Abstract

Bone metastasis is a complication occurring in up to 70% of advanced breast cancer patients. The estrogen receptor-related receptor alpha (ERRα) has been implicated in breast cancer and bone development, prompting us to examine whether ERRα may function in promoting the osteolytic growth of breast cancer cells in bone. In a mouse xenograft model of metastatic human breast cancer, overexpression of wild-type ERRα reduced metastasis, whereas overexpression of a dominant negative mutant promoted metastasis. Osteoclasts were directly affected and ERRα upregulated the osteoclastogenesis inhibitor, osteoprotegerin (OPG), providing a direct mechanistic basis for understanding how ERRα reduced breast cancer cell growth in bone. In contrast, ERRα overexpression increased breast cancer cell growth in the mammary gland. ERRα-overexpressing primary tumors were highly vascularized, consistent with an observed upregulation of angiogenic growth factor, the VEGF. In support of these findings, we documented that elevated expression of ERRα mRNA in breast carcinomas was associated with high expression of OPG and VEGF and with disease progression. In conclusion, our results show that ERRα plays a dual role in breast cancer progression in promoting the local growth of tumor cells, but decreasing metastatic growth of osteolytic lesions in bone. *Cancer Res; 71(17); 1–11. ©2011 AACR.*

Introduction

Bone metastasis is a frequent complication of cancer, occurring in up to 70% of patients with advanced breast cancer. Bone metastasis is not a direct cause of death but is associated with significant morbidity (1). For cancer cells to grow in bone, malignant cells recruit and activate osteoclasts (OC; bone resorbing cells) to resorb the bone matrix. Indeed, osteolytic breast cancer metastasis are characterized by an increase in OC number and activity at the bone metastatic site, where excessive bone destruction provides a permissive microenvironment for breast cancer cells to proliferate and expand (2, 3). Unfortunately, current treatments for bone metastasis that rely on antiresorptive agents are only palliative, raising the need for a better understanding of the molecular mechanisms involved in this pathology so as to design potential alternative therapies (3, 4).

Nuclear steroid receptors are transcription factors that comprise both ligand-dependent molecules such as estrogen receptors (ER) and a large number of so-called orphan receptors, for which no ligand has yet been determined (5). Three orphan receptors, estrogen receptor-related receptor alpha (ERRα), ERRβ, and ERRγ, share structural similarities with ERα and ERβ (5), but they do not bind estrogen (6, 7). Sequence alignment of ERRα and the ERs reveals a high similarity (68%) in the 66 amino acids of the DNA binding domain, but only a moderate similarity (36%) in the ligand-binding domain, which may explain the fact that ERRα recognizes the same DNA binding elements as ERs but does not bind estrogen (8). Although ERRα activity is decreased by the synthetic molecule XCT790, no natural ligand has yet been found (9–11).

ERRα is known to regulate fatty acid oxidation and the adaptive bioenergetic response (12, 13). It is widely expressed in normal tissues, but several RNA expression studies show its presence in a range of cancerous cells including breast, prostate, endometrial, colorectal, and ovarian tumor tissues (14–20). ERRα was markedly increased in neoplastic versus normal tissues, and ERRα-positive tumors were associated with more invasive disease and higher risk of recurrences (14, 15). On the contrary, ERα and ERβ were significantly lower in neoplastic versus normal tissue and were associated with better prognosis (14, 17, 18). ERRα is also highly expressed in skeletal tissues (21, 22) and has been reported to regulate...
osteoblast, OC differentiation, and bone formation \textit{in vitro} (21, 22, 23, 24) and \textit{in vivo} (25–27). Consistent with these observations, osteopontin (OPN) has been reported to be a direct target gene of ERR\textsubscript{x} in osteoblastic cell lines (28–30). The role of ERR\textsubscript{x} in bone metastasis formation is currently unknown.

In the light of these findings, we asked whether ERR\textsubscript{x} is involved in breast cancer bone metastasis formation and progression, and whether modulating its activity abrogates bone destruction.

Materials and Methods

Ethics statement

BALB/c and NMRI mice were purchased from Charles River laboratories. All procedures involving animals, including housing and care, the method by which they were killed, and experimental protocols, were conducted in accordance with a code of practice established by the local ethical committee (CREEA: comite Regionale d’Ethique pour l’Expérimentation Animale). Studies involving human primary breast tumors were carried out according to the principles embodied in the Declaration of Helsinki. Patients were included anonymously in this study. All human experiments were approved by the Experimental Review Board from the Laennec School of Medicine.

