An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis

Xiumei Huang¹,², Ying Dong¹,², Erik A. Bey¹,², Jessica A. Kilgore³, Joseph S. Bair⁴, Long-Shan Li¹,², Malina Patel¹,², Elizabeth I. Parkinson⁴, Yiguang Wang¹, Noelle S. Williams³, Jinming Gao¹, Paul J. Hergenrother⁴, and David A. Boothman¹,²

Abstract

Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+/ATP depletion that stimulate Ca2+-dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1 cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1 cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1 cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers. Cancer Res; 72(12); 1–10. ©2012 AACR.

Introduction

Lack of selectivity of most cancer chemotherapeutics remains a major limiting factor (1). We have focused on exploiting elevated NAD(P)H:quinone oxidoreductase-1 (NQO1, EC 1.6.99.2) levels in most solid tumors, particularly in non–small cell lung (NSCLC), prostate, pancreatic, and breast (2–4), for drug development. NQO1 is an inducible phase II detoxifying 2-electron oxidoreductase capable of reducing most quinones, forming stable hydroquinones. Glutathione S-transferase then detoxifies hydroquinones, conjugating them with glutathione for secretion (5).

Certain rare compounds, however, may undergo NQO1-mediated bioreduction for antitumor activity. Rather than detoxifying, NQO1 converts specific quinones into highly cytotoxic species. Most antitumor quinones dependent on NQO1 are DNA alkylators: mitomycin C (6, 7), RH1 (8), E09 (7), and AZQ (9). Use of these agents is limited because they are subject to detoxification pathways, efficient substrates for ubiquitously expressed one-electron oxidoreductases that cause normal tissue toxicity, and subject to emergent drug resistance from various DNA repair pathways.

β-Lapachone (Fig. 1A) kills cancer cells and murine xenograft and orthotopic human or mouse tumor models in vivo in an NQO1-dependent manner (3, 10). β-Lapachone induces cell death by NQO1-dependent reactive oxygen species (ROS) formation and oxidative stress (2–4). NQO1 metabolizes β-lapachone into an unstable hydroquinone that spontaneously oxidizes, by 2 dioxygen equivalents, generating superoxide (10, 11). Elevated long-lived hydrogen peroxide (H2O2) causes extensive DNA base and single-strand break (SSB) lesions that are normally easily and rapidly repaired. However, extensive NQO1-dependent SSBs cause poly(ADP-ribose)polymerase-1 (PARP1) hyperactivation, inhibiting the essential base and SSB repair functions. PARP1 hyperactivation causes dramatic NAD+/ATP pool losses due to ADP ribosylation, resulting in extensive energy depletion and cell death (2–4). Thus,
β-Lapachone kills NQO1+ cancer cells by programmed necrosis that is independent of caspase activation or p53 status, independent of bcl-2 levels, not affected by BAX/BAK deficiencies, independent of EGF receptor, Ras, or other constitutive signal transduction activation, and/or not dependent on proliferation. β-Lapachone is, therefore, an attractive experimental drug, and various β-lapachone formulations have been, or are in, phase I/II clinical trials.

However, β-lapachone has a modest potency (LD_{50}: 2–10 μmol/L) in vitro, with limited aqueous solubility that complicates formulation and delivery. Although nanoparticle strategies for β-lapachone delivery solved formulation issues, resulting in dramatic antitumor efficacy (12), there is a clear need for higher potency drugs. Deoxynyboquinone (Fig. 1A) is a promising antineoplastic agent whose mechanism of action has not been elucidated. Deoxynyboquinone killed cancer cells through oxidative stress and ROS formation (13, 14), and N-acetyl cysteine, a global free radical scavenger (13), partially blocked lethality. Here, we show that deoxynyboquinone undergoes an NQO1-dependent futile cycle similar to β-lapachone, in which O2 is consumed, ROS is formed, and extensive DNA damage triggers PARP1 hyperactivation. Dramatic NAD\(^+\)/ATP pool decreases caused programmed necrosis. Deoxynyboquinone is 20- to 100-fold more potent than β-lapachone, with a significantly enhanced therapeutic window in human breast, prostate, and pancreatic cancer models in vitro. NQO1 processes deoxynyboquinone in vitro more efficiently than β-lapachone, suggesting that increased usage accounts for its enhanced potency. Significant efficacy of deoxynyboquinone at 6-fold greater potency versus β-lapachone against orthotopic Lewis lung carcinoma (LLC) is shown.

Materials and Methods

Chemicals, reagents, and antibodies

Deoxynyboquinone and β-lapachone were synthesized as described (10, 13). Streptomycin, mitomycin C, menadione, Hoechst 33258, hydrogen peroxide (H\(_2\)O\(_2\)), cytochrome c,
propidium iodide, and dicoumarol were purchased from Sigma-Aldrich. All quinones and BAPTA-AM (Calbiochem) were dissolved in dimethyl sulfoxide (DMSO). Dihydroythidium (DHE, 5 mmol/L in DMSO) was purchased from Invitrogen Life Technologies. RH1 and α-human NQO1 antibody were provided by Dr. David Ross (University of Colorado Health Science Center, Denver, CO) and used at a 1:5,000 dilution overnight, 4°C. α-PAR (BD Pharmingen), which detects poly (ADP-ribosylated) (PAR) proteins (typically ADP-ribosylated PARP1), and α-PARP1 (sc-8007, Santa Cruz Biotechnology) antibodies were used at 1:4,000 and 1:2,000 dilutions, respectively. α-Tubulin was monitored for loading (15).

