Cell-Mediated Autophagy Promotes Cancer Cell Survival

William J. Buchser¹, Thomas C. Laskow¹, Philip J. Pavlik¹, Hui-Min Lin², and Michael T. Lotze¹

Abstract

Immune effector cells integrate signals that define the nature and magnitude of the subsequent response. Experimental measures for immune cell–mediated lysis of tumors or virally infected targets rely on average responses of permeability or apoptotic changes within a population of targets. Here, we examined individual target cells following interaction with lymphoid effectors. We found that human peripheral blood lymphocytes not only provide lytic signals but also promote autophagy in the remaining cells. At high effector-to-target ratios, autophagy was induced in several human tumors, as assessed by induction of LC3 puncta and diminished p62. Natural killer cells are a primary mediator of this process. In addition, target cell autophagy was enhanced by provision of interleukin (IL)-2, whereas IL-10 attenuated this effect, and cell-to-cell contact strongly enhanced lymphocyte-mediated autophagy. Although IFN-γ can induce autophagy in target cells, IFN-α acted directly on the targets or in concert with lymphocytes to diminish target autophagy in some cell types. Importantly, cell-mediated autophagy promoted resistance from treatment modalities designed to eradicate tumor cells. Our findings therefore show that the lymphocyte-induced cell-mediated autophagy promotes cancer cell survival and may represent an important target for development of novel therapies. Cancer Res; 72(12); 1–10. ©2012 AACR.

Introduction

Cancer in adults arises in the setting of chronic inflammation associated with perpetual cell damage and cell death (1–3). In trauma, infection, autoimmunity, and cancer, damage to cells results in release of damage-associated molecular pattern molecules (DAMP; refs. 4 and 5) and the upregulation of stress ligands/pattern recognition receptors on the remaining cells (6, 7). Enhanced survival of cancer cells following lymphocyte interaction has been observed (8, 9). Those remaining cells not lysed by antitumor effectors have previously not been carefully examined. Here, we examine how epithelial cancer cells respond to short-term interactions with human peripheral blood lymphocytes (PBL).

Natural killer (NK) cells are rapidly recruited to wounds (10, 11) and tumor sites (12) and can release cytokines including interferons, which rapidly modify target cell biology, upregulate MHC-I, and diminish proliferation. Recently, the NK family of cell types has been expanded to include several diverse innate lymphoid cells (ILC) with unique capabilities and functions, not just the cytolytic function attributed to these cells (13). NK cells clearly perform both regulatory and helper roles in several contexts (14, 15). Interestingly, the interleukin (IL)-22–producing NK cell subset (NK22/ILC22) is involved in tissue repair and epithelial proliferation (16, 17), expanding on the classic repertoire of NK cell functions. Here, we suggest that peripheral NK cells, and possibly other immune effectors, can induce autophagy and enhance cell and/or tissue survival.

Classic cytotoxicity assays use release of a dye or radionuclide (³²Cr), that is loaded into cells to determine the extent that lymphocytes lyse targets (18, 19). Several paradoxes have been observed with these assays, including plateaus that do not reach the 100% lysis level despite increasing effectors (20), and frequent observations of negative measures of cytotoxicity, with enhanced survival in the presence of lymphocytes. Here, we show for the first time that classic cytolytic cells, including NK cells, can often promote survival and autophagy in target cells, perhaps providing an explanation for these discordant findings.

Materials and Methods

Cell culture

Human pancreatic cancer lines Panc2.03 and Panc3.27 from American Type Culture Collection. Colon cancer HCT116s were a gift from Dr. Bert Vogelstein (John Hopkins University, Baltimore, MD), 786-0 from Dr. Jodie Maranchie and WSS1 from Lisa Butterfield (University of Pittsburgh School of Medicine, Pittsburgh, PA). Human bladder cancer cell lines (T-24) stably transfected with GFP-LC3 were a gift from Umamaheswar Duvvuri (University of Pittsburgh Medical Center, Pittsburgh, PA). 786-0 and WSS1 cells were authenticated using genetic profiling (IDEXX Radii). Cells were cultured in complete media: RPMI-1640 (Thermo/Hyclone) supplemented with 10% heat-inactivated FBS (Mediatech), and antibiotic–antifungal mixture (PenStrep, Gibco/Invitrogen) in a
humidified incubator 37°C with 5% CO₂. Cell lines were passaged, split, counted, and seeded 4,000 to 5,000 cells per well in 50 μL of complete media on 384-well collagen-I–coated plates (BD Labware 35-6832) for 24 hours.

