Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress induced ligand of the natural killer cell receptor NKG2D

Anja Heinemann1, Fang Zhao1, Sonali Pechlivanis2, Jürgen Eberle3, Alexander Steinle4, Sven Diederichs5, Dirk Schadendorf1, Annette Paschen1

1Department of Dermatology and 2Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45122 Essen, Germany; 3Department of Dermatology and Allergy, Charité – University Medical Center Berlin, HTCC – Skin Cancer Center, 10117 Berlin, Germany; 4Institute for Molecular Medicine, University Frankfurt, 60590 Frankfurt, Germany; 5Helmholtz-University-Group “Molecular RNA Biology & Cancer”, German Cancer Research Center (DKFZ) & Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany

Contact: Annette Paschen

Department of Dermatology, University Hospital Essen
Hufelandstrasse 55, 45122 Essen, Germany
Tel. (+49) 201 723 2406, Fax (+49) 201 723 5171
email:annette.paschen@uk-essen.de

Running Title: NKG2D ligand regulation

Key Words: NKG2D ligand, ULBP2, melanoma, miR-34, p53
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

This study was supported by the Melanoma Research Network of the Deutsche Krebshilfe to A.H., D.S., A.P., the Helmholtz Alliance on Cancer Immunotherapy to A.P. and the DKFZ-MOST-Cooperation Program (Ca-135) to S.D.
Abstract

Malignant cells express ligands for the natural killer cell immunoreceptor NKG2D, which sensitizes to early recognition and elimination by cytotoxic lymphocytes and provides an innate barrier against tumor development. However, the mechanisms that control NKG2D ligand (NKG2DL) expression in tumor cells remain unknown. We recently identified the NKG2DL ULBP2 as strong prognostic marker in human malignant melanoma. Here we provide evidence that the tumor-suppressive microRNAs (miRNAs) miR-34a and miR-34c control ULBP2 expression. Reporter gene analyses revealed that both miRNAs directly targeted the 3'-untranslated region of ULBP2 mRNA and that levels of miR-34a inversely correlated with expression of ULBP2 surface molecules. Accordingly, treatment of cancer cells with miRNA inhibitors led to upregulation of ULBP2, while miR-34 mimics led to downregulation of ULBP2, diminishing tumor cell recognition by NK cells. Treatment with the small molecule inhibitor Nutlin-3a also decreased ULBP2 levels in a p53-dependent manner, which was due to a p53-mediated increase in cellular miR-34 levels. Taken together, our study demonstrates that tumor-suppressive miR-34a and miR-34c act as ULBP2 repressors. These findings also implicate p53 in ULBP2 regulation, emphasizing the role of the specific NKG2DL in tumor immune surveillance.
Introduction

NKG2D is a receptor of Natural Killer (NK) cells and cytotoxic T lymphocytes (CTLs), involved in the detection of abnormal self, as it occurs upon infection or malignant transformation. Ligands of NKG2D are surface molecules, structurally related to classical MHC class I molecules that in humans belong to either the MIC (MICA, MICB) or the ULBP (ULBP1-6) molecule family (1). The importance of the NKG2D receptor-ligand system for the recognition and suppression of tumors has clearly been demonstrated in different mouse models (2-7). Tumor cells modified to express NKG2D ligands (NKG2DL), when grafted into mice, were rejected while non-modified cells formed tumors (2-4). Evidence for an involvement of NKG2D in early immune surveillance of malignancies was provided by Raulet and coworkers who observed an increased incidence of spontaneous tumors in NKG2D-deficient mice (6). Accordingly, Unni et al. reported an early induction of NKG2DL surface expression during spontaneous murine tumorigenesis (5).

In humans, NKG2DL have been detected on tumor cells from different entities, sensitizing them to killing by NK cells and CTLs (8-10). Cancer cells often express a variety of NKG2DL, like melanoma cells that show a predominant expression of MICA and ULBP2 detectable in vitro and in situ (10-12). However, tumor cells can escape from NKG2D immune surveillance by an enhanced proteolytic shedding of NKG2DL (13-15). This shedding is most likely causative for the increased levels of soluble ligands in sera of cancer patients (16-18). Recently, we identified elevated levels of soluble ULBP2 in sera from melanoma patients as strong independent predictor of poor prognosis (12).

Despite the importance of NKG2DL in tumor immune surveillance, the mechanisms that control their expression in cancer cells are largely unknown. In general, NKG2DL surface expression is elicited under conditions associated with cellular stress like infection, heat shock and DNA damage (19-21). Notably, mRNA expression of NKG2DL has been detected in several normal tissues that, however, lack NKG2DL proteins, pointing towards a tight
regulation of mRNA translation (1, 22). microRNAs (miRNAs) recently emerged as central regulators of mRNA degradation and/or translation (23), involved in the control of different fundamental biological processes. miRNAs are non-coding small RNAs of 20-23 nucleotide length, binding to complementary sequences within the 3’-untranslated region (3’-UTR) of specific mRNAs (23).

