Genetically Modified T cells Targeting Interleukin-11 Receptor α-Chain Kill Human Osteosarcoma Cells and Induce the Regression of Established Osteosarcoma Lung Metastases

Gangxiong Huang, Ling Yu, Laurence J.N. Cooper, Mario Hollomon, Helen Huls, and Eugenie S. Kleinerman

Abstract

The treatment of osteosarcoma pulmonary metastases remains a challenge. T cells genetically modified to express a chimeric antigen receptor (CAR), which recognizes a tumor-associated antigen, have shown activity against hematopoietic malignancies in clinical trials, but this requires the identification of a specific receptor on the tumor cell. In the current study, we found that interleukin (IL)-11Rα was selectively expressed on 14 of 16 osteosarcoma patients’ lung metastases and four different human osteosarcoma cell lines, indicating that IL-11Rα may be a novel target for CAR-specific T-cell therapy. IL-11Rα expression was absent or low in normal organ tissues, with the exception of the gastrointestinal tract. IL-11Rα-CAR–specific T cells were obtained by non-viral gene transfer of Sleeping Beauty DNA plasmids and selectively expanded ex vivo using artificial antigen-presenting cells derived from IL-11Rα + K562 cells genetically modified to coexpress T-cell costimulatory molecules. IL-11Rα-CAR+ T cells killed all four osteosarcoma cell lines in vitro; cytotoxicity correlated with the level of IL-11Rα expression on the tumor cells. Intravenous injection of IL-11Rα-CAR+ T cells into mice resulted in the regression of osteosarcoma pulmonary metastases with no organ toxicity. Together, the data suggest that IL-11Rα-CAR T cells may represent a new therapy for patients with osteosarcoma pulmonary metastases.

Introduction

Despite multiple changes in the adjuvant chemotherapy regimens used to treat patients with osteosarcoma, both the 2-year metastasis-free survival and the overall survival rates have remained stagnant at 65% to 70% for the past 20 years (1–6). Disease relapse usually occurs in the lung and is resistant to salvage chemotherapy, which indicates that patients with osteosarcoma may benefit from new approaches and/or the addition of new agents to currently available adjuvant chemotherapy regimens. New therapies are particularly needed for patients with osteosarcoma lung metastases. In preclinical studies, we found that liposome-encapsulated MTP-PE (L-MTP-PE) activated the tumoricidal properties of human monocytes (7) and could be used to treat osteosarcoma lung metastases (8). L-MTP-PE is an immune therapy that targets monocytes and pulmonary macrophages and activates them to recognize and kill tumor cells. We have further shown that microscopic osteosarcoma lung metastases are sensitive to this immune-based therapy and that the combination of L-MTP-PE and chemotherapy in the adjuvant setting results in a clinically significant improvement in the overall survival rate 6 to 12 years after initial diagnosis (8, 9). These studies and the clinical success of L-MTP-PE support the investigations of other immune-based therapies such as engineered T cells to improve the treatment of patients with osteosarcoma.

The use of genetically modified T cells for the treatment of solid tumors is an emerging field. The genetic modification of primary T cells with tumor-specific immunoreceptors such as chimeric antigen receptors (CAR) can redirect T cells against tumor cells (10). The adoptive transfer of these tumor-specific T cells into patients provides a novel way to deliver specific antigen-targeted cancer therapy and has been used in preclinical and clinical trials (11). Such an approach requires the identification of tumor-specific antigen targets that are expressed in osteosarcoma. One such potential molecular target is interleukin-11 receptor α-chain (IL-11Rα).