Treatment of cells

We used recombinant human IFN-γ (R&D Systems) and recombinant IFN-α from Intron-A (Schering-Plough). In cell–cell contact and diffusible factors experiments, supernatant was removed from coculture wells at 2 and 6 hours, spun down, and the top fraction was applied to naïve culture wells for the remaining 22 and 18 hours, respectively. Transwell experiments were carried out in 24-well plates using 0.4-μm polycarbonate Transwell supports (Corning/Costar).

Human peripheral blood mononuclear cell

Peripheral blood mononuclear cells were isolated as previously described (21). Briefly, peripheral blood mononuclear cells were collected from theuffy coat using Ficoll-Paque Plus (Amersham Biosciences), rinsed, and stored in 20% FBS with cells were collected from the buffy coat using Ficoll-Paque Plus (supplementary Methods). Autophagy was measured by LC3 Staining, microscopy, and analysis

Staining, microscopy, and analysis

Cells were stained for immunofluorescent imaging, and microscopy was done with Cellomics Arrayscan VTI (see Supplementary Methods). Autophagy was measured by LC3 morphology (22).

Results

Increased autophagy in surviving tumor cells after lymphocyte coculture

We have developed a coculture system where dividing human cancer cell lines adhered onto collagen substrate were overlain with primary human lymphocytes. Cytolysis was measured directly by automated adherent cell counting and was equivalent to the standard 51Cr release assay and the cell counting kit (CCK) cell survival assay (Supplementary Fig. S1).

With the coculture model, not only could we determine the rate of lysis in a dose-dependent manner, but also we found that many target cells remained adherent even with the highest lymphocyte number delivered for extended periods (8). Autophagy is a common cellular response to stress and we hypothesized that autophagy could sustain the surviving cells and potentially protect them from lysis. Unlike controls (Fig. 1A and B), high E:T ratio cocultures have lymphocyte clusters around the remaining tumor cells (Fig. 1C), especially in the presence of IL-2 (Fig. 1D). The high lymphocyte/IL-2 condition (Fig. 1D) has fewer adherent target cells remaining because of lysis. Importantly, the remaining cells have heightened autophagy, as shown by increases in LC3 puncta area, density and number of puncta. Not only did the fraction of highly autophagic cells increase in the high E:T conditions but also the overall number of autophagic cells increased, confirming induction of heightened autophagy, and not solely a selection of autophagic cells. We next carried out a dose–response assessment for unsorted lymphocytes and negatively selected human primary NK cells. NK cells are able to kill targets more effectively than sorted cells [Fig. 1E, analysis of covariance (ANCOVA) comparing regressions of NK vs. PBL P = 4.1 × 10⁻⁴] in the presence of IL-2. Both unsorted lymphocytes and NK cells promoted autophagy as assessed by LC3 puncta area (NK No IL-2, P = 1 × 10⁻³; IL-2, P = 0.035; PBL No IL-2, P = 1 × 10⁻⁵; IL-2, P = 4 × 10⁻⁵; regression analysis). Compared with baseline, autophagy was doubled with 2:1 E:T ratios of NKs and was increased 4-fold with 5:1 E:T NK cells. Higher E:T ratios (~40:1) of unsorted lymphocytes (Figs. 1F and 3–7) were required to produce comparable levels of autophagy, suggesting that a major role of NK cells is to promote autophagy (ANCOVA comparing regression of NK vs. PBL for LC3 puncta area, P<0.001). In addition, CD56⁺ CD3⁻ CD19⁺ cells promoted autophagy to a greater extent than the CD56⁻ lymphocyte population (not shown). Interestingly, other immune cells including macrophages and T cells (Supplementary Fig. S2) mediate cell-mediated autophagy (C-MA) as well. Consistent with previous findings, the autophagy markers p62 (23) and caveolin-1 (24) diminish with increasing autophagy (Fig. 1G and H; regressions for p62 IL-2 6000, P = 3.6 × 10⁻⁵; No IL-2, P = 0.00063) as LC3 levels increased (Fig. 1I). Induction of target autophagy required the autophagy gene ATG5 (Supplementary Fig. S3). Lymphocytes and macrophages can promote C-MA) in human epithelial cancer cell lines.