Our observation on ULBP2 as a strong prognostic marker in malignant melanoma prompted us to study its regulation in tumor cells that so far remained elusive. Focusing on posttranscriptional mechanisms, we provide evidence herein that members of the tumor-suppressive miR-34 family directly control ULBP2 expression. Furthermore, our data also point to p53 as a regulator of ULBP2 indicating that different tumor suppressors are involved in the control of this specific NKG2DL.
Materials and Methods

Cells
Melanoma cell lines UKRV-Mel-02, UKRV-Mel-15a, Mel592 have been described (10, 24), Ma-Mel-48a, Ma-Mel-47, Ma-Mel-123 and Ma-Mel-100a were established from tumor metastases. Patient tumor samples were collected after written informed consent. Studies on human material were approved by the institutional review board of the University Medicine Mannheim (Mannheim, Germany). HCT116 p53+/+ and HCT116 p53-/ cells were kindly provided by Bert Vogelstein (John Hopkins University). All cell lines were cultured in RPMI1640 or DMEM supplemented with 10% FCS.

Plasmid constructs and reagents
Different fragments of the ULBP2 3’-UTR were amplified by PCR from cDNA of Ma-Mel-47 cells and subsequently cloned into the dual luciferase vector psiCHECK2 (Promega), leading to the following constructs: pULBP2-3.1 (complete ULBP2 3’-UTR), pULBP2-3.2 (proximal half of the 3’-UTR with miR-34 binding site) and pULBP2-3.3 (distal half of the 3’-UTR, no miR-34 binding site). Site specific mutation of the miR-34 binding site in pULBP2-3.1 was carried out with the QuikChange Lightning Site-Directed Mutagenesis Kit (Stratagene), yielding the construct pULBP2-3.1Mut. Primers used for amplification and site specific mutagenesis are listed in supplementary Table S1. The miScript miRNA mimics and Allstars control siRNA were purchased from Qiagen (supplementary Table S2) and used at concentrations of 2.5 nM (for HEK293, UKRV-Mel-02) and 20-40 nM (for UKRV-Mel-15a). A specific, chemically modified single strand nucleic acid Anti-miRTM miRNA inhibitor for inhibition of endogenous miR-34a activity and a control inhibitor (Anti-miRTM miRNA inhibitor, negative control #1) were obtained from Ambion (Applied Biosystems) and used at a concentration of 150 nM. Transfer of plasmids, miRNA mimics and miRNA inhibitors was carried out with the transfection reagents Lipofectamine or Lipofectamine 2000 (Invitrogen).
according to the manufacture’s protocol. The MDM2 inhibitor Nutlin-3a (Cayman Chemical) was added to the culture medium at indicated concentrations, control cells were treated with the solvent only.

Luciferase assay

HEK293 cells, seeded into 6-well plates, were cotransfected with 1 µg of the reporter gene constructs (pULBP2-3.1, pULBP2-3.2, pULBP2-3.3, pULBP2-3.1Mut) and 2.5 nM of miScript miRNA mimics. After 48 h, cells were lysed and analyzed for Renilla and Firefly luciferase activity using the Dual-Glo luciferase assay system (Promega). Each transfectant was assayed in triplicates. Activity of Renilla luciferase was normalized to Firefly luciferase.

Quantitative real-time RT-PCR (qRT-PCR)

Total miRNA and mRNA were isolated from tumor cells using the TRIzol reagent (Invitrogen), according to the protocol of the manufacturer. Reverse transcription of miRNA was performed with the Taqman MicroRNA Assay kit, mRNA was reverse transcribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR was performed using specific TaqMan Gene Expression assays or miRNA assays in combination with the StepOnePlus™ Real-Time PCR system (Applied Biosystems). Relative RNA expression was calculated by the $2^{-\Delta\Delta CT}$ method after normalizing expression levels of ULBP2 mRNA to GAPDH mRNA and miRNA to RNU6B.

Western blot

Tumor cells were lysed in RIPA buffer. Nuclear proteins were isolated using the Nuclear Extract Kit (Active Motif). Proteins were separated by SDS-PAGE, electroblotted onto nitrocellulose membranes and probed with the following primary anti-human antibodies: ULBP2 (AF1298, R&D Systems); p53 (DO-1 sc-126), p21 (F-5 sc-6246) and Sp1 (1C6 sc-
420) all from Santa Cruz, β-tubulin (2146) from Cell Signaling. After washing, membranes were probed with the appropriate secondary antibodies linked to horseradish peroxidase (HRP). Antibody binding was visualized using the ECL chemiluminescence system. Band intensities were quantified by using ImageJ software.

DNA binding ELISA for activated p53

Nuclear protein extracts from different cell lines were assayed for the DNA binding capacity of p53 using the TransAM™ p53 Kit according to the manufacturers’ protocol (Active Motif).

Flow cytometry

For analysis of MICA and ULBP2 surface expression, melanoma cells were incubated with anti-MICA mAb AMO1 and anti-ULBP2 mAb BUMO1 (18), followed by staining with a Cy5-conjugated goat anti-mouse F(ab’)2 (Dianova). Background fluorescence was determined by staining with the secondary antibody only. After fixation, cells were analyzed employing the Gallios (Beckman Coulter) and the FlowJo software. ULBP2 expression was determined as median fluorescence intensity (MFI) and normalized to the background MFI (secondary antibody only).

