GLYCOLYTIC PHENOTYPE AND AMP KINASE MODIFY THE PATHOLOGIC RESPONSE OF TUMOR XENOGRAGHTS TO VEGF NEUTRALIZATION

Giorgia Nardo,1 Elena Favaro,1* Matteo Curtarello,2 Lidia Moserle,1,3 Elisabetta Zulato,2 Luca Persano,1,§ Elisabetta Rossi,1 Giovanni Esposito,2 Marika Crescenzi,2 Oriol Casanovas,3 Ulrike Sattler,4 Wolfgang Mueller-Klieser,4 Barbara Biesalski,4 Oliver Thews,5 Rossella Canese,6 Egidio Iorio,6 Paola Zanovello,1 Alberto Amadori,1,2 Stefano Indraccolo 1

1 Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
2 Istituto Oncologico Veneto - IRCCS, Padova, Italy
3 Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Spain
4 Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
5 Institute of Physiology, University of Halle, Germany
6 Istituto Superiore di Sanità, Rome, Italy

* Current address: Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
§ Current address: Department of Pediatrics “Salus Pueri”, University of Padova, Padova, Italy
Running Title: Anti-angiogenic therapy and AMPK activation

Key Words: ovarian cancer, hypoxia, glycolysis, angiogenesis, anti-angiogenic therapy

Correspondence: Stefano Indraccolo, M.D., Istituto Oncologico Veneto - IRCCS, via Gattamelata, 64 - 35128 Padua – Italy. Phone ++39 049 8215875; fax ++39 049 8072854; e-mail: stefano.indraccolo@unipd.it
ABSTRACT

VEGF antagonists are now widely used cancer therapeutics but predictive biomarkers of response or toxicity remain unavailable. In this study, we analyzed the effects of anti-VEGF therapy on tumor metabolism and therapeutic response using an integrated set of non-invasive imaging techniques, including bioluminescence metabolic imaging, 18-fluorodeoxyglucose PET and MRI imaging and spectroscopy. Our results revealed that anti-VEGF therapy caused a dramatic depletion of glucose and an exhaustion of ATP levels in tumors, although glucose uptake was maintained. These metabolic changes selectively accompanied the presence of large necrotic areas and partial tumor regression in highly glycolytic tumors. Additionally, we found that the central metabolic protein kinase AMPK - a cellular sensor of ATP levels that supports cell viability in response to energy stress - was activated by anti-VEGF therapy in experimental tumors. AMPK-α2 attenuation increased glucose consumption, tumor cell sensitivity to glucose starvation, and tumor necrosis following anti-VEGF therapy. Taken together, our findings reveal functional links between the Warburg effect and the AMPK pathway with therapeutic responses to VEGF neutralization in tumor xenograft models.
INTRODUCTION

Tumor vascular targeting has been validated as a therapeutic concept with the approval of several drugs that block the vascular endothelial growth factor (VEGF)-VEGF receptor pathway (1, 2). However, both pre-clinical models and clinical trials have shown that benefits from first-generation angiogenesis inhibitors are generally short-term, due to the development of intrinsic as well as acquired resistance (3). A major challenge in the field is therefore to identify biomarkers of efficacy and toxicity that guide the selection of patients who are most likely to benefit from treatment (4, 5).

Various types of response to anti-angiogenic drugs such as sunitinib or bevacizumab have been observed in cancer patients. In some cases, patients present a decrease in tumor volume by more than 33%, qualifying them as partial responders according to RECIST criteria. In other patients, however, significant changes are observed only in tumor density with no decrease in size. This is often associated with central tumor cavitation and necrosis (6). While this clinical observation suggests that anti-angiogenic therapy may cause severe energy imbalance in certain tumors, it is currently unknown whether molecular or metabolic features of tumor cells could be involved in the type of pathologic response to VEGF-targeting drugs or could predict efficacy. Pre-clinical models may help to solve these issues.

In experimental tumors, anti-VEGF drugs typically prune the newly formed vasculature, thus reducing microvessel density, blood flow and perfusion and eventually increasing the level of intratumoral hypoxia (7-9). Although in patients mechanisms might be more complex, considering that VEGF neutralization has therapeutic efficacy mainly when combined with conventional chemotherapy (10),
it is currently held that following an initial time window of "vascular normalization", regression of tumor vasculature occurs leading to increased hypoxia (11). Less well understood is whether hypoxia eventually leads to tumor starvation. On one hand, hypoxia can exert both anti-proliferative effects or induce cancer cell death depending on specific genetic features of tumor cells (12-14). On the other hand, hypoxia can also favor invasion and metastasis, as an evasive mechanism to anti-angiogenic therapy (reviewed in: (15)).

Although it is usually granted that anti-angiogenic drugs cut oxygen supply into tumors, surprisingly less is known about other metabolic perturbations induced by VEGF blockade in the tumor microenvironment.