Lymphocytes effectively lyse and induce autophagy in multiple epithelial cancer lines

We examined whether lymphocytes had the ability to induce autophagy in several human epithelial cancer cell lines including those derived from the colorectum, pancreas, kidney, and bladder. All cell types were sensitive to lysis with increasing PBL E:T ratios (Fig. 1J, first row; χ² analysis, independent experiments with statistically decreasing slopes). Autophagy was consistently induced and the measurement of LC3 by LC3 levels increased (Fig. 1J, second row). WSS1 did not share this phenotype, possibly because of more variable basal autophagy. Lymphocyte-induced changes in the number of LC3 puncta (Fig. 1J, third row) and the individual punctum LC3 density were more cell-type specific. These
results indicate significant and reliable autophagic changes induced by lymphocytes for pancreatic, colorectal, renal, and bladder cancer cell lines.

To verify that the autophagic increase was not simply a precursor to cell death, cultures were established for various time periods (Supplementary Fig. S4A–S4C). Autophagic cells could be identified for at least 5 days, and both the number and percentage of autophagic cells increased at high E:T conditions when compared with vehicle controls (Supplementary Fig. S4D). Additional studies using caspase inhibitors did not
prevent C-MA (Supplementary Fig. S5). Therefore, induction of autophagy by lymphocytes is not caused directly by induction of cell death pathways, and it likely relates to extended cell survival. Bafilomycin, a late autophagy inhibitor, was used to halt progression of so-called autophagic flux, which results in uncleared autophagosomes otherwise targeted for lysosomal degradation. In the presence of PBLs, bafilomycin-treated targets had both enhanced LC3 puncta and the lysosome marker lysosome-associated membrane protein, LAMP1 (Supplementary Fig. S6), consistent with a block in autophagosome fusion and degradation.

Autophagic flux measured by imaging LC3

Some autophagic characteristics of epithelial cancer cells are shown in Fig. 2. These patterns were context-dependent and associated only with particular cell lines or treatments. Cells in control conditions (Fig. 2A) had diffuse LC3 with difficult-to-discern puncta. In the pancreatic, renal, and bladder cancer cell lines, there was a pool of nuclear LC3 and less cytoplasmic LC3. Several patterns emerged that were mirrored across most cell lines tested. The addition of lymphocytes produced autophagy with more puncta appearing in the cytoplasm. These puncta were quite large and possessed indistinct borders (Fig. 2B). The overall amount of LC3 in the cytoplasm and the number of puncta were somewhat higher than the control, but the largest difference was in the area (size) of the puncta. Other treatments, such as IFN-γ, produced a different pattern of autophagy. Although there was an increase in the size and number of LC3 puncta, the largest increase was the LC3 density within individual puncta (i.e., the intensity of LC3; Fig. 2C). These bright puncta were also easier to identify because of more distinct borders. The localization of the puncta within the cell was also distinct, depending on the context (cell type and treatment). The renal cancer cell line 786-0 (Fig. 2D) had a high level of juxta-nuclear LC3 at basal conditions, which was often observed as a diffuse perinuclear signal with defined borders and 1 or 2 bright perinuclear puncta. Occasionally, a small mist of cytoplasmic LC3 was also observed. The classic autophagy inducer, serum starvation, and chloroquine inhibition also produced distinct LC3 patterns (Supplementary Fig. S7). Staining with the lysosomal marker LAMP1 indicated puncta of both LC3 and LAMP1 in
Cytokines regulate induction of autophagy

