B, upper panel). Enforced MST1 expression attenuated endogenous AR activity in LNCaP cells, as shown by the PSA promoter reporter (p61-Luc) assay (Figure 1B, lower panel). Enforced MST1 expression also attenuated AR-dependent GRE4-driven simple promoter reporter (pGRE4-TATA-Luc) activation in LNCaP (Figure 1C, upper panel) as well as p61-Luc promoter reporter activation in COS-7 (Figure 1C, lower panel) cells, where AR expression was also enforced. Collectively, these observations indicate that MST1 is a binding partner and a physiologic negative regulator of AR signaling.

The full-length MST1 is a dominant AR suppressor

To map the AR binding domain on MST1, the full-length AR was co-expressed with vector, MST1-wt or MST1-N (residues 1–330) or MST1-C (residues 331–487) truncation mutants in COS-7 cells, followed by co-IP and western blot analysis. The results showed that the full-length MST1 (MST1-wt) and MST1-N strongly interacted, whereas MST1-C displayed weak interaction with exogenous AR (Figure 2A). The inhibition of AR activity by MST1-wt, MST1-N or MST1-C coincided with the binding data, as revealed by the PSA promoter reporter assay (Figure 2B).
To determine which MST1 form (MST1-wt or the cleaved MST1-N) functions as a dominant AR inhibitor, we generated caspase-resistant single (D326N=D/N, Asp (D) → Asn (N) or D349E=D/E, Asp→Glu (E)) and double (D326N/D349E=DD/NE) MST1 mutants and assessed their effects on PSA protein levels or luciferase reporter activity mediated by AR. The results show (Figure 2C and 2D) that the expression of each MST1 mutant is capable of inhibiting endogenous PSA protein levels and PSA promoter reporter activation induced by androgen, similar to the levels seen with MST1-wt. Neither the expression of MST1-wt or these MST1 mutants affected AR protein levels, unless the cells were stimulated by androgen (Figure 2C, AR blot). A similar level of AR-dependent PSA promoter reporter inactivation by MST1 was also obtained, even in the presence of increasing doses of a specific caspase inhibitor, Ac-DEVD-CHO (D-CHO) (Supplementary Figure S2A).

We then examined protein complexes between AR and the caspase-deficient MST1-DD/NE mutant. AR was co-expressed with vector, MST1-wt, or MST1-DD/NE mutant constructs in HEK 293 cells. As shown by co-IP/western blot experiments, the MST1-DD/NE mutant maintained interaction with AR and the levels of interaction between AR and MST1-DD/NE were similar or even greater than that observed with MST1-wt (Supplementary Figure S2B). These observations indicate that the caspase-deficient MST1 is a dominant AR inhibitor.

MST1 attenuates AR activity in a Ser-650 phosphorylation-independent manner
MST1 is a stress-induced kinase (2), and other stress-induced kinases such as JNK1 or p38 MAPK have been proposed to physically interact with and antagonize AR transcriptional activity by phosphorylating AR at Ser-650 (17). To determine whether purified MST1 can also physically interact with and phosphorylate AR at this site, we performed the GST-pull down and an in vitro kinase assay using recombinant, pre-activated MST1 and purified GST-AR-DBD/HR as a substrate. The results of these experiments revealed that pre-activated, recombinant MST1 physically interacted with (Figure 3A) and specifically phosphorylated the purified GST-AR-DBD/HR fragment in vitro (Figure 3B, left panel). Both binding and phosphorylation events occurred in a dose-dependent manner (Supplementary Figure S3A and S3B, respectively). Using a site-specific phospho-AR antibody, we were able to identify the Ser-650 residue as a target of the MST1 kinase activity, as revealed by non-radioactive in vitro kinase assay and western blot experiments (Figure 3B, right panel).