Enrichment of primary polyclonal NK cells

CD3-CD56+ NK cells were enriched from human peripheral blood mononuclear cells (PBMCs) of healthy donors, using the MACS technology (Miltenyi Biotec). PBMCs were first depleted of CD3+ cells then positive selection of CD56+ cells was carried out according to manufacturer’s protocol. Enrichment of CD3-CD56+ NK cells was confirmed by flow cytometry, using the anti-human mAb anti-CD3-PE-Cy-7 and anti-CD56-APC (BD
Bioscience) and ranged between 60-90%. NK cells were cultured for 48 h in the presence of 250-500 IU/ml IL-2 (Chiron Cooperation) before assaying.

CD107a degranulation assay

miRNA transfected melanoma cells were coincubated with enriched NK cells at an effector/target ratio of 1:1 for 1 h in the presence of PE-conjugated CD107a mAb (Clone H4A3; BD Bioscience) or the corresponding isotype control. Mouse anti-human NKG2D mAb (MAB139; R&D Systems) or mouse IgG1 antibody (MAB002; R&D Systems) was added to the NK cells 30 min before coincubation with target cells. After coculture for 1 h, cells were incubated in the presence of 2 mM Monensin (Sigma-Aldrich) for additional 3 h to inhibit CD107a internalization. Thereafter cells were washed and stained with additional fluorescence labeled mAbs. After fixation, cells were analyzed by flow cytometry employing the Kaluza (Beckman Coulter) and FlowJo software. The gating strategy used for analysis is indicated in supplementary Fig. S1.

Cytotoxicity assay

Killing of melanoma cells was determined in a flow cytometry assay. Therefore, melanoma cells (1 x 10^6 cells/ml) were labeled with 20 nM CFSE (Invitrogen). After 10 min, labeling was stopped by the addition of fetal calf serum (FCS). In parallel, IL-2 activated enriched CD3^+CD56^+ NK cells were incubated for 30 min with either mouse IgG1 or mouse anti-human NKG2D antibody. Then NK cells were added to 5 x 10^4 CFSE labeled melanoma cells at the indicated effector to target ratios. After 3 h of co-culture 7-AAD (BD Bioscience) was added to each sample at a final concentration of 1 µg/ml. Probes were measured directly by flow cytometry. The gating strategy used for analysis is indicated in supplementary Fig. S2.
Statistical analysis

Quantitative data from luciferase assays, qRT-PCR, Western blot and flow cytometry were plotted as mean + standard error (SEM). For comparison between experimental groups the two-tailed student’s t-test was performed using the GraphPad Prism 5.03 software (GraphPad). We report Spearman correlations as measurement of correlations between ULBP2 cell surface expression and miRNA levels, using SPSS v.17. Experimental groups were considered to be significantly different at levels α of <5% ($p<0.05$, indicated by *), of <1% ($p<0.01$, indicated by **), and of <0.5 % ($p<0.005$, marked by ***).
Results

miR-34a / miR-34c and miR-449a / miR-449c bind to the 3’-UTR of ULBP2 mRNA

To address whether cellular miRNAs are involved in the regulation of ULBP2 expression, we screened the 3’-UTR of ULBP2 mRNA for conserved miRNA binding sites. The TargetScan database predicted binding of miR-34 family members, miR-34a and miR-34c-5p, to the 3’-UTR of ULBP2 (Fig. 1A). This miRNA family, consisting of miR-34a, miR-34b and miR-34c, is known for its tumor-suppressive activity by inducing cell cycle arrest, senescence or apoptosis upon ectopic expression in malignant cells (25). To evaluate the role of miR-34 in the regulation of ULBP2 expression, we first generated reporter gene constructs, fusing the ULBP2 3’-UTR downstream to a luciferase reporter gene, yielding the construct pULBP2-3.1 (Fig. 1A). Furthermore, two deletion variants of pULBP2-3.1 were generated, one encompassing the proximal half of the 3’-UTR (pULBP2-3.2) also including the predicted miR-34 binding site, and a second overlapping construct containing the distal half without the miR-34 binding site (pULBP2-3.3) (Fig. 1A).

These reporter constructs were then transfected into HEK293 cells together with the various synthetic miR-34 mimics. Though not highly predicted, we also included miR-34b (miR-34b*) in our studies, to test all miR-34 family members. Transfection of pULBP2-3.1 in combination with the miRNA mimics revealed a clear reduction of luciferase activity for miR-34a and miR-34c, while miR-34b* only slightly reduced reporter gene expression (Fig. 1B). In case of pULBP2-3.2, the negative effects of miR-34a and miR-34c on reporter gene expression were even more pronounced. In contrast, the specific miRNAs did not negatively influence the activity of the pULBP2-3.3 construct lacking the predicted miR-34 binding site (Fig. 1B).