IL-11 is a member of a family of pleiotropic cytokines that include IL-6, leukemia-inhibitory factor, oncostatin M, and ciliary neurotrophic factor (12, 13). The binding of IL-11 specifically to IL-11Rα mediates the assembly of a multisubunit receptor complex that initiates intracellular signaling by association with the transmembrane signal transducer glycoprotein gp-130 (13, 14). The IL-11/IL-11Rα signaling pathway is involved in several biologic activities such as adipogenesis,
osteoclastogenesis, neurogenesis, and megakaryocyte matura-
tion and platelet production (15, 16). It has recently been
shown that human IL-11Rα is overexpressed in colon cancer,
gastric cancer, breast cancer, prostate cancer, and osteosar-
coma (12, 14, 17–20). In addition, IL-11/IL-11Rα signaling may
mediate the activation of the JAK-STAT pathway, resulting in
an antiapoptosis effect in human colonic epithelial cells (14)
and prostate cancer cells (12). IL-11Rα can also function as
a therapeutic target using a cyclic IL-11 nanopeptide, c
(CGRARRGSC), conjugated to a suicide peptide (KLAKLA) to
eliminate prostate cancer in vivo (17).

In the current study, we found that IL-11Rα was overex-
pressed on osteosarcoma lung metastases from patients and
expressed in 4 different osteosarcoma cell lines at levels
ranging from 20% to 60%. Engineered T cells expressing
specific IL-11Rα-CAR that we propagated ex vivo killed oste-
osarcoma cells in vitro; cytotoxicity correlated with the cells’
level of IL-11Rα expression. We have further shown that the
intravenous injection of IL-11Rα-CAR T cells resulted in the
regression of established osteosarcoma lung metastases.

Materials and Methods

Cell lines and cell culture

The human osteosarcoma cell lines CCH-OS-D, KRIB, SAOS-
2, and LM7 were evaluated for cell surface expression of IL-
11Rα. SAOS-2, LM7, and KRIB cells were cultured in Eagle’s
modified essential medium supplemented with 2 mmol/L
L-glutamine, 1 mmol/L sodium pyruvate, 1× nonessential
amino acids, 2× minimal essential medium vitamin solution,
and 10% heat-inactivated (56°C for 30 minutes) FBS. Lucifer-
ase-expressing KRIB cells were kindly provided by Dr. Dennis
PM Hughes (The University of Texas M.D. Anderson Cancer
Center, Houston, TX). SAOS-2 cell line was derived from a
primary osteosarcoma from an 11-year-old girl and was
purchased from the American Type Culture Collection. LM7 cells
were osteosarcoma lung metastases derived from SAOS-2
in our laboratory (21). CCH-OS-D cells were also provided by
Dr. Dennis PM Hughes’s laboratory. The CCH-OS-D is an osteosarcoma cell line derived from patients under an Institutional Review Board–approved protocol at the Children’s
Cancer Hospital at The University of Texas M.D. Anderson
Cancer Center. The cells were cultured in Dulbecco’s Modified
Eagle’s Media supplemented with 10% FBS, penicillin, strep-
tomycin, and 1% insulin/transferring selenium (Gibco). CCH-
OS-D cells have a unique signature by DNA microsatellite
fingerprinting, with no overlap with any described or previ-
ously tested cell lines. A monolayer culture of cells was main-
tained at 37°C in a humidified 5% CO2 incubator. All these 4 cell
line fingerprinting were conducted on December 17, 2010, in
The University of Texas M.D. Anderson Cancer Center.

Human T cells were harvested from healthy adult volunteer
donors (Gulf Coast Regional Blood Center, Houston, TX) after
informed consent was obtained and prepared as described
previously (22). K562 clone 4 cells were kindly provided by
C. June (University of Pennsylvania, Philadelphia, PA). T cells
and K562 clone 4 cells were cultured in RPMI medium sup-
plemented with 10% FBS and 2 mmol/L glutamine. K562 clone 4 cells were used as artificial antigen-presenting cells (aAPC)
after 100-Gy γ-irradiation for in vitro expansion of genetically
modified T cells in culture medium.