To determine whether Ser-650 phosphorylation has a role in the attenuation of AR activity by MST1, we generated phosphorylation-inactivating (Ser→Ala) or phosphomimetic (Ser→Glu) mutations and assessed their impact on MST1-mediated inhibition of AR activity. The data in Figure 3C show that enforced-MST1 expression is capable of inhibiting AR transcriptional activity regardless of the presence of phosphorylation-inactivating S650A or phosphomimetic S650D AR mutations. Similarly, other site-specific phosphorylation-inactivating mutations did not significantly affect AR inhibition by MST1 induction (Supplementary Figure S3C). In addition, phosphorylation-inactivating or phosphomimetic mutations did not alter ligand-dependent nuclear localization of AR in COS-7 cells expressing exogenous AR (Figure 3D). Furthermore,
co-IP/western blot analyses showed that neither type of mutation affected complex formation between the two proteins (Supplementary Figure S3D). In addition, with the exception of the S308A mutation, these known phospho-site mutations do not significantly alter androgen-induced AR transcriptional activity in COS-7 cells (Supplementary Figure S4A). These findings indicate that the phosphorylation of Ser-650 by MST1 is not involved in the mediation of AR inhibition by MST1.

MST1 kinase activity is not required for the inhibition of AR activity

To determine whether MST1 kinase activity has an effect on the inhibition of AR transcriptional activity, we generated kinase-deficient MST1 mutants (MST1-K59R in the ATP binding pocket and MST1-T183A in the activation loop). Consistent with published data (3), neither of these MST1 mutants was able to induce apoptosis in COS-7 or in LNCaP cells, compared to MST1-wt (Figure 4A). However, both mutants were capable of inhibiting AR-driven PSA promoter activation, similar to the levels observed with MST1-wt in LNCaP (Figure 4B) and in its castration-resistant C4-2 subline (Supplementary Figure S4B). We then examined the protein complexes between AR and these kinase-inactivated MST1 mutants. Mock, MST1-wt, MST1-K59R, or MST1-T183A constructs were co-expressed with AR in COS-7 cells and co-IP experiments were performed using total cell lysates. Western blot analysis with anti-AR antibody revealed that the kinase-inactivating mutation had no affect on the formation of the AR and MST1 complex (Figure 4C). We also performed the promoter reporter assay with MST2 and demonstrated that transient expression of this close structural relative to
MST1 also antagonized the AR transactivation function in LNCaP cells independently of its kinase activity (Figure 4D). These results suggest that both kinases perform a similar inhibitory role with respect to the AR, and that neither the kinase activity nor the pro-apoptotic function of MST1 or MST2 is involved in the inhibition of AR activity.

MST1 suppresses AR activity by intersecting with AKT1 signaling and antagonizing formation of AR-chromatin complexes

An implication from the above findings is that additional mechanisms may be involved in MST1-mediated AR inhibition. MST1 was reported to inhibit AKT signaling (15), which is known to functionally intersect with (16, 22) and promote AR-driven PSA promoter activation (23). To test whether MST1 induction could suppress AR activation mediated by AKT1 signaling, we performed promoter-reporter assays and showed that enforced MST1 expression antagonized AKT1 mediated androgen-dependent and -independent AR activation (Figure 5A, *left panel*). Co-IP experiments further revealed that MST1, AR, and AKT1 form a tri-partite complex in vivo (Figure 5A, *right panel*), indicating that MST1 also intersects with AKT signaling to attenuate AR activity.

Given that MST1 forms protein complexes with AR, we showed using co-IP experiments that endogenous AR and MST1 form a complex preferentially in cell nuclei (Figure 5B). These observations led us to investigate whether MST1 localizes within AR-transcriptional complexes. Chromatin immunoprecipitation (ChIP) experiments showed that endogenous MST1 interacts with the PSA promoter region, which also binds AR in both serum- and androgen free conditions and can be regulated androgen in LNCaP cells
(Figure 5C). This segment of the PSA promoter, referred to as the androgen-responsive element enhancer (ARE) core, consists of multiple AREs and plays a prominent role in AR-driven PSA promoter regulation (18, 21). Additional data suggest that MST1 also binds ARE-I and the TATA region in the PSA promoter, which can also be regulated by androgen (Figure 5D). Taken together, these findings suggest that MST1 reduces AR-chromatin complex formation to attenuate androgenic signals.