Besides the miR-34 family, the TargetScan database predicted also binding of different members of the miR-449 family to the 3’-UTR of ULBP2 (Fig. 1A). Interestingly, the miR-34 and miR-449 families are structurally related and share the same seed sequence and like miR-
34 also miR-449 has been described to be involved in the control of cell proliferation (26). Although the TargetScan program predicted only binding of miR-449a and miR-449b, we additionally included miR-449c in our studies. Transfection experiments revealed that miR-449a and miR-449c have the capability to downregulate expression of the luciferase reporter encoded by pULBP2-3.1 and pULBP2-3.2 while no effects were seen for pULBP2-3.3 (Fig. 1C). In summary, these results suggested that specific miR-34 and miR-449 family members are involved in the control of ULBP2 expression by binding to the 3’-UTR of its mRNA.

To confirm the functional significance of the specific miRNA binding motif, a nucleotide substitution was introduced into the miR-34 /miR-449 seed sequence binding site of pULBP2-3.1, resulting in pULBP2-3.1Mut (Fig. 2A). Indeed, this mutation abrogated the negative effect of miR-34a / miR-34c and miR-449a / miR-449c mimics on reporter gene expression (Fig. 2B-C).

Inverse correlation between expression levels of miR-34a and ULBP2 surface molecules

To assess a role of endogenous miR-34a / miR-34c and miR-449a / miR-449c in the regulation of ULBP2 expression, different melanoma cell lines were studied in parallel for their expression levels of ULBP2 surface molecules and specific miRNAs. All cell lines showed significant but variable surface expression of ULBP2 (Fig. 3A-B). While miR-449a and miR-449c were not detectable (data not shown), several melanoma cell lines expressed miR-34a but only one out of the eight contained miR-34c (Fig. 3C). Statistical analysis revealed a significant inverse correlation between expression levels of endogenous miR-34a and ULBP2 surface molecules (r_s= -0.95, **p<0.01) (Fig. 3D), again pointing towards an involvement of miR-34 in ULBP2 regulation.

miR-34a and miR-34c control ULBP2 expression
Focusing on the regulation of ULBP2 by miR-34, we first transfected specific miRNA mimics into UKRV-Mel-02 cells. Transfection efficiency was verified by qRT-PCR (Supplementary Fig. S3). Western blot analysis of total cell lysates from transfectants demonstrated that both miRNAs, in contrast to control siRNA, downregulated ULBP2 protein expression (Fig. 4A). This downregulation was associated with a reduction in ULBP2 mRNA levels, suggesting that transfected miR-34a and miR-34c mimics induced degradation of the specific mRNA, though an impact on translation could not be excluded (Fig. 4B). The strongest inhibitory effect on target expression was exerted by miR-34c, as already observed in reporter gene assays (Fig. 1B).

Next we asked for the impact of endogenous miR-34a on the expression level of the specific NKG2DL in melanoma cells. To decrease endogenous miR-34a levels, Ma-Mel-47 cells were transfected with a specific miR-34a inhibitor (anti-miR-34a) in comparison to a control inhibitor. As shown in Fig. 4C-D, downregulation of cellular miR-34a in Ma-Mel-47 cells clearly increased the expression of the ULBP2 protein.

Diminished NK cell recognition of miR-34 transfected melanoma cells

In the following we determined the influence of ULBP2 downregulation on the recognition of melanoma cells by NK cells. These functional analyses were performed on the MICA-negative UKRV-Mel-15a cells (Supplementary Fig. S4) characterized by the lowest endogenous miR-34 levels of all melanoma cell lines tested. Upon transfection of the miR-34c mimic into UKRV-Mel-15a, a reduction of more than 50% in ULBP2 surface expression was observed in comparison to control siRNA treated cells (Fig. 5A). The transfected tumor cells were then analyzed for their capacity to stimulate NK cells. Activation of NK cells was measured by surface expression of the degranulation marker CD107a. As shown in Fig. 5B, maximal NK degranulation was observed in the presence of control siRNA transfected target cells. This stimulation was strongly reduced in the presence of an anti-NKG2D blocking
antibody, indicating the dependency of efficient NK cell activation from NKG2D receptor signaling. Tumor cells transfected with miR-34c mimics showed significantly lower NK cell stimulatory capacity than control cells. The low residual expression of ULBP2 on miR-34c transfected melanoma cells only slightly stimulated NK cells as indicated by NKG2D receptor blockade. The downregulation of ULBP2 also influenced the cytolytic activity NK cells as demonstrated in a flow cytometry based CFSE/7-AAD cytotoxicity assay. Similar to the CD107a degranulation assay, lysis of miR-34c mimic transfected cells was significantly reduced compared to control siRNA transfected cells (Fig. 5C). In summary, these data clearly demonstrated the functional significance of ULBP2 downregulation by miR-34.

miR-34 contributes to the downregulation of ULBP2 induced by Nutlin-3a

Next we asked how an induction of endogenous miR-34 levels would influence ULBP2 expression in melanoma cells. Therefore, Ma-Mel-47 cells were treated with the small molecule inhibitor Nutlin-3a. As an inhibitor of MDM2, Nutlin-3a has been demonstrated to activate p53 (27) that in turn induces transcription of the miR-34 genes (28). We confirmed activation of p53 in Nutlin-3a treated Ma-Mel-47 cells by demonstrating an induction of the p53 target gene p21 and measuring the DNA binding capacity of p53 (Fig. 6A and Supplementary Fig. S5). As expected, in response to Nutlin-3a, Ma-Mel-47 cells increased the expression of miR-34a and miR-34c (Fig. 6B). Although the calculated increase was much higher for miR-34c, its absolute expression level was still far below that of miR-34a.