Unsorted PBLs were used henceforth because they can readily be induced to express lymphokine-activated killer (LAK) activity (25) and to establish the response for the mixture of cells that would exist in a tumor microenvironment in individuals treated with IL-2. We sought to determine the dose response for IL-2 in regard to lymphocyte-induced target autophagy. With no lymphocytes, cancer cells maintained the same level of autophagy through increasing IL-2 treatment (as expected, no significant effect of IL-2). With peripheral lymphocytes present, IL-2 enhanced autophagy in the target cells (Fig. 3A, right; linear regression, $P = 0.035$). Denatured (boiled) IL-2 was unable to increase autophagy, indicating that the mannitol and SDS excipient of IL-2 did not contribute to induction (data not shown). IL-10 was expected to act on the lymphocytes to regulate autophagy in the targets (26). MHC-I expression was used as a positive control. In Fig. 3B (top right), MHC-I was increased in cancer cells by lymphocyte coculture, especially with the addition of IL-2. MHC-I was unchanged by direct treatment of cancer targets with dose-escalating IL-10. IL-10 steadily decreased the expression of MHC-I otherwise induced by high E:T ratio of lymphocytes both with ($P < 0.001$) and without IL-2 ($P < 0.001$). The effect on autophagy was similar (Fig. 3B, right). LC3 puncta area was diminished with IL-10 treatment in coculture, particularly with concurrent IL-2 treatment (No IL-2, $P < 0.005$; with IL-2, $P < 0.0005$). Therefore, IL-2 potentiated C-MA whereas IL-10 attenuated it.

TGF-β can act on NK cells to diminish target lysis and IFN-γ production (8). We have found that blocking TGF-β in the coculture diminishes target cell autophagy in a dose-dependent manner (Supplementary Fig. S8), indicating that TGF-β may be one of the molecular signals responsible for autophagy induction.

Cell–cell contact enhances lymphocyte-mediated autophagy

To evaluate mechanisms promoting C-MA, we asked whether soluble factors released from lymphocytes were sufficient for induction. Supernatants from lymphocyte/cancer cocultures were applied to adherent cancer cell cultures (Fig. 4A). With supernatant treatment, autophagy was slightly increased when compared with untreated cancer cells (in HCT116 and Panc2.03) but less than with cell–cell contact (50:1 E:T ratio cocultures, ANOVA HCT116, $P = 0.0014$; Panc2.03, $P = 0.0013$; T-24, $P = 0.012$; Dunnet’s posttests displayed in figure). In a parallel experiment, autophagy was promoted by direct lymphocyte coculture, with only minimal increases observed when cells were separated by a permeable Transwell (Fig. 4B, ANCOVAs comparing regressions between Transwell and cell–cell contract for HCT116, $P = 0.022$; Panc2.03, not significant; T-24, $P < 0.0001$). Interestingly, overall LC3 intensity in the cancer cell lines was increased by both direct coculture and Transwell conditions (data not shown), consistent with the presence of a diffusible factor that is sufficient to upregulate LC3 expression, but not to markedly increase autophagic flux. Cell–cell contact was required for full increases of autophagy in the cancer cell lines tested.

NK cells express specific receptors, which either activate or inhibit effector function. We have found that the activating receptor NKG2D is not responsible for triggering C-MA (Supplementary Fig. S9). On the other hand, the family of killer cell Ig-like receptors (KIR) do seem to play a role, at least in some cell types. KIR inhibition both by a pan-KIR blocking antibody and by a SHP2 phosphatase (downstream of the ITIM domain in KIR-L forms) inhibition produces increases in effector IFN-)γ
Cancer Research

I expression as a control to show IFN-γ we tested the effects of lymphocyte coculture (up to 50 E:T density of LC3 in autophagic puncta (Fig. 5C). Using 3 cell lines, (Fig. 5B). High doses of IFN-γ, where resting cells had diffuse LC3 staining (Fig. 5A), whereas MHC-I expression increased (Supplementary Fig. S11A–S11B), indicating STAT activation. Although both lymphocytes and IFN-γ induced autophagy, the phenotype of the target cells was different, suggesting that molecular pathways driven by lymphocyte coculture other than IFN-γ maybe involved. In addition, soluble IFN-γ receptor (IFNgR1) reduced upregulation of MHC-I but was not able to block C-MA (Supplementary Fig. S11C–S11F), confirming that additional factors or surface molecules can trigger the process.