MST1 suppresses PCa cell growth in vitro and tumor growth in vivo

To address the impact of MST1 on cell growth, we established stable MST1 expressing LNCaP/HA-MST1 or C4-2/HA-MST1 cells using a retroviral inducible system. LNCaP/HA-MST1 or C4-2/HA-MST1 cells were exposed to increasing doses of doxycycline (Dox). Dose-dependent induction of MST1 expression reduced the growth of LNCaP; however, castration-resistant LNCaP subline, C4-2, displayed resistance to the growth suppressive effects of enforced MST1 (Figure 6A and B). The observed growth reduction originated from MST1 induction because the administration of the highest dose of Dox (4 μg/ml), which reduced the growth of LNCaP/HA-MST1 the most, had no effect on the growth of LNCaP/Vector cells (Supplementary Figure S5A). In addition, enforced MST1 expression in C4-2/HA-MST1 cells dramatically reduced the number and size of C4-2 colonies grown on soft agar (Figure 6C) and sensitized C4-2 cells to growth suppression induced by PI3K inhibitor LY294002 (Figure 6D). C4-2 cells are relatively resistant to PI3K inhibitors (24) and less sensitive to the effects of MST1 compared to parental LNCaP cells (Figure 6A). As expected, induction of MST1
prevented the growth of LNCaP cells regardless of the presence of PI3K inhibitor (Supplementary Figure S5B).

To assess the distribution of MST1, we analyzed levels of exogenous MST1 protein in cytoplasmic and nuclear fractions obtained from C4-2/HA-MST1 cells. The result revealed that although the majority of exogenous HA-MST1-wt localized in the cytoplasm, significant levels of exogenous HA-MST1-wt protein were also found in the nucleus (Figure 7A, left panel). Immunofluorescence experiments confirmed these results (Supplementary Figure S5C). Stable MST1 expression was capable of inhibiting AR-driven PSA promoter activation in C4-2/HA-MST1 cells (Figure 7A, right panel). ChIP experiments using lysates from C4-2/HA-MST1 cells further demonstrated that loading of MST1 onto the ARE core region of the PSA promoter diminished the formation of AR-chromatin complexes (Figure 7B).

To determine the physiologic relevance of our in vitro findings, we performed xenograft experiments. C4-2/HA-MST1 or C4-2/Vector cells were inoculated subcutaneously into immunodeficient male mice and the animals were then treated with Dox in the drinking water. Immunohistochemical analyses of the resultant tumors verified the expression of HA-MST1 in histological sections from C4-2/HA-MST1 or C4-2/Vector tumor xenografts (Figure 7C, micrograph). Consistent with observations in vitro, enforced MST1 expression suppressed the growth by 35-fold and the tumorigenic rates by 4-fold of C4-2/HA-MST1 cells compared to C4-2/Vector counterparts (Figure 7C, graph and tumor mass image).
Discussion

In this study, we demonstrated that the serine-threonine kinase MST1 is a physiologic negative regulator of AR signaling. We provide evidence that MST1 forms protein complexes in vitro and in vivo with AR and antagonizes AR activity in multiple cell backgrounds. Although both the full-length MST1 and the cleaved MST1-N forms bound and inhibited AR activity, caspase-resistant MST1 was the most potent AR inhibitor. We found that the kinase activity of MST1 was not required for the attenuation of AR activity. Similarly, the pro-apoptotic function of MST1 is not involved in AR inhibition because kinase deficient MST1, which failed to induce cell death, was capable of interacting with AR and inhibiting AR transcriptional activity. Furthermore, promoter reporter and ChIP experiments revealed that enforced MST1 antagonized AKT-mediated AR activation and reduced binding of AR to its cognate DNA binding site. Based on these observations, we propose that MST1 antagonizes AR-dependent gene expression by forming inhibitory protein and/or transcriptional complexes with AR, thereby suppressing prostate tumor growth.