Immunohistochemistry

Paraffin-embedded blocks of tissues from 16 patients with
pulmonary osteosarcoma metastases were obtained from MD
Anderson tissue banks. Paraffin-embedded microarray slides
of human normal tissues were purchased from US Biomax Inc.
Resected tissues from mice were washed in saline, fixed in 10%
formalin buffer, and embedded in paraffin. Immunohisto-
chemical staining for IL-11Rα expression was conducted as
described previously (17) with modification. Briefly, tissue
sections (5-μm thick) were deparaffinized in xylene and rehy-
drated. Trypsin incubation at 37°C for 30 minutes was con-
ducted for antigen retrieval. Following biotin and protein
blocking (DAKO Corp.), sections were incubated with a rabbit
anti–IL-11Rα antibody at a 1:50 dilution (N20; Santa Cruz
Biotechnology) for 1 hour. The sections were then developed
using a Mach 4 Universal Polymer Detection Kit (Biocare
Medical).

Plasmid constructs

IL-11Rα-CAR was generated by connecting an IL-11 peptide
(CGRARRGSC; refs. 17, 23) as an extracellular domain to T-cell
activation endodomains. The CDNA encoding for IL-11Rα-CAR
(Fig. 1A) was assembled by PCR using splice by overlap
extension (24) and cloned into a DNA Sleeping Beauty (SB)
expression plasmid pSBSO (22) to create the transposon
plasmid pSBSO-IL-11-CAR (Fig. 1B). The DNA plasmid
pCMV-SB11 was used to express the SB11 transposase (22).

Electroporation and ex vivo expansion of IL-11Rα-CAR
T cells

Human T cells isolated from peripheral blood were trans-
fected with the pSBSO-IL-11Rα-CAR transposon and the
pCMV-SB11 transposase plasmids by electroporation to
express IL-11Rα-CAR. T cells were then propagated ex vivo
using γ-irradiated aAPCs, IL-2, and IL-21. The schematic
diagram for the genetic modification and expansion of T cells
is shown in Fig. 1C. T cells (1 × 10^6) were suspended in 100 μL of
Nucleofector solution (Human CD34+ Cell Nucleofector Kit;
Amaxa), mixed with 15 μg of pSBSO-IL-11Rα-CAR plasmid and 5
μg of pCMV-SB11 plasmid, transferred to a cuvette, and
electroporated (Program U-14; Amaxa). The cells were trans-
ferred to a 6-well plate containing 4 mL of phenol-free RPMI
containing 2 mmol/L Glutamax and 20% FBS and incubated
on-irradiated aAPCs at a 1:2 T cell–aAPC ratio. aAPCs were added to T cell every 7 days during expa-
sion. Fifty units/mL recombinant human IL-2 (rhIL-2; Chiron)
alone or combined with 30 ng/mL IL-21 (IL-21; eBioscience,
Inc.) were added to the cultures every 48 hours beginning on
day 7. T cells were stimulated for 5 cycles, and viable cells were
counted on the basis of trypan blue exclusion. T cells that were
not genetically modified were used as control T cells; these cells
were propagated on γ-irradiated aAPCs preloaded with anti-
CD3 antibody (OKT3), IL-2, and IL-21 (22).
The expression of IL-11Rα-CAR in T cells was detected 24 hours after electroporation (day 1). The mean percentage of T cells that expressed IL-11Rα-CAR in 4 experiments was 58.2%. A representative experiment is shown in Fig. 1D. The expression of IL-11Rα-CAR was further confirmed by Western blotting using an anti-CD3-ζ antibody (Fig. 1E). The expression of IL-11Rα-CAR was higher in the T cells that were simulated by both IL-2 and IL-21 (Fig. 1E, lanes 4 and 6) than in the cells that were simulated by IL-2 alone (Fig. 1E, lanes 3 and 5). This indicated that adding IL-21 was beneficial in the expansion of the IL-11Rα-CAR T cells, which was consistent with previous results suggesting that IL-21 improves CD19-CAR T-cell expansion (25). Therefore, IL-21 and IL-2 were used for IL-11Rα-CAR T-cell expansion.