In a previous study, we identified ovarian cancer cells endowed with different glycolytic phenotypes and correlated this feature with resistance or sensitivity to severe hypoxia in vitro (12). The great variations in glucose demand that we observed in tumor cell lines possibly reflect their genetic heterogeneity and, importantly, this has also been observed in patients affected by the same tumor type, mainly by 18fluorodeoxyglucose (FDG) positron-emission tomography (PET) (16, 17).

Xenografts obtained from these cells have been analyzed here to investigate the effects of VEGF neutralization on glucose metabolism by using for the first time an integrated imaging approach which included metabolic bioluminescence imaging, FDG PET and magnetic resonance spectroscopy (MRS) analysis.
MATERIALS AND METHODS

Cell Culture and treatments. IGROV-1 cells were purchased from ATCC (Manassas, VA); OC316 cells were provided by S. Ferrini (IST, Genoa, Italy). The human esophageal cancer cell line Kyse-30 (squamous cell carcinoma) and OE19 (adenocarcinoma) were purchased from ECACC (Salisbury, U.K.) and used within 6 months from resuscitation. Kyse-30 cells were grown in RPMI1640 + Ham’s F12 medium (1:1) with 2% FCS and 2 mM glutamine. All other tumor cells were grown in RPMI 1640 medium (Euroclone, Pero, Italy) supplemented with 10% FCS (Life Technologies, Gaithersburg, MD), 1% HEPES (10mM, Cambrex Bioscience, Verviers, Belgium), L-Glutamine 2mM, and 1% antibiotics-antimycotic mix (Gibco-BRL, Grand Island, NY). Cultures were maintained at 37°C in a humidified 5% CO₂/95% air atmosphere. Where specified, IGROV-1 and OC316 cells were treated with 2-deoxyglucose (2DG) (Sigma-Aldrich, St. Louis, MO) at 6g/L for 72 h before apoptosis evaluation. In order to induce AMPK pathway activation, tumor cells were stimulated with AICAR or Metformin (Sigma-Aldrich) at different concentrations for 24 h before protein analysis. Hypoxic treatment (0.5% O₂) was achieved by incubating cells in an InVivo2 300 hypoxic chamber (Ruskinn Technology, Pencoed, UK).

Animals and treatments. Procedures involving animals and their care conformed with institutional guidelines that comply with national and international laws and policies (EEC Council Directive 86/609, OJ L 358, 12 December, 1987). For tumor establishment, 8-week-old SCID mice (Charles River, Wilmington, MA) were injected s.c. into both flanks with 0.3-0.5 x 10⁶ tumor cells.
mixed at 4°C with liquid Matrigel (Becton-Dickinson; Franklin Lakes, NY). Tumor volume (mm³) was calculated as previously reported (12). Anti-human VEGF mAb (A4.6.1) was administered intraperitoneally (i.p.) at 100 μg/dose every 2 days, and mice were sacrificed 48 h after the third treatment. Control mice received i.p. injections of PBS.

Histology and immunohistochemistry. Quantification of necrosis was carried out by calculating the percentage of the necrotic area in the entire tumor section by using a light microscope equipped with digital camera and MODEL software (Leica Microsystems, Wetzlar, Germany). pAMPK monoclonal (1:300, #2535S) and pACC polyclonal (1:400, #3661S) antibodies from Cell Signaling Technology (Beverly, MA) were used for immunohistochemistry. Scoring of pAMPK or pACC expression was performed by an experienced pathologist (G.E.) at a magnification of x100, based on the Quick Score Method (18). Immuno-reactivity was scored semi-quantitatively for both the intensity and the proportion of cells staining: intensity was given scores 0-3 (no staining = 0; light staining = 1; moderate staining = 2; strong staining = 3) and proportion was given scores 1-6 (0-4% = 1; 5-20% = 2; 21-40% = 3; 41-60% = 4; 61-80% = 5; 81-100% = 6). The two scores were multiplied to obtain the final result of 0-18. In evaluation of pACC staining in RIP-Tag2 tumor sections, due to immunodetection heterogeneity among samples, the intensity of the normal tissue in each tissue section was taken as a reference to determine positivity/negativity of each tumor (total n=116) from 4 animals per treatment group. The percentage of positive tumors in each animal was calculated and graphed as average and S.D. in each treatment group. Mann-Whitney statistical test was used to determine significance p<0.05.
Evaluation of microvessel density and hypoxic areas. Tumor vessels were labelled with rat anti-CD31 mAb (1:50 dilution; Becton-Dickinson) followed by staining with a goat anti-rat 546 secondary antibody (Invitrogen, Milan, Italy) and quantification of microvessel density as detailed elsewhere (12). To identify hypoxic areas in tumors we used pimonidazole hydrochloride (Hypoxyprobe-1; Chemicon International, Temecula, CA) (12).

MRI/MRS Analysis. Subcutaneous xenografts derived from IGROV-1 and OC316 cells were characterized by MRI and quantitative MRS. Experiments were performed on a Varian INOVA MRI/MRS system operating on small animals at 4.7 T (Varian, Palo Alto, USA) equipped with a transmitter volume RF coil actively decoupled from the receiver surface coil (RAPID Biomedical, Rimpar, Germany). Further details can be found in the data supplements section.