Post-translational modifications such as phosphorylation (17), palmitoylation (25), ubiquitination (26), acetylation (27), or SUMOylation (28) play important roles in the regulation of AR activity. Several phosphorylation sites at serine residues and a tyrosine residue have been identified in AR (29, 30). These modifications negatively or positively regulate AR activity in a context-dependent manner (24), and their functional significance in PCa is beginning to emerge (31). For example, the phosphorylation of AR at Tyr-534 by c-Src was demonstrated to enhance AR activation and AR-dependent gene
expression, which was shown be correlated with hormone-refractory PCa (30). On the other hand, phosphorylation of AR at Ser-650 by JNK1 or p38 MAP kinase was demonstrated to inhibit AR activity (17). Here we showed that MST1 is an AR kinase and phosphorylates AR at Ser-650 (Figure 3C). However, phosphorylation of Ser-650 by MST1 had no effect on the observed inhibition of AR-transcriptional activity. Nevertheless, the role of phospho-Ser650 on mechanisms of AR action deserves further investigation, given that phosphorylation-inactivating S650A or phosphomimetic S650D AR mutations are able to alter the cellular distribution of AR in comparison to that observed with AR-wt under androgen-free conditions (Figure 3D). Our data do not rule out the possibility that the existence of other potential MST1 phosphorylation sites might play a role in the inhibition of AR activity by MST1. In addition, the induction of MST1 was shown to activate JNK1 (32), which is known to inhibit AR (17). We did not observe JNK1 activation in response to MST1 induction in LNCaP, unless cells were treated with phorbol ester (Supplementary Figure S2C). This indicates that MST1 attenuates AR signaling by a distinct mechanism apart from JNK or p38 MAP kinase activation.

In addition to post-translational modifications, transcriptional co-regulators (i.e. co-repressors or co-activators) play an essential role in the modulation of AR activity, and their altered expression has been demonstrated in prostate tumor progression (33). For example, the recruitment of nuclear co-repressor (N-CoR) (34) or silencing mediator for thyroid and retinoid receptors (SMRT) (35) into the AR transcriptional complex was shown to antagonize AR activity by a mechanism involving protein-protein interaction. Similarly, displacement of co-activators such as p300 from the holo-AR transcriptional complex, or recruitment to the complex of histone deacetylase (HDAC), which modifies
chromatin structure to a transcriptionally inactive form (36), have also been shown to attenuate AR activity (35). Given that MST1 attenuates AR activity by forming protein complexes, the localization of MST1 into the holo-AR transcriptional complex could also attenuate the AR. Our data in Figure 5C and 5D and Figure 7B support this conclusion; however, comprehensive studies are needed to elucidate precisely how MST1 alters AR-chromatin complexes.