As shown in Fig. 6C, Nutlin-3a treatment reduced ULBP2 protein expression in melanoma cells. To demonstrate an involvement of miR-34a in this process, Ma-Mel-47 cells were treated in parallel with Nutlin-3a and anti-miR-34a. Indeed, anti-miR-34a transfection increased ULBP2 protein expression in Nutlin-3a treated tumor cells, indicating that miR-34 still acts on the ULBP2 3’-UTR under these conditions. However, transfection of anti-miR-34a into Nutlin-3a treated tumor cells could not restore ULBP2 expression to levels of
untreated control cells (no transfection, no Nutlin-3a), suggesting that Nutlin-3a downregulated ULBP2 protein expression by additional regulatory mechanisms. Interestingly, in Nutlin-3a treated melanoma cells ULBP2 mRNA levels remained unchanged in comparison to control cells, despite the induction of miR-34. This contrasts the results obtained upon transfection of miR-34 mimics into melanoma cells, where downregulation of ULBP2 protein expression was associated with a decrease in its mRNA levels (Fig. 4B). One cannot exclude a concentration-dependent effect, as specific miRNA levels in transfected cells were much higher than in Nutlin-3a treated cells. However, the discrepancy might also be explained by different regulatory mechanisms that act on ULBP2 mRNA in the presence of Nutlin-3a.

p53 activity is essential for ULBP2 downregulation in Nutlin-3a treated tumor cells

To clarify the role of p53 in Nutlin-3a mediated downregulation of ULBP2, we took advantage of the colon carcinoma HCT116 p53+/+ and HCT116 p53−/− cell system. Activation of p53 upon Nutlin-3a treatment of HCT116 p53+/+ cells was again confirmed by p21 expression and measurement of p53 DNA capacity (Supplementary Fig. S5, S6). Indeed, only HCT116 p53+/+ cells showed a downregulation of ULBP2, detectable at the level of total cellular protein (Fig. 7A-B) and cell surface protein (Fig. 7D-E). As expected, Nutlin-3a treated HCT116 p53+/+ cells contained strongly enhanced levels of miR-34a and miR-34c in comparison to HCT116 p53−/− cells (Fig. 7C). Again we measured constant mRNA levels for ULBP2 under Nutlin-3a treatment (Fig. 7C).
Discussion

The NKG2D receptor allows cytotoxic lymphocytes to detect cellular stress associated with malignant transformation, which in turn can lead to tumor rejection as demonstrated in several mouse studies (2-7). Interestingly, the human NKG2DL ULBP2 was identified as a marker of remarkable prognostic relevance in different tumor entities (12, 29). We found elevated levels of shed soluble ULBP2 in sera from melanoma patients to be associated with poor survival, as this was in the following also described for B-cell chronic lymphocytic leukemia patients (12, 29). Ligand shedding protects malignant cells from NKG2D-mediated immune surveillance (13-15), which in turn could favor tumor progression. This observation prompted us to ask for the regulation of ULBP2 in malignant cells. While it has been shown that DNA damaging agents and proteasome inhibitors induce ULBP2 expression (19, 30), the underlying molecular mechanisms and in particular the role of tumor suppressors in the regulation of this specific NKG2DL remained elusive so far.

In this study we provide evidence that members of the miR-34 family, miR-34a and miR-34c, repress ULBP2 expression by directly binding to the 3’-UTR of the specific mRNA. A different subset of cellular miRNAs has already been demonstrated to control expression of the MIC molecules suggesting that miRNAs are important players in NKG2DL regulation (31-33). Interestingly, via miR-34 we link the control of ULBP2 expression to a miRNA with tumor-suppressive activity. It has been shown that ectopic expression of miR-34 family members in malignant cells promotes cell cycle arrest, senescence or apoptosis (25).

According to its tumor-suppressive function, several proto-oncogenes have been identified as direct targets of miR-34a and miR-34c, such as c-Myc and c-Met (34-36). In addition, recent studies indicated that miR-34a and miR-34c are upregulated during cellular differentiation (37-39). Besides miR-34a and miR-34c, we demonstrated binding also of miR-449a and miR-449c to the 3’-UTR of ULBP2. The miR-34 and miR-449 families share the same seed
sequence and notably, similar to miR-34a, miR-449a has been described to mediate antiproliferative effects and to be involved in cellular differentiation (26, 40-41).