Flow cytometry

The phenotypes of T-cell populations were analyzed weekly using flow cytometry. Fluorochrome-conjugated anti-CD3,
anti-CD4, and anti-CD8 antibodies were obtained from BD Biosciences. Phycoerythrin (PE)-conjugated anti-IL-11Rα was obtained from Santa Cruz Biotechnology. PE- or fluorescein isothiocyanate (FITC)-conjugated goat anti-human Fcγ (Jackson ImmunoResearch) was used to detect the cell surface expression of IL-11Rα-CAR. The blocking of nonspecific antibody binding was achieved using fluorescence-activated cell-sorting (FACS) wash buffer (2% fetal calf serum in PBS). Data acquisition was conducted on a FACScalibur (BD Biosciences), and the percentage of cells in a region of analysis was calculated using CellQuest version 3.3 software (BD Biosciences).

Western blot
IL-11Rα signaling was determined by Western blot analysis of phospho-STAT3. Osteosarcoma LM7 and KRIB cells were treated with 10 or 25 ng/mL rhIL-11 (R&D Systems) for 5 minutes. Following cytokine treatment, LM7 and KRIB cells were harvested and lysed with radioimmunoprecipitation assay (RIPA) lysis buffer supplemented with protease and phosphatase inhibitors (Santa Cruz Biotechnology, Inc.). Lysates were cleared by centrifugation at 12,000 × g at 4°C. Total protein concentration was measured using a bicinchoninic acid assay kit (Bio-Rad Laboratories) with bovine serum albumin as a standard. The protein was denatured by boiling at 100°C for 5 minutes in the presence of sample buffer [0.5 mol/L Tris (pH 6.8), 10% glycerol, 10% SDS, 5% 2-mercaptoethanol, and 1% bromophenol]. For each immunoblot, 30 μg of protein was resolved on a 10% or 12% PAGE for 90 minutes at 100 V. The protein was then transferred onto a polyvinylidene difluoride membrane (Millipore). Following transfer, the membrane was blocked with 5% nonfat milk in TBS with Tween [TBST; 138 mmol/L NaCl, 2.7 mmol/L KCl (pH 7.4), and 0.1% Tween 20] for 1 hour. Phospho-STAT3 was detected with a rabbit anti-human phospho-STAT3 antibody (Cell Signaling). Membranes were then washed and incubated with secondary antibody conjugated to horseradish peroxidase. The secondary antibody was visualized using an enhanced chemiluminescence detection Western blotting analysis system (Amersham Pharmacia Biotech). T-cell lysates were obtained for Western blot analysis in the same manner as KRIB and LM7 cells. CD3 protein in T cells was detected with a mouse anti-human CD monoclonal antibody (BD Biosciences).

Chromium release assay
The cytolytic activity of the T cells was determined using 4-hour chromium release assay (22). IL-11Rα–specific T cells were incubated with 5 × 10^3 51Cr-labeled target cells in a V-bottomed, 96-well plate. The percentage of specific cytolyis was calculated from the release of 51Cr using a TopCount NXT (Perkin-Elmer Life and Analytical Sciences, Inc.). Data are reported as means ± SDs.

Animal model
All animal experiments were approved by the Institutional Animal Care and Use Committee at The University of Texas MD Anderson Cancer Center. Six-week-old athymic nu/nu nude mice were purchased from the National Cancer Institute (Bethesda, MD). Luciferase-expressing human KRIB cells (2 × 10^5 cells/10 μL/mouse) were injected into the proximal tibia of the nu/nu mice. Tumor growth was monitored by bioluminescence imaging using a cryogenically cooled IVIS 100 imaging system coupled to a data acquisition computer running Living Image Software (Xenogen Corp; ref. 26). For the investigation of T-cell infiltration into the primary and metastatic lung tumors, lung metastases were allowed to develop for 8 weeks after KRIB cell injection. The IL-11Rα-CAR T cells (1 × 10^7 cells per mouse) or control T cells (1 × 10^7 cells per mouse) were labeled with CM-Dil (Molecular Probes, Inc.) and intravenously injected into the mice at 8 weeks. The mice were killed 72 hours later. The primary bone and metastatic lung tumor as well as liver, heart, spleen, kidney, and esophagus tissues were removed and examined using hematoxylin and eosin (H&E) staining for morphology and florescence microscopy for the presence of the CM-Dil–labeled T cells. We also determined whether T-cell therapy induced tumor cell apoptosis. Mouse lung tissues were embedded in Tissue-Tek optimum cutting temperature compound and frozen. Apoptosis was measured by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay.