Metabolic bioluminescence imaging. Excised tumors were cut into serial cryosections for structural hematoxylin and eosin (H&E) staining and bioluminescence measurements. For quantitative measurement of ATP and glucose, the method of metabolic imaging with induced bioluminescence was applied (19, 20). Further details can be found in the data supplements section.

Animal PET studies. For µ-PET measurements, tumors were implanted on the back of the thorax. Imaging was performed when tumors reached a volume of 100-900 µl. On the day of PET measurement animals were anaesthetized with
ketamine/xylazine and placed in prone position. The µ-PET imaging was performed on a microPET Focus 120 small animal PET (Siemens/Concorde, Knoxville, USA). After a 15 min transmission scan with an external 57Co source, dynamic PET studies were acquired in 2D mode. 18F-Fluorodeoxyglucose (18F-FDG) with an activity of 5.6 ± 0.2 MBq per animal was administered as a bolus injection of 0.2 ml via the tail vein. Time activity curves were obtained with varying time frames (20 s to 5 min) for a total measuring interval of 30 min. The PET listmode data were histogrammed into 13 frames and reconstructed using OSEM algorithm. Volumes-of-interests (VOIs) were defined for the whole tumor, for necrotic areas of the tumor and for reference tissue (soft tissue of the neck region). Ratios of vital tumor tissue (without necrosis) to reference tissue were calculated from integral image between 10' and 30' after tracer injection.

Statistical analysis. Results were expressed as mean value ± SD. Statistical comparison between two sets of data was performed using either the unpaired Student's t test (two-tailed) or the Mann Whitney test (two-tailed), depending on the distribution of values. Differences were considered statistically significant at $P < 0.05$.

Further experimental details are available in the data supplements section at Cancer Research Online.
RESULTS

Identification of tumor cells and xenografts with different metabolic features. Based on measurements of glucose consumption and lactate production rates in vitro as well as expression levels of glycolysis-associated genes, we recently identified OC316 and IGROV-1 cells as prototypes of highly and poorly glycolytic ovarian cancer cells, respectively (12). Interestingly, viability of OC316 but not of IGROV-1 cells was compromised under hypoxic conditions and glucose supplementation prevented cell death (12), thus suggesting that OC316 cells could be more dependent on glucose as energy substrate than IGROV-1 cells. To further validate this hypothesis, we measured cell viability following incubation under glucose starvation or with 2-deoxyglucose (2-DG), an analog of glucose that binds and suppresses the glycolytic enzyme hexokinase II (21), and found reduced survival of OC316 cells compared to IGROV-1 cells (Suppl. Fig. 1A). Altogether, these results indicate that highly glycolytic OC316 cells are less able to cope with glucose deprivation than poorly glycolytic IGROV-1 cells. These metabolic features were further characterized by high resolution MRS, which showed higher intracellular concentration of lactate (Lac) in OC316 compared with IGROV-1 cells, as well as differences in the pool of glutamate and glutamine (Glx) (Suppl. Fig. 1B).

To determine whether these metabolic differences were conserved in vivo, we generated s.c. xenografts and characterized them by magnetic resonance imaging (MRI) and MRS. MRI can identify regions of necrosis or haemorrhage as hyper-intense or hypo-intense areas, respectively, in the T2-weighted images. MRI revealed differences in tumor morphology and internal composition during growth
between the two models: OC316 tumors were characterized by a prominent central necrotic core, whereas IGROV-1 tumors had several small and diffuse necrotic areas (Suppl. Fig. 1C). Following MRS analysis, lactate was observed in all OC316 tumors (n = 3), and in 50% of the IGROV-1 xenografts analyzed (n = 4). Mean lactate concentrations were 38.2 ± 8.3 mM in OC316 tumors and 1.6 ± 0.1 mM in IGROV1 tumors (Suppl. Fig. 1D). Finally, quantitative PCR analysis indicated higher expression levels of GAPDH, HKII, and LHDA in OC316 compared to IGROV-1 tumors (Suppl. Fig. 1E). In summary, these findings indicate that OC316 and IGROV-1 are prototypes of tumors with markedly different glycolytic phenotypes.

Outcome of anti-VEGF therapy in tumors with different metabolic properties. We subsequently treated OC316 and IGROV-1 xenografts with A4.6.1, a human VEGF neutralizing mAb bearing the same CDR region as bevacizumab (22). A significant reduction in tumor size was observed in OC316 but not in IGROV-1 tumors after 6 days of treatment (Fig. 1A). As expected, microvessel density (MVD) was significantly reduced after anti-VEGF treatment in all tumors (Fig. 1B), and this was associated with a marked increase in hypoxic areas, as shown by quantification of pimonidazole adducts (Fig. 1C), and hypoxia inducible factor (HIF)-1α levels (Suppl. Fig. 2). Histological analysis showed large necrotic areas within OC316 tumors treated with A4.6.1, whereas minimal changes were measured in IGROV-1 tumors (Fig. 1D). This association between glycolytic phenotype and type of pathologic response to anti-VEGF therapy was not unique to the OC316/IGROV-1 pair. In fact, similar results were also seen after A4.6.1 administration to mice bearing Kyse-30 and OE19-derived tumors,
formed by highly glycolytic and poorly glycolytic oesophageal cancer cells, respectively (Suppl. Fig. 3).