IFN-α inhibits C-MA in HCT116 and 786-0 cell lines

As expected, IFN-α was sufficient to upregulate MHC-I on target cells (Fig. 6A). Additive effects on MHC-I expression were observed with the combination of lymphocytes and IFN-α (Fig. 6A, second panel monotonic; third panel additive, but no synergy). Increasing both cells and IFN-α led to MHC increases with a 2-fold greater rate of change (Fig. 6A, fifth panel). Although IFN-α produced the greatest MHC-I expression increase from 0 to 10,000 IU/mL and then plateaued, the combination of lymphocytes and IFN-α produced greater MHC-I increases, suggesting that another cytokine (such as IFN-γ) was also operative. All IFN-α effects on MHC were significant across the concentration range tested (linear regression HCT116, P < 0.0001; Panc2.03, P = 0.0073; T-24, P = 0.014), and for high E:T ratio or high doses of IFN-α (t tests, P < 0.0001).

Although both IFN-γ and IFN-α produced similar target cell changes in MHC-I expression, the effect on target cell autophagy was distinct. Depending on the cell type, IFN-α either produced no significant changes in autophagy (Panc2.03, T-24) or reliably inhibited autophagy (HCT116, P = 2 × 10^-16). When IFN-α was added to cells, autophagic LC3 puncta dropped in size and number in a dose-dependent manner (Fig. 6B, first panel; P = 0.0068). HCT116 autophagy was induced by increasing lymphocyte E:T ratios (Fig. 6B, second panel; P = 0.0015). IFN-α specifically inhibited autophagy induced by lymphocyte coculture (Fig. 6B, panels 4 and 5), except at the highest E:T ratio tested (panel 3). In all cases, C-MA was limited in the presence of IFN-α (multiple regression’s interaction term in HCT116 and 786-0 P < 0.001). Representative images are shown in Fig. 6C and D. When combined with a late autophagy inhibitor, there is little expansion of autophagosome number with higher doses of IFN-α, and when combined with an early autophagy inhibitor, there is little change in the effect of IFN-α (Supplementary Fig. S12). These results confirm that IFN-α does not increase autophagy in the target cells we evaluated.

C-MA protects cells from subsequent γ-radiation

We examined the remaining tumor cells after lymphocyte coculture to determine whether the cancer cells were production (27). Importantly, the inhibitors partially reduce target autophagy (Supplementary Fig. S10), supporting the hypothesis that KIR engagement can both inhibit classic (lytic) effector function but induce other effector functions, including C-MA.

IFN-γ induces autophagy

IFN-γ is sufficient to induce target autophagy (28–30); whereas resting cells had diffuse LC3 staining (Fig. 5A), addition of lymphocytes to Panc2.03 markedly increased autophagy (Fig. 5B). High doses of IFN-γ led to substantial increases in the density of LC3 in autophagic puncta (Fig. 5C). Using 3 cell lines, we tested the effects of lymphocyte coculture (up to 50 E:T ratio) in parallel with IFN-γ on autophagy. We used MHC class-I expression as a control to show IFN-γ efficacy. IFN-γ rapidly and consistently leads to the upregulation of MHC-I on the surface and in the cytoplasm of target cells (Fig. 5E, linear regression with first 2 concentrations, all cell types P < 0.0003). As expected, the addition of lymphocytes in the coculture also leads to increases in MHC-I expression both on the surface and within the cytoplasma of target cells (Fig. 5D, linear regressions all cell types, P < 0.0001).