MST1 and its downstream effectors, such as WW45 or LATS1/2, have been implicated in cancer, including PCa (37). For example, the liver specific knockout of MST1/2 expression in mice has been associated with hepatocellular carcinoma, which has been linked to the activation of YAP (7, 9, 10), and YAP is normally attenuated by the MST-LATS signaling network (10). The loss or reduced expression of LATS2 was reported in PCa and this was shown to be associated with hyperactivation of AR and upregulation of AR-dependent gene expression (38), with protein products known to promote PCa cell survival and inhibit apoptosis. In addition, mice lacking WW45 expression displayed hyperplasia in several organ sites (39). Here we found that the induction of MST1 expression is sufficient to antagonize AR-driven gene expression and suppress PCa cell growth. Moreover, we found that the growth suppressive effects of MST1 significantly declined in castration-resistant C4-2 cells in comparison to the effects of MST1 in castration-sensitive LNCaP parental cells, though both cell models expressed similar levels of MST1 protein. MST1 was identified as a negative regulatory component of PI3K-AKT signaling, and reduced MST1 expression was shown to correlate with PCa progression to the hormone-refractory metastatic state, which coincides with AKT activation (15). Our data are consistent with this observation and indicate that the
induction of MST1 expression sensitized C4-2 cells to growth suppression induced by PI3K inhibition. Our findings raise the possibility that deregulated-MST function may be associated with the emergence of the castration-resistant disease phenotype. The use of MST1/2 knockout mouse models will address the hypothesis of whether one or both of these kinases have a direct role in prostate carcinogenesis and emergence of castration-resistance.

PCa is the most commonly diagnosed cancer among men and the second leading cause of cancer death in Western countries (40, 41). Evidence indicates that cooperative AR and PI3K/AKT-mTOR pathway signaling is critical to human prostate tumor development and progression to the metastatic phenotype (42-44). Based on published studies (15, 16) and our present findings, we propose a model (Figure 7D) in which MST1/2 attenuates AR-dependent gene expression by interacting with the AR, which may lead to the alterations of the AR protein and/or transcriptional complexes, as well as by targeting upstream of the AR signal. An important implication from these observations is that deregulation of MST1 may account for the upregulation of AR and AKT signaling regulating cell survival. Therefore, disruption of the AR-AKT oncogenic network by MST1/2 alone and/or in combination with chemotherapeutic agents that target AR and PI3K/AKT-mTOR may have important therapeutic implications.

Acknowledgements

We thank Leland Chung, Rosalyn Adam, and Haiyen Zhau for their critical review of the data during the course of the study, Paul Guthrie, Mustafa Kupeli, Xiaojian
Yang, and Yueming Wang for their technical assistance and Gary Mawyer for editorial suggestions. This study was supported by the Edwin Beer Fellowship grant (R24D00) from the New York Academy of Medicine and the Garber Award from Cedars-Sinai Medical Center (BC), National Institute of Health grants R01 CA124706 (DG), R01 CA143777 and R01 CA112303 (MRF), and US Department of Defense grant W81XWH-08-1-0150 (MRF).

Conflict of Interest: Authors have no competing commercial interest in relation to the submitted work.

References

Figure legends

Figure 1. MST1 forms a protein complex with AR and antagonizes AR activity.

A) Co-immunoprecipitation (co-IP) of ectopically expressed human MST1 and endogenous AR in LNCaP (upper panel) or exogenously expressed human AR in HEK 293 (lower panel) cells. Co-IP and western blots (WB) were performed with corresponding antibodies. B) The AR-responsive PSA promoter reporter (p61-Luc) activity in LNCaP under condition where MST1 was knocked down (upper panel) or enforced (lower panel). An unpaired t-test was conducted to analyze for differences between treatments. *P ≤ 0.02. C) The AR-responsive GRE4-Luc in LNCaP (upper panel) and p61-Luc activity in COS-7 cells (lower panel). Serum starved cells were treated with (+) or without 1 nM R1881, androgen analog, *P ≤ 0.02. All assays were performed at 36 hr. Relative luciferase units as luciferase (Luc) activity after normalization with total protein. Data are the representative of multiple experiments.
Figure 2. Caspase cleavage-deficient MST1 is a potent AR inhibitor.