The effects of VEGF neutralization in tumors were further documented by MRI techniques. The apparent diffusion coefficient (ADC) value is often correlated with tumor cellularity, and in experimental tumors an elevated ADC value has been correlated with the necrotic fraction (23). Quantitative MRI analysis showed ADC values of 8.0 ± 3.8 and $7.3 \pm 4.1 \times 10^{-4} \text{mm}^2/\text{s}$ (mean \pm SD) for the OC316 and IGROV1 xenografts, respectively, which were in good agreement with those recently measured in patients with ovarian carcinoma (24). Short course anti-VEGF treatment was associated with changes in spectral profiles and ADC distributions. Treated OC316 tumors had a higher necrotic fraction compared to controls, as determined by an increase in ADC mean value (9.0 ± 4.3), due to an increase in the right wing of the ADC distribution (Fig. 2A). Differences in the spectral profile were also found, which could reflect changes in tumor environment (i.e. pH) and/or altered metabolism (Fig. 2B). The identity of these alterations remains so far unknown. Twenty four hours after the end of treatment lactate was detected in all tumours (3/3, 48 ± 6 mM). On the other hand, treated IGROV-1 xenografts did not show any difference in the spectral profile with respect to untreated controls, while ADC distribution revealed a shift towards lower values in the treated group suggesting the presence of cell swelling (Suppl. Fig. 4).

Metabolic effects of anti-VEGF therapy. The large necrotic areas found in A4.6.1-treated OC316 xenografts suggested that acute VEGF neutralization caused bioenergetic perturbations. In order to investigate this, we performed
bioluminescence-based metabolic imaging of tumors, a technique which enables to visualize and measure steady-state levels of specific metabolites. Results shown in Fig. 3A indicate a dramatic drop in glucose levels in OC316 xenografts following A4.6.1 administration compared to controls (1.36 ± 0.61 μmol/g versus 3.36 ± 1.48 μmol/g). IGROV-1 tumors also disclosed significant reduction in glucose levels after treatment, albeit less intense compared with OC316 xenografts (2.91 ± 1.21 μmol/g versus 3.89 ± 1.67 μmol/g) (Fig. 3B). Moreover, ATP levels were also markedly reduced after A4.6.1 treatment, both in OC316 and IGROV-1 tumors (Fig. 3C). These findings show profound changes in glucose metabolism following acute VEGF neutralization in tumors.

Impact of anti-VEGF treatment on FDG uptake. PET imaging of OC316 tumors distinctly showed areas of reduced FDG uptake in the tumor center (Fig. 4A). These regions corresponds to tissue necrosis found at MRI analysis and in H&E stained tissue sections (Suppl. Fig. 1). For statistical analysis these necrotic regions have not been taken into account. In IGROV-1 tumors a rather homogeneous uptake was found (Fig. 4A). In these samples, FDG uptake normalized to the viable tumor volume was independent from anti-VEGF treatment as shown by the time activity curves (Fig. 4B). The mean relative FDG uptake in the time interval from 10 to 30 min after tracer injection was 173 ± 12% in A4.6.1 treated mice and 175 ± 12% in control tumors (n.s.). However, in OC316 tumors treated with the anti-VEGF antibody PET imaging showed a significant higher glucose uptake as compared to untreated controls (Fig. 4B). The mean activity between 10’ and 30’ was 191 ± 11% (A4.6.1 treated) versus 150 ± 8% (control) (P<0.01). Altogether, these results indicate that glucose uptake is
not compromised by anti-VEGF therapy, suggesting that the low glucose levels measured in tumors by bioluminescence-based metabolic imaging might depend on accelerated glucose consumption rather than impaired delivery.

VEGF-targeting drugs induce AMPK activation in experimental tumors.

AMPK is a cellular sensor that contributes to maintain the steady-state level of intracellular ATP (25). Since anti-VEGF treatment lowered both glucose and ATP in vivo (Fig. 3), we hypothesized that it might activate the AMPK pathway. Staining with an anti-pAMPK Ab disclosed variable AMPK activation in A4.6.1-treated tumors, showing much more intense expression of pAMPK in IGROV-1 compared with OC316 tumors (Fig. 5A). Phosphorylation of acetyl-coenzyme A carboxylase (ACC), a key target of AMPK (26), was strongly increased in IGROV-1 tumors treated with anti-VEGF, compared to controls (Fig. 5B). In line with results of anti-pAMPK staining, OC316 tumors had very weak pACC signal, and this did not change in samples treated with anti-VEGF mAb (Fig. 5B). Moreover, treatment of IGROV-1 xenografts with vandetanib - an inhibitor of VEGFR, EGFR and RET tyrosine kinases [reviewed in:(27)] - markedly increased pACC staining, further validating these findings (Fig. 5C)

Finally, strong pACC reactivity was also observed in RIP-Tag2 tumors treated either short- or long-term with DC101, an anti-VEGFR Ab (28), compared to controls (Fig. 5D), indicating that increased AMPK activation can occur as a consequence of VEGF blockade also in transgenic tumor models.