In our cohort of metastatic melanoma cell lines miR-449a and miR-449c were not detectable and thus we did not follow up on their role in ULBP2 regulation. Also expression of miR-34c was rare according to its detection in only a few normal tissues such as lung, testis (39, 42), but several melanoma cell lines contained significant amounts of miR-34a. Notably, we observed an inverse correlation between levels of miR-34a and ULBP2 surface molecules. Recently, Lodygin et al. described a downregulation of miR-34a by epigenetic silencing mechanisms in melanoma and also in other tumors entities (43). In comparison to melanocytes the authors found miR-34a expression to be silenced in 20 out of 32 primary melanoma specimens as well as 19 out of 44 melanoma cell lines and suggested this to be a mechanism of tumors to prevent cell cycle arrest and apoptosis (43). Importantly, miR-34-low melanoma cells, upon ectopic expression of miR-34a or miR-34c, strongly downregulated ULBP2. This led to an impairment of tumor cell recognition by NK cells emphasizing the functional significance of the regulatory mechanism. The decrease of ULBP2 in response to transfection of miR-34 mimics was detectable at the specific protein and mRNA level. This suggests that miR-34a and miR-34c by binding to the 3′-UTR of ULBP2 mRNA enhance its degradation, though we cannot absolutely exclude a contribution of indirect miR-34 effects on ULBP2 mRNA levels, e.g. by interference with ULBP2 promoter activity.

Besides ectopic miR-34 expression, treatment of melanoma cells with Nutlin-3a downregulated ULBP2 in a p53-dependent manner. Nutlin-3a, by binding to MDM2, blocks ubiquitination of the tumor suppressor p53, which leads to p53 accumulation and activation in the absence of genotoxic stress (27-28, 44-45). Although our results point to p53 as negative regulator of ULBP2, its role seems to be much more complex. Previously, Gasser et al. demonstrated an induction of ULBP2 expression in response to DNA damage in HCT116 p53+/+ and HCT116 p53−/− cells indicating that under these conditions activated p53 neither
downregulated ULBP2 nor was it required for NKG2DL induction (19). But a recent study by Textor et al. demonstrated that an inducible overexpression of p53 in genetically modified cells activates ULBP2 transcription (46). Thus, we assume that the outcome of p53 activation on ULBP2 expression depends on the context of its activation, pointing to a multifaceted role of p53 that awaits further investigation.

p53 has been described as an important activator of miR-34a and miR-34b/c gene expression in several studies (28, 42, 47-48). Accordingly, we observed a p53-dependent induction of cellular miR-34 levels in response to Nutlin-3a. The miRNA increase contributed to the downregulation of ULBP2 that could be partially counteracted by transfection of a miR-34a-specific inhibitor. Unexpectedly, despite the increase of cellular miR-34 levels, the amount of ULBP2 mRNA remained constant suggesting that under these conditions binding of miR-34 to the 3’-UTR of ULBP2 mRNA mainly affected the process of translation. Indeed, one microRNA can control one specific target mRNA by repression of translation and degradation, however, the question on the relative contribution of the different modes of target regulation is still under intense investigation (23). Very recently the group of Hermeking demonstrated that miR-34a affects the majority of its target mRNAs by degradation and translational repression, with a few targets controlled at the level of translation only (49). Thus, miR-34a most likely affects both, ULBP2 mRNA translation and degradation. Why in Nutlin-3a treated tumor cells, despite the induction of miR-34, ULBP2 mRNA levels remained constant is unclear. It is tempting to speculate that Nutlin-3a by blockade of MDM2 not only activates p53 but also additional regulators that might contribute to the control of ULBP2 mRNA levels. Interestingly, it has already been demonstrated that the repressive activity of microRNA can be modulated by RNA binding proteins (50).

Based on our data and the current knowledge about the miR-34 family, we assume that high levels of miR-34, present in differentiated tissues, interfere with ULBP2 protein expression, whereas loss of miR-34a / miR-34c expression, as it frequently occurs in cancer, might assist
tumor immune surveillance by enhancing ULBP2 expression. In summary, our data
demonstrate that different tumor suppressors play a central role in ULBP2 regulation,
strengthening the model of the NKG2D receptor-ligand system as a barrier against tumor
development.
Acknowledgements

We thank Thomas Hofman (German Cancer Research Center, Heidelberg, Germany) for providing material.
REFERENCES

FIGURE LEGENDS

Figure 1. Binding of miR-34 and miR-449 family members to the 3’-UTR of ULBP2. A, scheme of the ULBP2 3’-UTR containing luciferase constructs (pULBP2-3.1, pULBP2-3.2, pULBP2-3.3). The gray horizontal bar represents the ULBP2 3’-UTR, dashed lines indicate different 3’-UTR fragments fused to Renilla luciferase in psiCHECK2. The black dot indicates the location of the predicted miR-34 / miR-449 binding site. B-C, plasmid reporter gene constructs were cotransfected with the indicated miRNA mimics or control siRNA into HEK293 cells. After 48 h, lysates from transfectants were analyzed for luciferase activity. miR-34a and miR-34c (B) as well as miR-449a and miR-449c (C) induced a significant reduction in luciferase activity driven by pULBP2-3.1 and pULBP2-3.2 containing the specific miRNA binding site. Data of normalized Renilla luciferase activity (RLU) represent means (+ SEM) of n = 3 experiments.

Figure 2. Specific mutation of the ULBP2 3’-UTR reliefs from miR-34 / miR-449 mediated repression. A, a point mutation was introduced into the ULBP2 3’-UTR of pULBP2-3.1, in order to destroy the predicted miR-34 / miR-449 binding motif. The mutated plasmid was designated pULBP2-3.1Mut. B-C, luciferase activity of pULBP2-3.1Mut is not affected by transfection of miR-34 and miR-449 mimics. Data of normalized Renilla luciferase activity (RLU) represent means (+ SEM) of n = 3 experiments.