To evaluate the therapeutic effect of the IL-11Rα-CAR T cells on lung metastasis 10 days after KRIB cell injection, the presence of tumor in the tibia was confirmed by luciferase signals. Mice with comparable tumor loads were selected for the therapy study (10 mice per group). Four days later (14 days after tumor injection), IL-11Rα–CAR T cells (1 × 10^7 cells per mouse) or control T cells (1 × 10^7 cells per mouse) were intravenously injected into the mice 2 times per week for 7 weeks. Limb amputation was conducted 8 weeks after tumor cell injection because of the size of the tumor. Mice were killed 7 weeks after therapy completion. The lungs were then extracted and evaluated for metastases.

Statistical analysis
Cell culture experiments were done at least in triplicate and repeated at least 3 times. Western blot and immunofluorescence experiments were repeated at least 3 times. Flow cytometric and chromium release assay were done at least in triplicate and repeated at least three times. Differences in IL-11Rα–CAR T-cell–treated and control T-cell–treated mouse lung weights were analyzed using the Student paired t test. All the results were considered to be statistically significant at values of P < 0.05.

Results
IL-11Rα overexpression in osteosarcoma lung metastases and osteosarcoma cell lines
The expression of IL-11Rα in lung metastasis specimens from 16 different patients with osteosarcoma was analyzed by immunohistochemistry. IL-11Rα was expressed in 14 of 16 patient specimens (Fig. 2A, v–xviii were positive; xix and x were negative). IL-11Rα was seen in the cytoplasm and on the cell surface. The osteosarcoma cells in the metastatic tumor nodule were positive for IL-11Rα, whereas the surrounding normal lung was negative for IL-11Rα [Fig. 2A (iii) and (iv)]. We examined 4 different osteosarcoma cell lines for cell surface
expression of IL-11Rα using flow cytometry (Fig. 2B). IL-11Rα was expressed in all 4 osteosarcoma cell lines, with expression levels ranging from 20% to 60%. To assess whether the IL-11Rα signaling pathway was functional, LM7 and KRIB cells were incubated with IL-11. As shown in Fig. 2C, this led to the phosphorylation of STAT3 (p-STAT3).

IL-11Rα was not present in the normal lung tissue surrounding the tumor [Fig. 2A (iii) and (iv)]. To confirm this finding and determine whether IL-11Rα was expressed in other organs, we analyzed normal human tissue microarrays and mouse tissues. Immunohistochemical staining of the human microarrays revealed no IL-11Rα in the parenchymal cells of the brain, heart, or kidney or in the epithelial cells of the lung (data not shown). IL-11Rα was also absent in the hematopoietic cells in the lymph nodes and spleen. IL-11Rα expression was limited to the gastrointestinal tract in the stroma tissues, endothelial cells, and surface and gland epithelial cells. There was weak positive staining in the liver. Similar results were found with immunohistochemical staining of mouse tissues. Western blot analysis revealed low expression levels of IL-11Rα in mouse esophagus only.

Ex vivo expansion of IL-11Rα-CAR T cells using aAPCs

K562 clone 4 cells (22) transduced to coexpress membrane-bound IL-15 (mIL-15), CD86, CD64, and CD137 ligand (CD137L) were more than 98% IL-11Rα⁺ as measured by flow cytometry (Fig. 3). Therefore, the K562 clone 4 cells were used as the aAPCs for the expansion of IL-11Rα-CAR T cells in which CD64, CD86, CD137L, and mIL-15 served as costimulatory cytokines (22) and IL-11Rα served as a specific antigen for T-cell growth. Following incubation with γ-irradiated aAPCs and expansion, the number of IL-11Rα-CAR T cells increased by 2.8×10⁵-fold, 1.3×10⁴-fold, 4×10³-fold, and 1.0×10²-fold on days 14, 21, 28, and 35, respectively. The total number of CD3⁺ T cells similarly increased (data not shown). IL-11Rα-CAR T cells constituted 53%, 36%, 78%, 88%, and 87% of the
total number of CD3+ T cells on days 1, 14, 21, 28, and 35, respectively. A higher percentage of the IL-11Rα-CAR T cells were CD3+ than CD4+. The percentage of CD8+ IL-11Rα-CAR T cells increased from 19% on day 14 to 67%, 77%, and 73% on days 21, 28, and 35, respectively. In contrast, the percentage of the CD4+ cells remained constant at ≤10%.