To further investigate the possibility that the AMPK pathway could be disfunctional in OC316 cells, we measured AMPK activation in cells incubated under hypoxic conditions and/or glucose deprivation in vitro. Results indicate a raise in
pAMPK levels in IGROV-1 but not OC316 cells following cultivation in the absence of glucose both under normoxic and hypoxic conditions (Suppl. Fig. 5A). Analysis of pACC levels confirmed these findings, indicating strong ACC phosphorylation in IGROV-1 cells following glucose starvation, whereas pACC was only slightly increased in OC316 cells under the same experimental conditions (Suppl. Fig. 5A). To corroborate these results, IGROV-1 and OC316 cells were cultivated in the presence of canonical AMPK activators. AICAR, a direct AMPK activator (26), was able to activate AMPK in IGROV-1 but only barely in OC316 cells, as evaluated by immunoblotting analysis of pAMPK levels (Suppl. Fig. 5B). Similar results were obtained with Metformin, an indirect AMPK activator (Suppl. Fig. 5C).

Since AMPK is activated by LBK1 (29), we investigated expression levels of this kinase in tumor cells. Results show that LBK1 is expressed at apparently similar levels both in IGROV-1 and OC316 cells; in contrast, LKB1 was absent in HeLa cells, which are known to lack this kinase (30) (Suppl. Fig 6A). Immunofluorescence analysis, however, disclosed that the pattern of LKB1 intracellular staining was partially different in IGROV-1 compared to OC316 cells. In fact, LKB1 was invariably detected both in the cytoplasm and the nuclei of IGROV-1 cells, whereas 30.11 ± 8.68% OC316 cells lacked cytoplasmic staining (Suppl. Fig. 6B). Sequencing of LKB1 disclosed a G>A variation at nucleotide 958 of LKB1 exon 8 (Suppl. Fig. 6C), which is predicted to introduce a valin to methionin change in a domain of LKB1 putatively involved in the formation of the multimeric complex of LKB1 with STRADα and MO25 (31). Altogether, these findings indicate that the AMPK pathway is dis-functional in OC316 cells, likely due to altered intracellular distribution of its upstream activator LKB1.
AMPK silencing modulates the response to anti-VEGF treatment. To conclusively prove involvement of AMPK in the response of tumors to anti-VEGF treatment, we silenced AMPK in IGROV-1 cells, which have a functional AMPK pathway. Although IGROV-1 cells express both AMPKα1 and AMPKα2 isoforms, we tested the effects of AMPKα2 silencing, because previous data showed the dominant role of this isoform in determining the balance between proliferation and cell death in ovarian cancer (32). Following transduction of two different lentiviral vectors encoding AMPKα2-specific short-hairpin RNA (shRNA), expression of AMPKα2 transcript was reduced by 70-90% compared to control. Moreover, AMPKα1 expression was also attenuated by 20-40% (Fig. 6A). Western blot analysis confirmed the presence of reduced AMPK level in these cells (Fig. 6A), referred to here as IGROV-1 shAMPKα2 cells. Proliferation (Suppl. Fig. 7) and viability (Fig. 6B) of IGROV-1 shAMPKα2 cells under standard culture conditions were similar to that of control cells, transduced with a scramble shRNA vector. However, glucose starvation was associated with significantly higher death of IGROV-1 shAMPKα2 compared to control cells (Fig. 6B). Intriguingly, attenuation of AMPKα2 was followed by a marked increase in glucose consumption and lactate production under normoxic conditions (Fig. 6C), implying that AMPK levels modulate the glycolytic rate in IGROV-1 cells.

In vivo, xenografts derived from IGROV-1 shAMPKα2 cells developed at faster rates compared to controls (Fig. 6D). Following treatment with A4.6.1, a significant increase in necrosis was measured in tumors formed by IGROV-1 shAMPKα2 cells, whereas no difference was measured in control tumors (Fig. 6D).
Altogether, these findings show that AMPK levels are critical to modulate the morphologic responses of tumors to VEGF neutralization.
DISCUSSION