Breast cancer tissue specimens

The autopsy files of the Department of Pathology (Pr. J. Boniver, Centre Hospitalier Universitaire de Liège, Belgium) were searched for diagnosis of disseminated breast cancer with histologically proven bone metastasis during the period 1991 to 1998. Slides were retrieved, and clinical history was obtained. Two breast cancer patients who died with disseminated disease, including bone metastasis, were selected for immunohistochemistry. Soft tissue metastasis (TM) was fixed with formalin, dehydrated, and paraffin embedded.

Breast cancer cohort of patients

In the cohort, patients \((n = 251)\) were selected according to the following criteria: primary breast tumor without inflammatory features and no previous treatment \((31)\). Breast cancer tissue biopsies were obtained by surgery, selected by the pathologist, and immediately stored in liquid nitrogen until processing. The biopsies were pulverized using a MikroDismembrator (B.Braun Biotech International), and total RNA was extracted using TRI Reagent (Sigma). RNA quality was verified using an Agilent Bioanalyzer 2100 (Agilent Technologies). Real-time reverse transcriptase PCR (RT-PCR) was carried out.

Cell lines and transfection

MDA-BO2-FRT (BO2) cells and stably transfected clonal derivatives were cultured in complete Dulbecco’s modified Eagle’s medium (Invitrogen), 10% FBS (Perbio), and 1% penicillin/streptomycin (Invitrogen) at 37°C in a 5% CO\textsubscript{2} incubator. Characteristics of MDA-MB-231/BO2-FRT (BO2) breast cancer cells were previously described \((32)\). To avoid potential effects of different insertion sites, a pcDNAs/FRT vector (Invitrogen) was used to obtain the stable BO2-ERR\textsubscript{x}WT, BO2-ERR\textsubscript{x}\textDelta AF2, and BO2 (CT) cell lines. Human ERR\textsubscript{x} cDNA [wild type (WT) and \textDelta AF2-AD] was obtained from mRNA extracted from BO2-FRT cells, by using RT-PCR with specific primers \([\text{NM}_004451.3]: \text{ERR} \text{ upstream (177bp)}: \text{GGG AAG CTT AGC GCC ATG TCC AGC CAG; \text{ERR} \text{ downstream (WT; 177-1461 bp): GGG GGA TCC CCA CCC CTT GCC TCA GTC C; \text{ERR} \text{ downstream (\textDelta AF2-AD): GGG GGA TCC CCA CCC CTT GCC TCA TGT CTC GCG GAG GAG (177-1350 bp; helix11-12 deletion (32 amino acids))}.\text{Amplimers were sequenced for verification. The pcDNAs/FRT/ERR\textsubscript{x}-WT and pcDNAs/FRT/ERR\textsubscript{x}-\textDelta AF2-AD constructs were cotransfected with the plasmid POG44 (Invitrogen) conferring the specific integration into the FRT site present in the BO2 cells. For clonal selection, cells were cultured for 4 weeks in the presence of hygromycin (20 mg/mL; Invitrogen). Conditioned medium from all clones and from BO2 treated with the inverse agonist XCT-790 at 5×10^{-7} mol/L (Sigma) was obtained after 48 hours in \textalpha -MEM supplemented with 0.5% of serum, then filter sterilized and proteins quantified to use equal concentration of proteins for each condition (25 \mu g).**

Animal studies

Tumor fat pad experiments were carried out using BO2-ERR\textsubscript{x}WT-1, BO2-ERR\textsubscript{x}\textDelta AF2 (pool of AF2-1, -2, and -3 clones), and BO2 (CT1/2) cell lines \((10^6\text{ cells in 50 \mu L of PBS})\) injected into the fat pad of the fourth mammary gland of female 4-week-old NMRI nude mice (Charles River). Tumor progression was followed by bioluminescence (Nighthowl, Berthold), then tumor size and weight were determined after sacrifice at 66 days.