Sensitivity of osteosarcoma cells in vitro to IL-11Rα-CAR T cells

Having confirmed the expression of IL-11Rα-CAR by the genetically modified T cells, we next evaluated the ability of IL-11Rα-CAR T cells to kill SAOS-2, LM7, CCH-OS-D, and KRB cells. IL-11Rα-CAR T cells were cytotoxic to all 4 cell lines (Fig. 4).

Inhibition of osteosarcoma lung metastases by IL-11Rα-CAR T cells

To evaluate the efficacy of IL-11Rα-CAR T cells against osteosarcoma lung metastasis in vivo, we injected KRB cells into the tibias of nude mice, which produced palpable tumors within 2 weeks and visible lung metastases by 6 weeks. The primary tumor must be removed at 8 weeks because of tumor size. This model mimics the clinical pathogenesis of osteosarcoma. We first investigated the ability of T cells to infiltrate the primary tumor and lung metastases. IL-11Rα-CAR T cells or control T cells labeled with CM-Dil were intravenously injected 8 weeks after tumor cell inoculation. Three days after injection of the IL-11Rα-CAR T cells, CM-Dil+ cells were present in the tumor (Fig. 5A (ii)) but not in the surrounding normal lung tissues (Fig. 5A (iv)). Control T cells were also present in the tumor (Fig. 5A (vi)). Neither CM-Dil+ IL-11Rα-CAR T cells nor control T cells were found in the primary bone tumor or any other organs including the esophagus (Fig. 5B and C). TUNEL assay was used to assess apoptosis. TUNEL-positive (brown) cells were seen in lung metastasis from mice treated with IL-11Rα-CAR T cells [Fig. 5D (ii)]. There were significantly fewer TUNEL-positive cells in the tumors from mice treated with control T cells [Fig. 5D (iv)]. There was equivalent expression of IL-11Rα in the primary tumor [Fig. 5E (i)] and lung metastasis [Fig. 5E (ii)]. After confirming that T cells could reach targeted tumor cells in the lung, we next investigated the effect of IL-11Rα-CAR T-cell therapy on osteosarcoma lung metastasis. Ten days following the intra-tibia injection of luciferase-labeled KRB cells, tumor growth was confirmed by bioluminescence signals (Fig. 6A). T-cell therapy with either IL-11Rα-CAR T cells or control T cells was started 14 days after tumor cell injection and given 2 times per week for 7 weeks. Mice were killed and their lungs evaluated after the completion of the therapy. IL-11Rα-CAR T-cell treatment reduced the number of visible lung metastases (Fig. 6B). Three of the 5 mice treated with IL-11Rα-CAR T cells had no visible metastases, whereas all of the 5 mice treated with control T cells had metastases. The number and size of the lung nodules (Fig. 6B) and the lung weight (Fig. 6C) were also lower in the mice treated with IL-11Rα-CAR T cells than in the mice treated with control T cells. There were no morphologic changes or inflammatory cells in the liver, kidney, spleen, esophagus, stomach, or intestine tissues obtained from the mice treated with IL-11Rα-CAR T cells as compared with the mice treated with control T cells (Fig. 6D and E).