Here we investigated how metabolic parameters contribute to determine the pathologic response to VEGF blockade in tumor xenografts. A first conclusion is that the glycolytic rate in cultured cell lines and their level of "glucose addiction" are of paramount importance in determining the amount of necrosis caused by angiogenesis inhibition. Although it is well recognized that low glucose concentrations can be present in large solid tumors due to their compromised vascular functions (20, 33), with regard to the effects of anti-angiogenic drugs, previous studies have mainly characterized changes in hypoxia, assuming that glucose would remain available due to its high diffusion capacity in tissues. Our metabolic imaging results clearly showed that VEGF blockade acutely perturbs glucose and ATP levels in xenografts. Since in PET experiments FDG uptake in A4.6.1 treated animals was either the same (IGROV-1) or even higher (OC316) than in untreated controls (Fig. 4B), glucose supply does not seem to be impaired by short-term anti-VEGF treatment. The higher FDG uptake into A4.6.1-treated OC316 tumors may be the result of either a higher glucose consumption rate or the induction of GLUT transporters which facilitate cellular uptake. Both mechanisms may depend from hypoxia-induced HIF-1α accumulation, which was indeed detected in A4.6.1-treated tumors (Suppl. Fig. 2). Although PET findings may appear to contradict those of bioluminescence-based metabolic imaging, it should be stressed that one method measures glucose uptake and the other steady-state levels. Therefore, it is possible that glucose consumption in anti-VEGF treated animals exceeds the increased glucose uptake, resulting in lower steady-state levels of this metabolite.
Metabolic imaging also showed that anti-VEGF treatment caused similar drops in mean ATP levels in OC316 and IGROV-1 xenografts. Therefore, quantitative variations in ATP levels are not likely to account for the different levels of necrosis detected in OC316 versus IGROV-1 xenografts.

A second key finding of the study is the demonstration that VEGF blockade increased AMPK activation in tumors, as demonstrated by immunohistochemistry analysis of pAMPK and pACC levels both in xenografts of ovarian cancer cells treated with two different angiogenesis inhibitors and in spontaneous tumors arising in RIP-Tag2 transgenic mice (Fig. 5). AMPK is a central metabolic switch found in all eukaryotes that governs glucose and lipid metabolism in response to alterations in nutrients and intracellular energy levels, as well as cell polarity (29). The serine-threonine kinase liver kinase B1 (LKB1), a known tumor suppressor, is a key upstream activator of AMPK (29). Since AMPK is activated when intracellular levels of ATP decline and intracellular levels of AMP increase, such as during nutrient deprivation and hypoxia, a certain level of AMPK activation is commonly seen in solid tumors (34), and we also observed this in the peri-necrotic areas of our control xenografts (Fig. 5). In our study, however, hypoxia did not activate AMPK in vitro unless tumor cells were grown under glucose starvation (Suppl. Fig. 5). Therefore, AMPK activation after VEGF blockade is not likely to depend directly on hypoxia but, rather, on the low glucose and ATP levels detected in tumors. Indeed, AMPK activation fits nicely with the results of bioluminescence imaging. AMPK deficiency promotes apoptosis in culture following treatment with energy stress-inducing agents (30, 35), probably because cells cannot restore ATP levels. It is thus possible that defects
of AMPK activation may in part account for the reduced survival of OC316 cells under glucose starvation or 2DG treatment \textit{in vitro}, as well as after anti-angiogenic therapy \textit{in vivo}. The finding of a V320M variation in the LKB1 domain involved in interaction with STRAD\(\alpha\) (31) might affect LBK1 trafficking and could putatively explain the predominantly nuclear localization of LKB1 in these cells, as well as its reduced activity (36). Importantly, attenuation of AMPK\(\alpha_2\) in IGROV-1 cells was sufficient to modulate their survival under glucose starvation \textit{in vitro} and to increase the level of necrosis in xenografts treated with the anti-VEGF mAb, thus lending support to this hypothesis.

We also noticed that AMPK\(\alpha_2\) attenuation increased glucose consumption and lactate production by IGROV-1 cells, thus contributing to the Warburg effect. It was previously known that HIF1\(\alpha\) and its target genes are up-regulated in LKB1-AMPK- and TSC-deficient fibroblasts, indicating that loss of any of these genes is sufficient to alter cell metabolism (37, 38). In IGROV-1 cells, HIF1\(\alpha\) activity measured by a luciferase-based reporter assay doubled following attenuation of AMPK\(\alpha_2\) levels by shRNA (Suppl. Fig. 8), suggesting that HIF1\(\alpha\) could in part contribute to the modulation of cell metabolism in this system. The observation that AMPK is dis-functional in OC316 cells may also in part explain their increased glycolytic phenotype compared with IGROV-1 cells, although we are aware that also other signalling pathways dis-regulated in cancer - including c-myc, KRAS, Akt, and p53 - may regulate glucose metabolism (39). In this regard, it is important to stress that Akt phosphorylation at residues ser473 and thr308 was lower in OC316 compared to IGROV-1 cells (Suppl. Fig. 9). Thus, although it has been reported that cells with high Akt activity do not activate AMPK efficiently (40), this mechanism is not likely involved in OC316 cells.
This study clearly has translational implications both for ovarian cancer and other malignancies. Bevacizumab has therapeutic activity in ovarian cancer also as single agent (41, 42) and two large phase III clinical trials (GOG-218 and ICON7) are undergoing to establish whether it improves efficacy of standard chemotherapy (43, 44). Our findings are potentially important for several reasons. First, they identify both AMPK activation and the glycolytic phenotype of tumors as novel biomarkers of pathologic response to anti-VEGF therapy, although further work will be required to validate these concepts and to determine their predictive value in patients. Second, our findings may offer an interpretation of the molecular mechanisms underlying certain toxic effects of VEGF blockade, including GI perforations and bleeding. GI perforations have been reported in as high as 11.4% of patients with metastatic ovarian cancer treated with bevacizumab (42) and occur more frequently in subjects with more advanced stage disease showing tumor involvement of the intestinal wall. Life-threatening bleeding has been reported in about 2.3-10% of patients with metastatic non-small cell lung cancer (NSCLC) treated with bevacizumab and chemotherapy and squamous histology and tumor cavitation before or during bevacizumab treatment remain the only known risk factors (45). It will be important to test whether highly glycolytic tumors or tumors bearing defects in LKB1/AMPK are associated with these serious side effects, particularly in NSCLC, where LKB1 mutations are common (46).