In the same cells, we concurrently examined autophagy. The addition of IFN-γ induced autophagy in the cell lines (Fig. 5G, linear regression; Panc2.03 and T-24, P < 0.0001; HCT116, P < 0.001; using the lowest 2 concentrations). IFN-γ had the largest effect on LC3 density (Figs. 5C and 2C) but also led to increases in the number and area of the puncta (not shown). Lymphocytes induced increases in LC3 puncta area (Fig. 5F, linear regressions P < 0.0001 for all cell types). STAT1/2 are downstream of IFN signaling, and we observed increases in the nuclear localization of STAT1 and STAT2 after lymphocyte coculture (Supplementary Fig. S11A–S11B), indicating STAT activation. Although both lymphocytes and IFN-γ induced autophagy, the phenotype of the target cells was different, suggesting that molecular pathways driven by lymphocyte coculture other than IFN-γ may be involved. In addition, soluble IFN-γ receptor (IFNgR1) reduced upregulation of MHC-I but was not able to block C-MA (Supplementary Fig. S11C–S11F), confirming that additional factors or surface molecules can trigger the process.
protected from radiation-induced cell death. The cancer cell lines were cocultured with human lymphocytes for 24 hours at individual E:T ratios, then harvested and exposed to γ-irradiation. The cancer cells were replated for an additional 24 hours before they were analyzed. Increasing doses of γ-irradiation eradicated almost half of the cancer cells in all 3 cell lines (Fig. 7A, regressions for HCT116, \(P = 0.0015 \); 786-0, \(P = 2.8 \times 10^{-12} \); Panc2.03, \(P = 6.7 \times 10^{-10} \)). Interestingly, HCT116 and 786-0 cells that were previously cocultured with PBLs shatd a significantly higher fraction of cells remaining after γ-irradiation than those cells that were cultured alone (ANOVA \(P < 0.0001 \), Dunnet’s posttests HCT116 500 rads, \(P = 1.2 \times 10^{-12} \); 786-0 125 rads, \(P = 0.055 \); 500 rads, \(P = 0.001 \); Panc2.03, not significant). γ-Irradiation itself induces a stress response in cells, increasing autophagy (Fig. 7B). These results suggest that C-MA protects cells from subsequent stressors including radiation. Chemotherapeutic agents’ efficacy was only modestly diminished following previous coculture with lymphocytes (Supplementary Fig. S13).

Discussion
Cell-mediated lysis has been well documented since the pioneering studies of the Hellstrom (31). Multiple reasons for the failure of immune effectors to fully eradicate tumor have been advanced, including immune exhaustion, factors released within the tumor microenvironment to limit effector survival or efficacy (21) in vitro and in vivo (8, 9), and so on. Relatively little attention has been given to the state of the remaining tumor cells. Here, we suggest that C-MA may play a role in inducing resistance to immune effectors and also limit the ability of tumors to respond to subsequent chemotherapy or radiation therapy (32).

Target cells with high autophagy persisted in culture for at least 5 days after interaction with immune effectors. The induction of autophagy was shown for 6 individual epithelial cancer cell lines and is ATG5-dependent. Measuring autophagic flux was achieved by quantifying LC3 puncta (33–35). IL-2 further activates lymphocytes to induce LAK activity (25), enhancing lysis but also enhancing autophagy induction in the nonlysed targets. Direct cell–cell contact produced the strongest C-MA. IFN-γ was sufficient to induce autophagy in the target cells. However, the morphology of the autophagosomes was different than that observed with PBL-induced autophagy, with especially high-density LC3 puncta. The effect of IFN-α depended on the specific target cell type used. IFN-α was able to inhibit autophagy when combined with lymphocyte coculture. Both KIR and TGF-β inhibition diminished (but did not abolish) C-MA, making them candidates for the molecular mechanism.

Autophagy is a basal repair and stress response mechanism, and in many ways mediates programmed cell survival. Autophagy is important oncologically because it can both suppress tumorigenesis at early stages (36, 37) and enable cancer adaptation and recurrence after therapy in late stages.
Thus suggesting an autophagic switch arising during carcinogenesis. Although IL-2 administration can be potentially curative, it creates a systemic autophagic syndrome, limiting vital processes within tissues at the expense of cell survival (39, 40). Combination with the autophagy inhibitor chloroquine significantly enhances the effects of IL-2 (41). The balance between activating and inhibitory signals regulating NK-mediated lysis is now more nuanced, given that lymphocytes can also induce C-MA in targets. Classic activating signals for cytolysis (42) may also promote repair and survival in some circumstances.