A) AR binding domains on MST1. AR with vector (V), MST1-wt (wild type) or MST1 domains (MST1-N or MST1-C) was transiently co-expressed in COS-7 cells. Co-IP and WB were performed with antibodies to corresponding proteins. B) PSA promoter-reporter activity in LNCaP cells with MST1-wt or MST1 truncation mutant in “A”, *P ≤ 0.01; **P ≤ 0.08. C) Western blots of MST1, AR or PSA protein in LNCaP cells transfected with Mock, MST1-wt, MST1-D326N (D/N), MST1-D349E (D/E), or MST1-D326N/D349E (DD/NE), followed by R1881 (+) or vehicle (-) treatment in serum starved conditions. D) PSA promoter reporter activity with caspase-resistant MST1 constructs under the same conditions as described in “C”, *P ≤ 0.01. Luciferase activity was determined at 36 hr. Data are the representative of multiple experiments.

Figure 3. Purified recombinant MST1 binds and phosphorylates GST-AR-D/HR fragment at Ser-650.

A-B) GST-pull down in “A” and in vitro kinase assay with bacterially expressed GST-AR-D/HR and recombinant, preactivated MST1 protein kinase in “B, Left panel.” Right panel: WB probed with antibody to MST1 or to phospho-S650 AR in “B”. AR-D/HR: AR-DNA Binding Domain/Hinge Region. C) pGRE4-Luc promoter luciferase activity in COS-7 cells. Cells were co-transfected with pGRE4-Luc and corresponding constructs and treated with R1881 (+) or vehicle (-) in serum starved conditions, *,**, P ≤ 0.01. Luciferase reporter assay was performed at 36 hr following androgen treatment. D) Immunofluorescence staining of AR protein (FITC, cytoplasm with EtOH vehicle and nuclear with R1881) with anti-AR antibody and DAPI (nucleus) in COS-7 cells.
transfected to express transient AR and stimulated with R1881 (+) or vehicle (-) for 6 hr in serum-starved conditions. The size bar represents 10 microns. Data are representative of multiple experiments.

Figure 4. The kinase or apoptotic function of MST1 is not involved in AR inhibition.

A) Apoptosis in LNCaP or in COS-7 cells transfected with MST1-wt or kinase deficient-MST1 mutant construct (MST1-K59R or MST1-T183A). Cell apoptosis was determined using Cell Death ELISA. B) PSA promoter reporter activity in LNCaP cells with kinase intact or kinase-deficient MST1 as in “A”, followed by incubation with (+) or without (-) R1881. C) MST1 and AR protein complex in COS-7 cells expressing AR along with vector, MST-wt, or kinase-deficient MST1 mutant. Co-IP and western blots were performed in total cell lysates with antibodies to corresponding proteins. D) MST2-regulated PSA promoter reporter activity in LNCaP cells, *P ≤ 0.01. p61-Luc (+) was co-transfected with MST2-wt or with kinase-deficient MST2 mutant (MST2-K56R), *P ≤ 0.01. All assays were conducted at 36 hr. HC: IgG-heavy chain. Data are representative of multiple experiments.

Figure 5. MST1 antagonizes AKT-mediated AR activation and localizes to AR-chromatin complexes.

A) Graph: PSA promoter reporter activity modulated with MST1 and AKT signaling, *, **P ≤ 0.01. LNCaP cells were transiently co-transfected with p61-luc promoter reporter and AKT1 or MST1 alone or together with AKT1 and MST1, followed by androgen or vehicle treatment in serum-starved conditions. Blots: A tri-partite protein complex between AR, MST1 and AKT1 in COS-7 cells expressing transient MST1 along with AR
or AR and AKT1. All assays were conducted at 36 hr. **HC**: IgG-heavy chain. **B) Co-IP and WB analysis of protein complexes between endogenous AR and MST1 in LNCaP cells grown in basal condition. C-D) ChIP assay in lysates of LNCaP cells. Protein-DNA complexes were precipitated with IgG (negative control), Pol II (positive control), AR, or MST1 antibody in total cell lysates. DNA interaction was assessed by semi-quantitative PCR using primers surrounding AREIII within the androgen-responsive element enhancer core (AREc) and surrounding AREI and TATA region of the PSA promoter. Diagram showing AREc and proximal PSA promoter region where multiple ARES and TATA box, AREI, and AREII reside, respectively. Primer pair against PSA gene was used in input control. Data are representative of multiple experiments.