Finally, our study has highlighted the potential of MRI/MRS analysis for non-invasive metabolic characterization of tumors, which is important because it is generally difficult to obtain biopsies from cancer patients subjected to anti-angiogenic therapy. The MRS approach adopted in the present work, although
liable to overestimation due to possible residual lipid contamination, has already been applied to tumours in patients (47). *In vivo* detection of lactate levels and alterations following anti-VEGF treatment by MRS in combination with MRI could represent non-invasive tools to identify "glucose addicted" tumors and correlate this with AMPK function and clinical responses to bevacizumab and other anti-angiogenic drugs.
DISCLOSURE OF POTENTIAL CONFLICTS OF INTERESTS

The Authors have no conflicts of interest to declare.

ACKNOWLEDGMENTS

We thank Genentech, Inc. for providing the A4.6.1 anti-VEGF mAb. We are indebted to P. Fogar (Azienda Ospedaliera di Padova, Padova, Italy) for lactate/glucose measurements. We also with to thank F. Podo (Istituto Superiore di Sanità, Rome, Italy) for stimulating discussions of these data.

GRANT SUPPORT

This work was supported by grants from AIRC and FIRC; Ministry of University and Research, 60% and PRIN; Ministry of Health, Oncology Program 2006; Banco Popolare di Verona, Progetto Oncologico di Medicina Molecolare: i tumori femminili; Università di Padova - Progetto d'Ateneo 2010 - and from the Deutsche Forschungsgemeinschaft DFG (Mu 576/15-1 and SA 1749/3-1) and from the Mainzer Forschungsfoerderungsprogramm MAIFOR (#8277000).
REFERENCES

FIGURE LEGENDS

Figure 1. Anti-VEGF therapy increases necrosis of highly glycolytic tumors.

A: Kinetics of tumor development in SCID mice and effects of 3 injections of the anti-VEGF mAb A4.6.1 (arrows, 100 μg/dose, administered every 2 days) on tumor size. * $P < 0.05$ compared to the size of controls ($n = 6$ mice per group).

B: Vascularization of tumors by staining with anti-CD31 mAb and calculation of microvessel density (MVD). Representative images (original magnification: x200) are shown. Columns show mean ± SD values ($n=5-10$ fields per tumour; $n=6$ tumors per group), * $P < 0.05$.

C: Evaluation of hypoxia by pimonidazole adducts staining. Representative images (original magnification: x200) are shown. Columns indicate quantitative analysis of hypoxic areas ($n= 5-10$ fields per tumour; $n=6$ tumors per group), * $P < 0.05$.

D: Histological analysis shows larger necrotic areas in OC316 tumors compared with IGROV-1 tumors after A4.6.1. Representative images (original magnification: x25) are shown. The continuous line marks the boards of necrotic tissue. Columns indicate quantitative analysis of necrotic areas in $n=5$ different tumors per group, * $P < 0.05$.

Figure 2. Morphometric and metabolic changes induced by anti-VEGF therapy in OC316 xenografts.

A: ADC distributions showed an increase in the areas of necrosis (visible as the longer wing at the higher ADC values) in the A4.6.1-treated group compared with controls.
B: Top panels: T2-weighted images of OC316 xenografts pre (18 dpi) and 48 h post (26 dpi) the third dose of anti-VEGF mAb (A4.6.1, 100 μg/dose administered every other day). Controls received PBS injections. Bottom panels: ¹H MR localised spectra (PRESS sequence, TR/TE=4000/272 ms) acquired from the voxels shown as blue or red rectangulars in the images (ranging between 15 and 37 μl) at 18 (Pre) and 26 dpi (Post).

Figure 3. Metabolic effects of anti-VEGF therapy in tumors measured by bioluminescence imaging.