Figure 3. Expression of miR-34a and ULBP2 surface molecules inversely correlate. A-B, ULBP2 surface expression on different melanoma cell lines (n = 8) was measured by flow cytometry. A, representative histograms of ULBP2 expression on melanoma cells. B, data are shown as mean MFI (+ SEM) of n = 3 experiments. C, cells were analyzed for miR-34a and miR-34c expression levels by qRT-PCR. miRNA expression was normalized to endogenous RNU6B. Expression levels, given as means (+ SEM) of n = 3 experiments, are indicated.
relative to the expression in UKRV-Mel-15a cells. D, statistical analysis revealed a significant negative correlation between expression levels of miR-34a and ULBP2 surface molecules (Spearman, **p<0.01).

Figure 4. miR-34 controls ULBP2 expression in melanoma cells. A, left, transfection of miR-34 mimics downregulates ULBP2 expression in melanoma cells. UKRV-Mel-02 cells were transfected with miRNA mimics or control siRNA. After 48 h, lysates of cells were analyzed for ULBP2 expression by Western blot. β-tubulin served as loading control and for normalization. A, right, fold change in ULBP2 expression was calculated from n = 3 experiments. B, the influence of miR-34 mimic transfection on ULBP2 mRNA levels was determined by qRT-PCR. Expression of ULBP2 mRNA was normalized to endogenous GAPDH mRNA. Mean expression levels (+ SEM) of n = 3 experiments are presented relative to control siRNA transfected cells. C, endogenous miR-34a reduces ULBP2 expression in melanoma cells. Ma-Mel-47 cells were transfected with either anti-miR-34a or control anti-miRNA. After 48 h, cells were lysed and ULBP2 expression levels were determined by Western blot. β-tubulin served as loading control and for normalization. D, the fold change in ULBP2 expression was calculated from n = 3 experiments.

Figure 5. Impaired NK cell recognition of melanoma cells upon transfection with miR-34. A, expression of ULBP2 on UKRV-Mel-15a cells upon transfection of miR-34c mimics or control siRNA was determined by flow cytometry. Left panel, representative histogram of one experiment: heavy line, control siRNA treated cells; dashed line, miR-34c transfected cells; thin line, background fluorescence. Right panel, mean MFI values (+ SEM) of n = 3 experiments are indicated. B, activation of CD3⁺CD56⁺ NK cells by miR-34c mimic or control siRNA transfected UKRV-Mel-15a cells was determined as degranulation by surface staining for CD107a. To block NKG2D dependent signaling, NK cells were incubated with an

Downloaded from cancerres.aacrjournals.org on May 31, 2017. © 2011 American Association for Cancer Research.
anti-NKG2D mAb, controls were treated with IgG1 mAb. Results are given as mean of n = 4 experiments (+ SEM). C, lysis of miR-34c mimic or control siRNA transfected UKRV-Mel-15a cells by enriched CD3−CD56+ NK cells was determined by CFSE / 7-AAD staining. Again, to block NKG2D dependent signaling, NK cells were incubated with an anti-NKG2D mAb, controls were treated with IgG1 mAb. Left panel, lysis of melanoma cells at different effector to ratios. Right panel, lysis measured at an effector to ratio of 5:1, data represent means of n=3 experiments (+SEM).

Figure 6. Tumor cells downregulate ULBP2 expression in response to Nutlin-3a treatment. A, nuclear protein extracts from Nutlin-3a (3 µM) or solvent treated Ma-Mel-47 cells were analyzed for p53 and p21 expression levels by Western blot. Sp1 served as loading control. B, the influence of Nutlin-3a treatment on ULBP2 mRNA, miR-34a and miR-34c expression in Ma-Mel-47 cells was determined by qRT-PCR. Expression of ULBP2 mRNA was normalized to endogenous GAPDH mRNA; miR-34a and miR-34c levels were normalized to endogenous RNU6B. Mean expression levels (+ SEM) of n = 3 experiments are presented relative to solvent treated control cells. C, Ma-Mel-47 cells treated with 3 µM Nutlin-3a (Nut) were in addition transfected with anti-miR-34a or control anti-miRNA. After 48 h, cells were lysed and ULBP2 expression levels were determined by Western blot. β-tubulin served as loading control and for normalization.