Bone metastasis experiments using the same pool of clones were carried out in 4-week-old BALB/c nude mice as previously described \((33)\). Cells were suspended at a density of 5×10^5 in 100 \mu L of PBS and inoculated intravenously into animals. Radiographs (LifeRay HM Plus, Ferrania) of animals were taken at 35 days after inoculation using X-ray (MX-20; Faxitron X-ray Corporation). Animals were sacrificed; hind limbs were collected for histology and histomorphometrics analyses. Tibiae were scanned using microcomputed tomography (Skyscan1076, Skyscan) with an 8.8 voxel size, and three-dimensional \((3D)\) reconstructions were carried out with a dedicated visualization software (Amira 5.2, Visage Imaging Inc.). The area of osteolytic lesions was measured using the computerized image analysis system MorphoExpert (Exploranova). The extent of bone destruction for each animal was expressed in square millimeter.

Bone histomorphometry and histology

Hind limbs from animals were fixed and embedded in paraffin. Five millimeter sections were stained with Goldner’s Trichrome and processed for histomorphometric analyses to calculate the bone volume/tissue volume \((BV/TV)\) ratio and the tumor burden/tissue volume \((TB/TV)\) ratio. The \textit{in situ} detection of OC was carried out on sections of bone tissue with metastasis using the tartaric-acid-resistant acid phosphatase \((TRAP)\) activity Kit assay (Sigma). The resorption surface \((\text{Oc. S}/\text{BS})\) was calculated as the ratio of TRAP-positive trabecular bone surface \((\text{Oc. S})\) to the total bone surface \((\text{BS})\) using the computerized image analysis system MorphoExpert (Exploranova).
Osteoclastogenesis assay
Bone marrow cells from 6-week-old OF1 male mice were cultured for 7 days in differentiation medium: α-MEM medium containing 10% fetal calf serum (Invitrogen), 20 ng/mL of macrophage colony-stimulating factors (M-CSF; R&D Systems), and 200 ng/mL of soluble recombinant receptor activator of nuclear factor κB ligand (RANKL; ref. 34). Cells were continuously (day 1–7) exposed to conditioned medium extracted (25 μg proteins for each conditions) from BO2 clones. After 7 days, mature multinucleated OC were stained for TRAP activity (Sigma-Aldrich) and counted as OC when containing 3 or more nuclei.

Immunofluorescence
BO2 cultures were fixed in culture wells with 3.7% paraformaldehyde (Sigma) in PBS for 10 minutes and permeabilized with 0.2% Triton X-100 in PBS. Immunodetection was carried out using a goat polyclonal antibody against human ERRα (Santa Cruz, Tebu) and the secondary antibody (fluorescein isothiocyanate-conjugated donkey anti-goat; Rockland, Tebu-bio). The distribution of F-actin was visualized using phalloidin (Molecular Probes; ref. 14). Cells were observed using an LMS510 laser scanning confocal microscope (Zeiss) with a 63× (numerical aperture 1.4) Plan Neo Fluor objective.

Immunoblotting
Cell proteins were extracted, separated in 4% to 12% SDS-PAGE (Invitrogen), then transferred to nitrocellulose membranes (Millipore) using a semidry system. For ERRα and α-tubulin detection, the same goat polyclonal antibody ERRα (Santa Cruz) and a mouse polyclonal antibody against human α-tubulin (Sigma-Aldrich) were used. Membrane was incubated with secondary antibody horseradish peroxide (HRP)-conjugated donkey anti-goat (Santa Cruz) and anti-mouse (Amersham), respectively. An ECL kit (PerkinElmer) was used for detection.

Immunocytochemistry
Five micrometer sections were subjected to immunohistochemistry using the same goat polyclonal antibody ERRα (Santa Cruz) and a rabbit polyclonal antibody against human osteoprotegerin (OPG; Abbiotec). Sections were incubated with secondary antibody HRP-conjugated donkey anti-goat and anti-rabbit, respectively (Amersham; dilution 1/300) for 1 hour. After washing, the sections were revealed by 3,3′-diaminobenzidine (Dako).

Real-time RT-PCR
Total RNA was extracted with Trizol reagent (Sigma) from cancer cells and OCs. Real-time RT-PCR was carried out on a