Discussion

The death rate from osteosarcoma lung metastases has not changed for more than 20 years. Salvage chemotherapy has made little impact on the survival of relapsed disease in the
lung (27). Patients who are cured often suffer from the late effects of chemotherapy particularly cardiac failure and osteoporosis. This underscores the need for the development of new tumor-specific therapy. Our findings indicate that genetically modified T cells engineered to recognize IL-11Rα may have therapeutic potential against osteosarcoma lung metastases. We showed that IL-11Rα was expressed by osteosarcoma cell lines and on lung metastases from patients with osteosarcoma. The IL-11Rα signaling pathway was functional as evidenced by the stimulation of p-STAT3 following incubation of both LM7 and KRB cells with IL-11. In contrast, IL-11Rα was not expressed in the adjacent normal lung tissue or in the brain, heart, kidney, lymph nodes, or spleen. IL-11Rα has previously been identified in primary samples of patients with osteosarcoma (20). In addition IL-11Rα–targeting phage injected intravenously resulted in the accumulation of these phage particles in the osteosarcoma bone tumor tissue but not in normal bone (20). Finally, the therapeutic potential of targeting IL-11Rα was shown using a cyclic IL-11 nanopeptide conjugated to a suicide peptide (17). These data taken together with the findings in our study support the selection of IL-11Rα as a target for T-cell–directed therapy.

CARs, which can redirect T-cell specificity to a tumor cell surface antigen (10), usually consist of an extracellular antigen recognition domain, a transmembrane, and an intracellular activation domain. Engagement of the target molecule by the extracellular antigen recognition domain initiates a downstream signal that results in T-cell activation. CAR-initiated T-cell activation is not MHC restricted. Therefore, these T cells are able to kill tumor cells with downregulated HLA class I. The extracellular antigen recognition domain is commonly from an antibody-derived signal chain fragment (scFv) that can bind to a targeted antigen motif (10). In the current study, we used an IL-11 peptide to construct IL-11Rα-CAR. The peptide we used has been shown to bind IL-11Rα as an extracellular receptor recognition signal (17, 28). The intracellular signaling is mediated through a chimeric CD28 costimulatory domain and a CD3-ζ activation domain that activates T cells. A second-generation CAR using dual endodomains CD28 and CD3-ζ improves T-cell activation (29).

We engineered IL-11Rα-CAR T cells by transfecting human peripheral blood T cells with an IL-11R-CAR transposon and then propagated these transfected T cells ex vivo with aAPCs. The expression of IL-11Rα-CAR was confirmed by both Western blot analysis and flow cytometry, which indicated that the IL-11Rα-CAR was on the T-cell surface. These IL-11Rα-CAR T cells killed osteosarcoma cells in vitro and accumulated in the osteosarcoma lung metastases but not in the normal surrounding lung tissue following intravenous injection. This shows selective localization to the tumor tissue. Treating mice with established osteosarcoma lung metastases with IL-11Rα-CAR T cells resulted in significant tumor cell apoptosis and tumor regression. While accumulation of control T cells was also seen in the lung tumors with some apoptosis, there was no significant therapeutic effect. The mice treated with control T cells had large pulmonary metastases than those treated with IL-11Rα-CAR T cells.