Figure 7. Nutlin-3a mediated activation of p53 induces ULBP2 downregulation. A, HCT116 p53+/+ and HCT116 p53−/− cells were treated with Nutlin-3a or solvent (DMSO). After 48 h, cells were lysed and analyzed for ULBP2 expression by Western blot. β-tubulin served as loading control and for normalization. B, calculated fold change in ULBP2 protein expression from n = 3 experiments. C, the influence of Nutlin-3a on ULBP2 mRNA, miR-34a and miR-34c expression in HCT116 p53+/+ and HCT116 p53−/− cells was determined by qRT-PCR.
Expression of ULBP2 mRNA was normalized to endogenous GAPDH mRNA; miR-34a and miR-34c levels were normalized to endogenous RNU6B. Mean expression levels (+ SEM) of \(n = 3 \) experiments are indicated relative to solvent treated control cells. D-E, ULBP2 cell surface expression on Nutlin-3a treated HCT116 p53\(^{+/-}\) and HCT116 p53\(^{-/-}\) cells in comparison to solvent treated control cells was determined by flow cytometry. D, histograms of one representative experiment: bold black line, solvent treated cells; dotted line, cells treated with 3 \(\mu \)M Nutlin-3a; dashed line, cells treated with 4 \(\mu \)M Nutlin-3a; thin gray line, background fluorescence. E, mean MFI values (+ SEM) of \(n = 3 \) experiments are presented.
Fig. 1

Panel A: Diagram illustrating the ULBP2 3'UTR with predicted miRNA binding sites. The ULBP2 3'UTR is shown with the miR-34 binding site (pULBP2-3.1) and the miR-449 binding site (pULBP2-3.2). The miRNA binding sites are indicated by the sequences 5' ...ACCCAAUAGCUCAUUCACUGCCU... and 5' ...ACCCAAUAGCUCAUUCACUGCCU... respectively.

Panel B: Bar graphs showing the RLU (relative light units) for different siRNA treatments. The graphs compare the RLU for control siRNA (ctrl) and siRNA targeting miR-34a, miR-34b, and miR-34c. The treatments include pULBP2-3.1, pULBP2-3.2, and pULBP2-3.3.

Panel C: Additional bar graphs for similar treatments as in Panel B, focusing on RLU for different miRNA targets. The symbols *** and * indicate statistical significance.
Fig. 2
Fig. 3
Fig. 4

Panel A:
- Western blot for ULBP2 with bands at 30 kDa and 55 kDa.
- Control (ctrl) siRNA, miRNA-34a, miRNA-34c.
- β-tubulin as loading control.

Panel B:
- Bar graph showing ULBP2 mRNA fold change.
- Control (ctrl) siRNA, miRNA-34a, miRNA-34c.
- Statistical significance indicated with * and **.

Panel C:
- Western blot for ULBP2 with bands at 30 kDa and 55 kDa.
- Control (ctrl) inhibitor, anti-miR-34a.
- β-tubulin as loading control.

Panel D:
- Bar graph showing ULBP2 mRNA fold change.
- Control (ctrl) inhibitor, anti-miR-34a.
- Statistical significance indicated with *.

Legend:
- ULBP2: UL16-binding protein 2
- β-tubulin: beta-tubulin
- miR: microRNA
A

ULBP2

B

MFI

C

% Lysis

E:T

Fig. 5
Fig. 6

A

<table>
<thead>
<tr>
<th>Control</th>
<th>Nutlin-3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp1</td>
<td></td>
</tr>
<tr>
<td>106 kDa</td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td></td>
</tr>
<tr>
<td>53 kDa</td>
<td></td>
</tr>
<tr>
<td>p21</td>
<td></td>
</tr>
<tr>
<td>21 kDa</td>
<td></td>
</tr>
</tbody>
</table>

B

ULBP2

<table>
<thead>
<tr>
<th></th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0</td>
</tr>
<tr>
<td>3 µM Nut</td>
<td>1.3</td>
</tr>
<tr>
<td>4 µM Nut</td>
<td>1.5</td>
</tr>
</tbody>
</table>

miR-34a

<table>
<thead>
<tr>
<th></th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0</td>
</tr>
<tr>
<td>3 µM Nut</td>
<td>3.0</td>
</tr>
<tr>
<td>4 µM Nut</td>
<td>5.0</td>
</tr>
</tbody>
</table>

miR-34c

<table>
<thead>
<tr>
<th></th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0</td>
</tr>
<tr>
<td>3 µM Nut</td>
<td>0.2</td>
</tr>
<tr>
<td>4 µM Nut</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Fig. 7

A. Protein expression analysis of ULBP2 and β-tubulin in HCT116 p53^{+/+} and HCT116 p53^{-/-} cells treated with Nutlin-3a at 3 µM and 4 µM.

B. Bar graph showing fold change in ULBP2 expression in HCT116 p53^{+/+} and HCT116 p53^{-/-} cells treated with Nutlin-3a at 3 µM and 4 µM compared to control.

C. Bar graph showing fold change in miR-34a and miR-34c expression in HCT116 p53^{+/+} and HCT116 p53^{-/-} cells treated with Nutlin-3a at 3 µM and 4 µM.

D. Flow cytometry analysis showing ULBP2 expression in HCT116 p53^{+/+} and HCT116 p53^{-/-} cells treated with Nutlin-3a at 3 µM and 4 µM.

E. Bar graph showing fold change in ULBP2 expression MFI in HCT116 p53^{+/+} and HCT116 p53^{-/-} cells treated with Nutlin-3a at 3 µM and 4 µM.
Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress induced ligand of the natural killer cell receptor NKG2D

Anja Heinemann, Fang Zhao, Sonali Pechlivanis, et al.

Cancer Res Published OnlineFirst November 18, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-1977

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2011/11/18/0008-5472.CAN-11-1977.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.