Table 1. Clinical and biological characteristics and ERRα mRNA expression in breast cancer patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All patients N = 251</th>
<th>pN0 patients N = 115</th>
<th>pN+ patients N = 136</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Median</td>
<td>P</td>
</tr>
<tr>
<td>Menopausal status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>105</td>
<td>2.68</td>
<td>0.425</td>
</tr>
<tr>
<td>Post</td>
<td>146</td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td>Surgical tumor size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20 mm</td>
<td>101</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>≥20 mm</td>
<td>142</td>
<td>2.69</td>
<td>0.256</td>
</tr>
<tr>
<td>ND</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td>205</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>Lobular</td>
<td>37</td>
<td>2.09</td>
<td>0.026</td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histologic gradea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>2.84</td>
<td>0.341</td>
</tr>
<tr>
<td>ND</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>115</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>1–3</td>
<td>83</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>53</td>
<td>3.12</td>
<td><0.001</td>
</tr>
<tr>
<td>RE status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>42</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>209</td>
<td>2.53</td>
<td><0.001</td>
</tr>
<tr>
<td>VEGF statusb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>92</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>93</td>
<td>3.08</td>
<td>0.002</td>
</tr>
<tr>
<td>ND</td>
<td>66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: P values correspond to Mann–Whitney test or Kruskall–Wallis test (histologic grade and node status).

aHistologic grade defined only in ductal carcinomas.
bLow: <50% quartile, high: ≥50% quartile.
Roche Lightcycler Module (Roche) with specific primers (see Supplementary Table S2). Real-time RT-PCR was carried out by using SYBR Green (Qiagen) on the Lightcycler system (Roche) according to the manufacturer’s instructions. Amplimers were all normalized to corresponding L32 values. Data analysis was carried out using the comparative \(C_T \) method.

Real-time RT-PCR on breast cancer tissue biopsy mRNA was carried out using primers specific for human \(L32 \) (101 bp): 5'-CAAGGAGCTGAAGTGCCTGC-3', 5'-CACGCTCTTTCCACGATGGCT-3'; TATA-box binding protein (\(TBP \); 138 bp) 5'-TGTTGTCAGCAAGCAGAAG-3', 5'-TTCACATCACAAGTCCCTGCT-3'; \(ERR \) (101 bp): 5'-ACCGAGAGATTGTGGTCGCCTCAGGAG-3', 5'-CATCCACACGCTGCTGCAGTACT-3' and \(OPG \) (Supplementary Table S2) and SYBR green (Invitrogen) in 96-well plates on a Mastercycler EP system (Realplex2, Eppendorf) according to the manufacturer’s instructions with an initial step for 10 minutes at 95 °C followed by 40 cycles of 20 seconds at 95 °C, 15 seconds at \(T_m \) (\(L32 \) 62 °C, \(TBP \) 67 °C, \(ERR \) 59 °C), and 10 seconds at 72 °C. \(ERR \) and \(OPG \) expression were normalized with the average of the genes expression encoding the ribosomal protein \(L32 \) and the \(TBP \).

Cell invasion assay

Invasion assays were carried out using Bio-Coat migration chambers (Becton Dickinson) with 8 \(\mu \)m filters coated with Matrigel as described previously (35). BO2 cells (5 \(\times \) 10^4) were plated in the upper chambers and the chemoattractant (10% FBS) in the lower chambers. After 24 hours at 37 °C in 5% \(CO_2 \) incubator, cells that had migrated through the filters were fixed and stained. Cells were counted (200× magnification). All experiments were run in triplicate, and invasion was expressed in cells/square millimeter.

OPG ELISA

Conditioned medium obtained from BO2-CT(1/2), BO2-\(ERR \)-WT-1, and BO2-FRT-\(ERR \)-AF2 (pool of AF2-1, -2
ERRx and Bone Metastasis

Results of lysis was carried out using the Cox proportional hazard model. The criterion for statistical analyses was the metastasis free survival (MFS), that is, the delay between the time of primary surgery and the first event: nodal or distant metastasis or death. Analysis of the distribution of ERRα expression in relation to the usual prognostic parameters was carried out using the Mann–Whitney or Kruskall–Wallis test. Survival probabilities were estimated using Kaplan–Meier estimators and were compared using the log-rank test. Univariate analysis was carried out using the Cox proportional hazard model. Results of \(P < 0.05 \) were considered significant.