We showed that IFN-γ, but not IFN-α, enhanced autophagy in cancer cell lines. IFN-γ induces autophagy (43) both to enhance antigen processing and presentation through MHC-I (44, 45). Increased autophagy also enhances the process of viral/bacterial digestion through xenophagy (46). In the liver for example, IFN-γ is likely responsible (along with IL-12/IL-18) for the clearance of hepatitis virus (47, 48). IFN-α primarily enhances NK cell cytotoxicity (49). The differential response produced from these type-I and type-II IFNs provides a potential mechanism for lymphocytes to deliver differential repair/cytolytic instructions to target cells. Additional cytokines such as IL-10, which diminishes C-MA as well as IL-4 may play roles in negatively regulating C-MA.

Lymphocytes perform critical roles in the early detection and response to cellular/tissue stress. NK cells detect stress signals arrayed on the surface of cells (5, 6, 13). Although it is well established that NK cells can lyse virus-infected, damaged, and stressed cells, the role of innate lymphocytes in promoting survival and healing is only now being studied (50). Permitting

Figure 6. C-MA is inhibited by IFN-α. Tumor cell lines were grown alone for 24 hours and then treated with combinations of IFN-α and lymphocytes for 24 hours before measuring cytolysis, MHC-I expression, and autophagic puncta. Line charts showing MHC-I expression (A) and # LC3 puncta (B) with the 5 columns on each graph representing a dose response to IFN-α, increasing E:T ratios of PBLs with no IFN-α, a gradient of PBLs with a constant IFN-α 70,000 IU/mL, constant 50:1 E:T ratio (PBLs) with increasing concentrations of IFN-α, and a dual increase in both E:T ratio and IFN-α. All x-axes are on a log scale. Micrographs of T-24 bladder cancer (C) and Panc2.03 (D) representing the various patterns of autophagy and MHC-I expression. C, control growth of cells in Hoechst channel, LC3, MHC-I, and merge (blue, red, green, respectively). On the second row, 50:1 E:T ratio of lymphocyte coculture after 24 hours (arrowhead indicating lymphocyte nuclei). Bottom row showing IFN-γ treatment for comparison. D, Panc2.03 control (top), 70,000 IU/mL IFN-α (middle), and IFN-γ (bottom) for comparison. Scale bar, 50 μm.
Using a new image-based cytolysis assay, we show that lymphocytes can promote cell survival. The induction of autophagy, the precise signals and means for communication to induce this function, needs to be more fully evaluated to understand the complex multistep interactions between lymphoid cells and their targets. The potentially reparative or protective signal provided by lymphocytes to induce autophagy could promote wound healing or response to pathogens but could also promote the development and persistence of cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: W.J. Buchser, M.T. Lotze
Development of methodology: W.J. Buchser, T.C. Laskow, M.T. Lotze
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): W.J. Buchser, T.C. Laskow, P.J. Pavlik
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): W.J. Buchser, P.J. Pavlik, H.-M. Lin, M.T. Lotze
Writing, review, and/or revision of the manuscript: W.J. Buchser, T.C. Laskow, P.J. Pavlik, M.T. Lotze
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M.T. Lotze
Study supervision: M.T. Lotze

Acknowledgments

The authors thank Anne Geller, Nicole Schapiro, Jesse Payton, Jillian Bonaroti, and Dr. D. Andy Clump for their assistance. The authors also thank collaborators in the Pawel Kalinski laboratory for cell death inhibitors and Prometheus for the kind gift of IL-2. Dan Normolle in UPCI biostatistics was consulted on the model used for conducting multiple regressions of PBL/IFN-α. The authors specially thank our Cancer Center director, Nancy Davidson and the Department of Surgery Chairman, Timothy Billiar for supporting this work.

Grant Support

This work was supported by UPCI Cancer Center Support Grant, NIH 5P30 CA173594 (Nancy E. Davidson) and NIH 1 P01 CA 101944-04 (M.T. Lotze).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 14, 2011; revised April 6, 2012; accepted April 11, 2012; published OnlineFirst April 13, 2012.

References

Cell-Mediated Autophagy Promotes Cancer Cell Survival

Cancer Res Published OnlineFirst April 13, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-3396

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2012/04/17/0008-5472.CAN-11-3396.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.