Figure 4. Cytotoxicity of IL-11Rα-CAR T cells against osteosarcoma cells in vitro. CCH-OS-D (A), KRB (B), LM7 (C), and SAOS-2 (D) osteosarcoma cells were incubated with IL-11Rα-CAR T cells or control T cells. Lysis of the tumor cells was quantified using chromium release assay.
It is important to evaluate the efficacy of potential therapies aimed at treating osteosarcoma lung metastases using an *in vivo* model in which pulmonary metastases arise from a primary tumor. Evaluating the therapeutic efficacy against a primary bone tumor alone may not be adequate because the biologic characteristics of the metastatic nodules may differ from those of the primary tumor. Such differing characteristics may be important not only in the metastatic process but also in the growth of metastatic tumor cells in a distant organ microenvironment. For example, we showed in a previous study that while primary osteosarcoma cells growing in the bone are Fas⁺, the cells comprising the lung metastases are Fas⁻ which permits these cells to survive in the Fas⁻ lung microenvironment (30). We have similarly shown that this Fas⁻ organ microenvironment is critical to the efficacy of certain chemotherapeutic agents, including gemcitabine and liposomal 9-nitrocamptothecin (31, 32). Other investigators have shown that osteosarcoma pulmonary metastases are less sensitive to chemotherapy than the primary osteosarcoma tumors are (33). The human KRB osteosarcoma model used in the current study to test the efficacy of IL-11Rα-CAR T cells fits the criteria stated above (34). A primary bone tumor developed within 2 weeks of intra-tibia tumor cell injection and spontaneous lung metastases developed within 6 weeks. KRB lung metastases were IL-11Rα⁺ and Fas⁻. The histologies of both the primary tumor and lung metastases in the mouse model as judged by H&E were similar to those of patient samples. Other potential targets have been proposed for therapy against osteosarcoma. A monoclonal antibody against...
insulin-like growth factor-1 receptor (IGF-1R) has been shown to induce the regression of subcutaneous osteosarcoma (35, 36), but its effectiveness against osteosarcoma lung metastases is unknown. Although Her-2 has also been proposed as a therapeutic target for osteosarcoma lung metastases (37), its expression is weak and mainly seen in the cytoplasm (as opposed to the cell surface), indicating that Her-2 may be an inferior target compared with IL-11Rα.

Constructing bispecific T cells with IL-11Rα and Her-2 CARs on the same cell may prove beneficial because the expression of IL-11Rα is not 100% on every osteosarcoma cell. However, this will require future studies investigating whether Her-2 is expressed in IL-11Rα− osteosarcoma cells and whether Her-2–directed T cells can recognize and kill IL-11Rα− osteosarcoma cells.

T-cell therapy is particularly relevant to osteosarcoma because peripheral lymphocyte numbers correlate with outcome of patients with osteosarcoma (38). Patients who have high lymphocyte counts were shown to have a better outcome. T-cell infusions can increase the number of T lymphocytes increasing the total number of T cells which again was shown to be beneficial to the patients (38). T-cell infusions have also been shown to recruit other cytotoxic effector cells which again may have therapeutic benefit (39, 40). This is significant because osteosarcoma is an orphan disease that is in dire need of new therapies. Salvage chemotherapy has failed to improve survival (27). We are using the same chemotherapy agents that were used more than 20 years ago. The only documented successful approach for relapsed disease is multiple thoracotomies (41, 42). Identifying a new therapeutic approach that is not chemotherapy can have a significant impact on the lives of these patients. The data presented here suggest that CAR-specific T-cell therapy targeting IL-11Rα on osteosarcoma cells may have therapeutic potential for the treatment of patients with osteosarcoma pulmonary metastases.

Figure 6. Effect of IL-11Rα-CAR T cells on osteosarcoma lung metastases. A, ten days after intra-tibia injection with luciferase-expressing KRIIIB cells, luminescence signals were detected. B, two weeks following KRIIB cell injection, the mice were treated with IL-11Rα-CART cells or control T cells twice a week for 7 weeks. After therapy completion, mice were killed and their lungs extracted and analyzed for the presence of visible lung metastases. Representative lung tissue and lung metastases from 5 of 10 mice per group. Arrows identify visible metastatic nodules. C, the mean wet lung weight was calculated. One of 3 representative experiments (10 mice per group) is shown. D and E, H&E staining.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Margaret J. Dawson, Yanwen Yang, Harjeet Singh, Simon Olivares, Ling Zhang, and Ge Yang for technical help.

References

Grant Support

This work was supported by National Cancer Institute grant R01 CA42992 (to E.S. Kleinerman) and Cancer Center Support Grant CA16672.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 19, 2011; revised October 11, 2011; accepted November 2, 2011; published OnlineFirst November 10, 2011.
Genetically Modified T cells Targeting Interleukin-11 Receptor α-Chain Kill Human Osteosarcoma Cells and Induce the Regression of Established Osteosarcoma Lung Metastases

Gangxiong Huang, Ling Yu, Laurence J.N. Cooper, et al.

Cancer Res Published OnlineFirst November 10, 2011.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-2778

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.