Results and Discussion

ERRα mRNA and protein expression in human primary breast tumors and bone metastasis

We analyzed ERRα mRNA expression by real-time RT-PCR in a cohort of 251 breast tumor biopsies (Supplementary Table S1; ref. 31). As reported previously by others (14, 15, 17, 18), a statistically significant association was detected in all patients analyzed between ERRα expression and histologic type, node status, and ERs (radioligand method; \(P = 0.026, P < 0.001, P < 0.001; \) Table 1). The Kaplan–Meier curve was constructed after segmentation into 2 groups on the basis of the median value for ERRα expression (Fig. 1A–D). It was observed that high levels of ERRα mRNA expression were related to a decrease in MFS (\(N = 251, P = 0.034; \) Fig. 1A). Sixty-two percent of patients (35/56) with high ERRα expression levels exhibited liver, lung, and bone, and soft tissue metastasis compared with 38% of patients (21/56) having low ERRα levels (Fig. 1A, see frame). This paralleled the frequencies seen in patients (\(n = 22 \)) who had developed "only" bone metastasis (BM), that is, 64% (high ERRα) and 36% (low ERRα; Fig. 1A) suggesting that ERRα is an overall bad prognostic factor that is not a determinant of metastasis location of breast cancer cells. Moreover, high ERRα expression correlated with a higher risk of recurrence at an early stage of the disease in the ER-positive group (\(N = 209 \)), the pN0 subset, and in the pN < 3 lymph-node-positive subset (\(P = 0.04; P = 0.029, \) and \(P = 0.009; \) log-rank test), when compared with low ERRα (Fig. 1B–D) suggesting that ERRα may be a very useful early prognostic marker in breast cancer. Finally, as previously described (15), ERRα protein was present in situ and in invasive breast carcinoma cells (Supplementary Fig. S1B and C, respectively).

Statistical analysis

Data were analyzed statistically by one-way ANOVA followed by post hoc t-tests to assess the differences between groups for in vitro and in vivo studies. Concerning the cohort, the median follow-up at the time of analysis was 54 months. The criterion for statistical analyses was the metastasis free survival (MFS), that is, the delay between the time of primary surgery and the first event: nodal or distant metastasis or death. Analysis of the distribution of ERRα expression in relation to the usual prognostic parameters was carried out using the Mann–Whitney or Kruskall–Wallis test. Survival probabilities were estimated using Kaplan–Meier estimators and were compared using the log-rank test. Univariate analysis was carried out using the Cox proportional hazard model. Results of \(P < 0.05 \) were considered significant.

Figure 2. Modulation of ERRα in BO2 breast cancer cell line. A, ERRα protein expression (nucleus and cytoplasm) in BO2 cells by immunofluorescence and confocal microscopy and (B) in vivo by immunohistochemistry in bone metastasis present 30 days after intravenous injection of BO2 cells. C, isolation after stable transfection of three independent BO2-ERRαAF2 clones (ERRα dominant-negative form), one clone BO2-ERRαWT and two controls (CT-1 and CT-2) BO2-CT (empty vector). ERRα expression was assessed by real-time PCR on triplicate samples and normalized against that of the ribosomal protein gene L32 (ANOVA, \(P < 0.0001 \)) and (D) by Western blotting. (E) VEGF and OPN expression was increased in BO2-ERRαWT and decreased or not regulated in BO2-ERRαAF2 (ANOVA, \(P < 0.0001 \) for VEGF and OPN in WT-1 or AF2 versus CT). (A) bar – 20 μm and (B) bar – 200 μm. T, tumor; GP, growth plate.

and -3 clones) were diluted following the manufacturer’s instructions, and OPG concentration was evaluated using the ELISA Kit (RayBiotech).

The analyses of the ERα expression in the cohort were performed using the Cox proportional hazard model. The criterion for statistical analyses was the metastasis free survival (MFS), that is, the delay between the time of primary surgery and the first event: nodal or distant metastasis or death. Analysis of the distribution of ERα expression in relation to the usual prognostic parameters was carried out using the Mann–Whitney or Kruskall–Wallis test. Survival probabilities were estimated using Kaplan–Meier estimators and were compared using the log-rank test. Univariate analysis was carried out using the Cox proportional hazard model. Results of \(P < 0.05 \) were considered significant.

Results and Discussion

ERRα mRNA and protein expression in human primary breast tumors and bone metastasis