Figure 6. Enforced MST1 expression suppresses prostate tumor cell growth in monolayer culture and colony formation on soft agar.

**A) Cell proliferation with BrdU incorporation assay, **$*P \leq 0.2; **P \leq 0.0009$. **B) Stable MST1 expression by western. LNCaP/HA-MST1 and C4-2/HA-MST1 cells treated with increasing doses (0, 0.5, 1, 2, and 4 μg/ml) of Dox (Doxycycline), respectively, in “A” and “B”. Western blots probed with anti-HA antibody or anti-beta actin as a loading control. **C) Colony formation assay on soft agar. Equal numbers of C4-2/HA-MST1 cells were seeded on soft agar and grown for 14 days in the presence (0.5 μg/ml) and absence (-) of Dox in regular growth conditions with the media was replaced every 3 days; **$P \leq 0.004$. The graph represents the quantification of colonies and the micrograph represents colonies formed on soft agar. **D) The growth of C4-2/HA-MST1 cells treated with LY294002 (20 μM), a potent PI3K inhibitor or vehicle (DMSO) in the presence (+) and
absence (-) of Dox, *$P \leq 0.08$; **$P \leq 0.007$. All cell proliferation was determined at 24 hr. Data are representative of multiple experiments.

Figure 7. Enforced MST1 expression suppresses prostate cancer xenografts.

A) **Right panel:** WB analysis of ectopically expressed HA-MST1 in cytoplasmic and nuclear cell fractions obtained from C4-2/HA-MST1 cells treated with Dox (-) or Dox (+). HA-MST1 was probed with anti-HA antibody. Lamin A/C was used as a nuclear extraction control. **Left panel:** PSA promoter reporter (+) activity in C4-2/HA-MST1 cell treated with (+) or without (-) Dox and vehicle (EtOH) or androgen (R188) at 24 hr following treatment, *$P \leq 0.01$.

B) ChIP assay in lysates from C4-2/HA-MST1 cells, respectively. Protein-DNA complexes were precipitated with HA-tag antibody. DNA interaction was assessed by semi-quantitative PCR using primers surrounding AREIII within the androgen-responsive element enhancer core (AREc) region of the PSA promoter. Primer pair against PSA gene was used in input control.

C) **Left panel:** Immunohistochemical staining of HA-MST1 with anti-HA antibody in histological sections from tissue xenografts of C4-2/Vector or C4-2/HA-MST1 tumor. The size bar in "C, left panel" represents 100 microns. **Right panel:** The quantification of subcutaneous tumor growth in mice. The micrograph is representing the tumor mass. 10 mice per group were used. 8 out of 10 mice for C4-2/Vector or 2 out of 10 mice for C4-2/HA-MST1 were developed tumors 12 weeks after subcutaneous inoculation of the cell. Data are representative of multiple experiments.

D) Diagram showing the points at which MST1 negatively regulates AR-mediated gene expression.
Abbreviations

AR: Androgen receptor
ARE: Androgen-responsive element enhancer
ChIP: Chromatin-immunoprecipitation
Co-IP: Co-immunoprecipitation
Dox: Doxycycline
GST: Glutathione S-transferase
IHC: Immunocytochemistry
JNK1: c-Jun N-Terminal Protein Kinase 1
IPTG: Isopropyl β-D-1-thiogalactopyranosid
MAP: Mitogen-activated protein kinase
mTOR: Mammalian target of rapamycin
PCa: Prostate cancer
PI3K: Phosphatidylinositol 3-Kinase
WB: Western blot
MST1 is a Multifunctional Caspase-Independent Inhibitor of Androgenic Signaling

Bekir Cinar, Filiz Kisaayak Collak, Delia Lopez, et al.

Cancer Res Published OnlineFirst April 21, 2011.