A-B: H&E staining as well as color-coded distributions of ATP and glucose in sequential cryosections from representative OC316 and IGROV-1 tumors treated or not with the anti-VEGF mAb A4.6.1 (100 μg/dose, 3 doses given every other day). The concentration values were color-coded, with each color corresponding to a defined concentration range in μmol/g.

C: Metabolite concentrations in OC316 and IGROV-1 tumors treated or not with A4.6.1. Values were derived exclusively from vital tumor regions. ATP and glucose values were calculated from n = 12-32 sections from 4-10 different tumors.
Figure 4. Effect of anti-VEGF treatment on 18F-FDG uptake in tumors measured by positron emission tomography (PET).

A: Representative PET images of IGROV-1 and OC316 tumors treated or not with the anti-VEGF mAb A4.6.1. In OC316 tumors areas of reduced uptake in the center of the tissue can be identified. These areas correspond to extensive necrosis in these tumors. For further analysis these regions have been excluded.

B: Time-activity curves of FDG uptake for IGROV-1 (n=11) and OC316 tumors (n=12-16 samples). The uptake values per volume were normalized to a reference tissue (soft tissue of the neck region); data are expressed as mean ± SEM; (*) p<0.05.

Figure 5. Anti-VEGF/R2 therapy increases AMPK activation in tumors.

A-B: Representative pictures of pAMPK and pACC staining of xenografts following treatment with the anti-VEGF mAb A4.6.1 (100 μg/dose, 3 doses given every 2 days). Arrows indicate pACC positive areas in control tumors. Right, scoring of pAMPK or pACC positive areas in n=6 different tumors for each group. *, P < 0.01.

C: Analysis of pACC staining of IGROV-1 xenografts following treatment with vandetanib (50 mg/Kg/day for 3 days). Right, scoring of pACC positive areas in n=7 different tumors for each group. *, P < 0.01.

D: Analysis of ACC activation in RIP-Tag2 tumors treated for 1 week (Short-Term) or 4 continuous weeks (Long-Term) with anti-mVEGFR2 antibody (DC101). Left, representative pictures of p-ACC immunohistochemical detection are shown for each treatment group. T, individual tumors. Bottom, quantification of the percentage of pACC positive tumors per animal in each treatment group. A total of
116 tumors were scored, from 4 independent animals per treatment group. *, $P < 0.05$.

Figure 6. AMPKα2 silencing increases tumor cell death under glucose starvation and modulates the *in vivo* response to anti-VEGF therapy.

A: Transduction of IGROV-1 cells with lentiviral vectors encoding two different shRNA targeting AMPKα2 (shAMPKα2) modulates AMPKα mRNA (top) and protein (bottom) expression levels, compared to controls (shRNA). Similar findings were obtained in 2 additional independent experiments.

B: Measurements of apoptosis by Annexin V staining of IGROV-1 cells bearing reduced AMPKα2 levels under glucose starvation. Experiments were performed either under normoxic or hypoxic (0.5% pO$_2$) conditions. Columns report the mean values ± SD of four independent experiments. *, $P < 0.05$, compared to shRNA values.

C: Measurement of glucose consumption and lactate production. Cells were plated in P6 wells at 1.5 x 105 cells/well, incubated for 24 and 48 h *in vitro* under normoxic conditions and metabolic parameters quantified by an automatic analyzer. Mean ± SD of three experiments is shown. *, $P < 0.05$.

D: AMPKα2 attenuation is associated with increased necrosis following anti-VEGF therapy. Subcutaneous tumor growth curves and measurement of tumor size are shown in the left panels (n=6 tumors/group). Histological analysis (right panels) disclosed large necrotic areas in shAMPKα2(1) IGROV-1 tumors after A4.6.1 administration. Representative images (original magnification: x200) are shown. The continuous line marks the boards of necrotic tissue. Columns indicate
quantitative analysis of necrotic areas in $n = 6$ different tumors of each group. *, $P < 0.05$.
Figure 2

A

A4.6.1

ADC distribution

Control

ADC distribution

Count

Count

0 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

Pre Post

Pre Post

B

A4.6.1

T2W MRI

Pre

Post

Control

T2W MRI

Pre

Pre

Post

Post

Downloaded from cancerres.aacrjournals.org on April 14, 2017; © 2011 American Association for Cancer Research.
Figure 4

A

IGROV-1

DC316

Control

A4.6.1

B

IGROV-1

OC316

ml ERO-uptake (%)

0 600 1200 1800

0 600 1200 1800

ml ERO-uptake (%)

A4.6.1

Control

* *
GLYCOLYTIC PHENOTYPE AND AMP KINASE MODIFY THE PATHOLOGIC RESPONSE OF TUMOR XENOGRAFTS TO VEGF NEUTRALIZATION

Giorgia Nardo, Elena Favaro, Matteo Curtarello, et al.

Cancer Res Published OnlineFirst May 5, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-0242

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/05/05/0008-5472.CAN-11-0242.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.