We analyzed ERRα mRNA expression by real-time RT-PCR in a cohort of 251 breast tumor biopsies (Supplementary Table S1; ref. 31). As reported previously by others (14, 15, 17, 18), a statistically significant association was detected in all patients analyzed between ERRα expression and histologic type, node status, and ERs (radioligand method; \(P = 0.026, P < 0.001, P < 0.001; \) Table 1). The Kaplan–Meier curve was constructed after segmentation into 2 groups on the basis of the median value for ERRα expression (Fig. 1A–D). It was observed that high levels of ERRα mRNA expression were related to a decrease in MFS (\(N = 251, P = 0.034; \) Fig. 1A). Sixty-two percent of patients (35/56) with high ERRα expression levels exhibited liver, lung, and bone, and soft tissue metastasis compared with 38% of patients (21/56) having low ERRα levels (Fig. 1A, see frame). This paralleled the frequencies seen in patients (\(n = 22 \)) who had developed "only" bone metastasis (BM), that is, 64% (high ERRα) and 36% (low ERRα; Fig. 1A) suggesting that ERRα is an overall bad prognostic factor that is not a determinant of metastasis location of breast cancer cells. Moreover, high ERRα expression correlated with a higher risk of recurrence at an early stage of the disease in the ER-positive group (\(N = 209 \)), the pN0 subset, and in the pN < 3 lymph-node-positive subset (\(P = 0.04; P = 0.029, \) and \(P = 0.009; \) log-rank test), when compared with low ERRα (Fig. 1B–D) suggesting that ERRα may be a very useful early prognostic marker in breast cancer. Finally, as previously described (15), ERRα protein was present in situ and in invasive breast carcinoma cells (Supplementary Fig. S1B and C, respectively).
but not in normal breast epithelial cells (Supplementary Fig. S1A). ERRα was also clearly present in breast cancer cells that metastasized to bone (Supplementary Fig. S1D see T). As previously reported by us (21), ERRα was also detected in osteocytes embedded in the bone matrix.

ERRα expression in breast cancer cells reduces their ability to induce osteolytic lesions in vivo

To assess whether ERRα is involved in bone metastasis formation, we used MDA-B02-FRT (BO2) cells, a subpopulation of the human MDA-231 breast cancer cell line, that was selected for the high efficiency with which it metastasizes to bone (32). ERRα protein was seen in the nucleus and cytoplasm of BO2 cells *in vitro* (Fig. 2A) and *in situ* in bone metastasis from legs of animals, 30 days after intravenous tumor cell inoculation (Fig. 2B).

To establish a functional role for ERRα in bone metastasis development, we next transfected BO2 cells with a full-length (WT) ERRα or a truncated version of ERRα lacking the coactivator binding domain AF2, ERRαΔAF2, which acts as a dominant-negative form (22, 23, 36; Fig. 2C). Constructs of human ERRαWT and ERRαΔAF2 were stably transfected into the genomic FRT site present in the BO2 cells. Three independent BO2-ERRαΔAF2 (1, 2, 3), one BO2-ERRαWT, and two BO2-CT (empty vector) clones were obtained, named AF2-1, AF2-2, AF2-3, WT-1, CT-1, and CT-2, respectively. As judged by real-time PCR, total ERRα mRNA expression was increased when compared with CT-1/2 clones (Fig. 2C). Western blotting detected a band of approximately 50 kD for ERRα protein in CT-1 and WT-1 that was increased in WT-1 and AF2-1, AF2-2, and AF2-3 cells. The presence of a band with a slightly lower molecular weight in AF2-1, AF2-2, and AF2-3 cells corresponded well with the expected size for truncation of the AF2 domain (42 amino acids; Fig. 2D). mRNA expression levels of the ERRα target genes *VEGF* and *OPN* were statistically significantly increased in WT-1 cells compared with CT-1/2 cells (Fig. 2E). By contrast, *VEGF* and *OPN* mRNA levels remained reduced or unchanged in AF2 clones (Fig. 2E), confirming the increased activity and the dominant-negative functions of the WT and truncated ERRαΔAF2 constructs, respectively.

To assess the involvement of ERRα in bone metastasis formation, CT (pool of CT-1 and -2 clones), WT-1, and AF2 (pool of AF2-1, -2 and -3 clones) cells were inoculated intravenously into female BALB/c nude mice. Thirty-five days after tumor cell injection, radiographic analysis revealed that animals bearing WT-1 tumors had osteolytic lesions that were 40% smaller than those of mice bearing CT tumors (Fig. 3A, B, and J). By contrast, there was a 3-fold increase in the extent of osteolytic lesions in animals bearing AF2 tumors, when compared with control (Fig. 3A, C, and J). The inhibitory effect of ERRα on cancer-induced bone destruction was confirmed using 3D micro-CT reconstruction (Fig. 3D-F), histology (Fig. 3G-I), and histomorphometric analyses of tibiae (BV/TV; skeletal tumor burden, TB/STV; Fig. 3J). Taken together, our results indicated that overexpression of ERRα in breast cancer cells reduced the formation of osteolytic lesions.

Regulation of OC formation by ERRα—expressing BO2 cells

Given these data, we next asked whether modulation of ERRα in breast cancer cells could alter OCs, the bone resorbing cells. TRAP staining of tibial sections of metastatic legs from animals bearing WT-1 and AF2 tumors showed a 43% decrease and a 143% increase of TRAP-positive OC surface (Oc:S/BS) at the bone/tumor cell interface, respectively, when compared with CT tumors (Fig. 4A and J; Supplementary Fig. S2). Consistent with these *in vivo* data, the treatment of primary mouse bone marrow cell
cultures with RANKL and M-CSF together with the conditioned medium of WT-1 cells inhibited the formation of TRAP-positive multinucleated OCs compared with that observed with the conditioned medium of CT cells (Fig. 4B and C). By contrast, the conditioned medium from AF2 cells stimulated OC formation (Fig. 4B and C). In addition, the conditioned medium from parental BO2 cells treated with the inverse agonist XCT-790, which blocks ERRα activity, increased OC formation compared with control (dimethyl sulfoxide; Fig. 4D), confirming our osteoclastogenesis data obtained with the conditioned medium of AF2 cells.

ERRα regulates OPG expression in breast cancer cells

We showed that BO2 breast cancer cells overexpressing wild-type ERRα markedly inhibited osteolysis *in vivo* (Fig. 3J) and reduced OC formation *in vitro* (Fig. 4). We quantified several markers involved in osteoblasts and OC differentiation, and we found that the OPG, a soluble decoy receptor for RANKL that inhibits osteoclastogenesis, was regulated by ERRα (Fig. 5A; ref. 37). By immunohistochemistry, we show that OPG expression was higher in skeletal WT-1 tumors compared with that observed in AF2 and CT tumors (Fig. 5B). In addition, as judged by ELISA, WT-1 cells secreted higher amounts of OPG compared with CT-1/2 and AF2 cells (pool of AF2-1, -2, and -3 clones; Fig. 5C). OPG mRNA expression was also quantified by real-time RT-PCR in the cohort of 251 patients. OPG levels were statistically significantly higher in ERRα-positive tumors compared with ERRα-negative tumors (Fig. 5D; *P* = 0.013). Moreover, there was a positive correlation between high mRNA expression levels of both ERRα and OPG (ERRα⁺/OPG⁺) and a decrease in relapse-free survival (*P* = 0.028, log-rank test; Fig. 5E). All together, the significant correlation between high ERRα and OPG in patients and the regulation of OPG by ERRα in BO2 cells provide a mechanistic basis for the reduction of osteoclastogenesis *in vitro* and *in vivo*. Interestingly, OPG in our preclinical data suggest that, alone it had no prognostic value in breast carcinomas (Fig. 5F) whereas in association with high ERRα mRNA levels, a correlation with a poor clinical outcome in patients was found (Fig. 5E). OPG is not only an osteoclastogenesis inhibitor, but also a survival factor for human breast cancer cells (38, 39). It also promotes angiogenesis (40), and its overexpression in human MCF-7 breast cancer cells enhances tumor growth following orthotopic inoculation in animals (41). ERRα has been implicated in tumor progression, and the positive association between high ERRα/OPG mRNA levels and increased risk of recurrences in patients (Fig. 5E) suggested that ERRα could play a role on primary tumor expansion.

ERRα stimulates tumor growth and angiogenesis *in vivo*

To address this hypothesis, orthotopic tumors were induced with CT (pool of CT-1 and -2 clones), WT-1, or AF2 (pool of AF2-1, -2, and -3 clones) cells upon inoculation within the mammary fat pad of NMRI nude female mice.
Bioluminescence analysis from day 5 to day 66 revealed a dramatically greater tumor progression in WT-1 tumor-bearing animals compared with that observed with CT and AF2 tumor-bearing animals (Fig. 6A and B). Tumor weight/size at day 66 (Fig. 6C and D) correlated well with bioluminescence quantification (Fig. 6B and C). Interestingly, WT-1 tumors were highly vascularized compared with CT and AF2 tumors (Fig. 6E), an observation correlating with higher VEGF mRNA levels observed in WT-1 versus AF2 or CT tumors (Fig. 6E). Moreover, if these results are in agreement with previous data describing VEGF as a target gene for ERRα in breast cancer (42), we show for the first time a positive association between high levels of ERRα and VEGF in breast tumors from patients (P = 0.002; Table 1). Interestingly, OPG expression that can be stimulated by VEGF in endothelial cells, is also known to be a positive regulator of microvessel formation in vivo (43) and therefore can participate to the neovascularization observed in WT-1 tumors. We also observed that ERRα promoted BO2 breast cancer cell invasion in vitro (Supplementary Fig. S3A) but has a slightly effect on proliferation (data not shown). Consistent with this we found matrix metalloproteinases MMP1 and MMP13 regulated by ERRα (Supplementary Fig. S3B). These results were in agreement with previous findings showing that the silencing of ERRα dramatically reduced the in vitro migratory capacity of breast cancer cell lines (44). Taken together, these results strongly suggested that ERRα promoted tumor growth, mainly through the stimulation of angiogenesis and invasion. Based on our results on high ERRα/OPG/VEGF in our preclinical study, we propose that OPG worked in concert with VEGF to stimulate tumor angiogenesis which, in turn, promoted the growth of BO2-ERRαWT cells. Conversely, in bone metastasis although the angiogenic factor VEGF was overproduced in BO2-ERRαWT cells, tumor-derived VEGF had probably a low impact on progression of osteolytic lesions. Indeed, recent studies have shown that hypoxia was nonessential for bone metastasis while promoting angiogenesis in lung metastasis and primary tumor

Figure 5. Correlation of ERRα and OPG in BO2 cells and breast cancer patients. A, real-time PCR carried out on RNA extracted from BO2 clones showed increased expression of OPG by ERRα (ANOVA, P < 0.0001). B, staining for OPG is higher in bone metastasis induced by BO2-ERRαWT cells compared with BO2-CT and BO2-ERRαΔAF2 cells; tissues collected 35 days postcell inoculation. C, ELISA quantification confirmed the increased secretion of OPG by BO2-ERRαWT compared with BO2-CT (pool) and BO2-ERRαΔAF2 (pool) cells (ANOVA, P = 0.0064; P < 0.01 CT versus WT-1 and WT-1 versus AF-2). D and E, a significant correlation was also found between levels of ERRα mRNA and median values of OPG mRNA in the cohort (ERRα 1st quartile and median OPG = 2.03; ERRα 2nd–4th quartile and median OPG = 3.45). Kaplan-Meier curves show that ERRα+/OPG+ expression was associated with a decrease in MFS. F, OPG alone was not associated with MFS.
Therefore, modulating angiogenesis through VEGF and the proangiogenic role of OPG may have no impact on angiogenesis in bone, as bone is already extremely vascularized (46), but have dramatic impact on vascularization and progression of primary breast tumors or metastasis to nonbone sites. These data provide novel insights into how ERRα can be a bad prognostic factor in the primary tumor (angiogenesis via VEGF and OPG) but a favorable biomarker in the very special case of bone metastasis (inhibition of OC formation through OPG).

In conclusion, our results show for the first time that ERRα plays a dual role, promoting the progression and invasion of primary tumors, but decreasing osteolytic lesions in bone. In addition, our data show that OPG is modulated by ERRα that probably contributes to the overall negative clinical outcome which is associated with the expression of ERRα in human breast carcinomas.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We are very grateful to C. Lionnet and C. Chamot from PLATIM (IFR 128 Lyon Biuscience) for their help with imaging experiments and to Blandine Deux, Vincent Gonin, and Pascale Heneaux for their technical help. The authors also thank the CeCIL platform (Faculté de Médecine Laennec, Lyon, France) for technical assistance.
Grant Support

This work was supported by the CNRS (EB), Inserm, the University of Lyon, "Ligue Regionale contre le Cancer" (Isère; E. Bonnelye). A. Fradet is supported by the Ligue Nationale contre le Cancer, B. Depalle by region Rhône Alpes, and A. Bellaeche from the National Fund for Scientific Research, Belgium.

References

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 29, 2011; revised June 29, 2011; accepted June 29, 2011; published OnlineFirst July 6, 2011.

36. Vanacker JM, Pettersson K, Gustafsson JA, Laudet V. Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. Embo J 1999;18:4270–9.

Dual Function of ERRα in Breast Cancer and Bone Metastasis Formation: Implication of VEGF and Osteoprotegerin

Cancer Res Published OnlineFirst July 6, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-1431

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/07/06/0008-5472.CAN-11-1431.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.