NQO1 enzyme assays

Deoxynyboquinone, β-lapachone, or other quinones (see Supplementary Fig. S1 for structures) were monitored as NQO1 substrates using an NADH (400 μmol/L) recycling assay and recombinant NQO1 (Sigma; ref. 10), in which NADH oxidation to NAD\(^+\) was monitored by absorbance (A\(_{340}\) nm) and data recorded at 2 second intervals for 5 minutes. NADH oxidation rates were compared with reactions lacking β-lapachone or deoxynyboquinone, or containing dicoumarol (10 μmol/L). Initial velocities were calculated and data expressed as dicoumarol-inhibited relative units (μmol NADH oxidized/min/μmol protein; ref. 10).

O\(_2\) consumption rates

Assays were carried out using Seahorse 24-well dishes in conjunction with an XF24 sensor cartridge and a XF24 Extracellular Flux Analyzer (Seahorse Biosciences) as per the manufacturer’s instructions. Briefly, 30,000 cells per well were seeded using a 2-step process, and cells grown as above with unseeded background correction wells. O\(_2\) consumption rates (OCR) and proton production rates were measured using the XF24 Analyzer and Assay Wizard software. Data represent means, ±SE from triplicate repeats. Experiments were independently repeated 3 times.

Nucleotide analyses

Changes in intracellular NAD\(^+\) pools were measured using Fluorescent NAD/NADH Detection Kits (Cell Technology, Inc.; ref. 2). NAD\(^+\)/NADH levels were graphed as means, ±SE from at least 3 independent experiments carried out in sextuplets each. Changes in ATP in vivo were measured as described (2–4) and using a colorimetric/fluorometric assay (BioVision).

Immunohosting, ROS formation

Western blots were carried out as described (3), ROS (superoxide) formation was monitored by DHE staining and microscopy. Quantitative data were analyzed using NIH ImageJ software, in which data are means, ±SE of 100 cells and duplicate experiments conducted in triplicate.

PAR formation

PAR formation in vivo was assessed by Western blotting controlled for α-tubulin (2–4). Chemiluminesence ELISA assays, to quantify PAR formation, were carried out by HT PARP in vivo Pharmacodynamic II Assays (Trevigen, Inc.). Untreated or treated cells were incubated with α–PAR antibody, then with goat α-rabbit IgG-horseradish peroxidase. Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments.

TUNEL assays

Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assays were carried out by FC-500 flow cytometry (Beckman Coulter Electronics; ref. 10), and data were means, ±SE from 3 independent experiments, carried out in triplicate.

Cell lines and culture

Endogenous NQO1 overexpressing human A549 NSCLC, MCF-7 breast, MIA PaCa-2 pancreatic, PC-3 prostate, and HT1080 sarcoma cancer cells were obtained (3, 4, 16), MAP 22-gm) athymic nude mice. Two days later, randomized groups of mice (5 per group) were treated intravenously with hydroxypropyl-β-cyclodextrin (HPβCD) vehicle alone, or β-lapachone (30 mg/kg) or deoxynyboquinone (2.5–10 mg/kg) dissolved in dimethyl sulfoxide at least 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4). Chemiluminescence by PeroxyGlow assays were expressed as means, ±SE from 3 independent experiments, carried out as described (2–4).
Deoxynyboquinone efficiently kills cancer cells in an NQO1-dependent manner

Deoxynyboquinone efficiently killed human MIA PaCa-2 pancreatic (Fig. 2A) and HT1080 sarcoma cancer cells (Fig. 2B) with LD_{50} values of 48 and 178 nmol/L, respectively; deoxynyboquinone showed greater potency in pancreatic cells, in general. Dicoumarol protected both cells. We then treated genetically matched NQO1^{+} versus NQO1^{-} human H596 NSCLC or MDA-MB-231 breast cancer cells with deoxynyboquinone; ‘2 NQO1’ polymorphic H596 and MDA-MB-231 cells were separately corrected for NQO1 expression as clones or pooled populations (4, 10). Deoxynyboquinone killed all NQO1^{+} clones and pooled populations, but not genetically matched NQO1^{-} cells (Fig. 2C and D). Similarly, human PC-3 cells stably knocked down for NQO1 expression (shNQ) were spared versus NQO1^{+} PC-3 cells expressing nonsilencing shRNA (Fig. 2E). Deoxynyboquinone-induced cytotoxicity in nonsilenced NQO1^{+} PC-3 cells was prevented by dicoumarol (Fig. 2E), as in parental PC-3 cells. PC-3 cells treated with dicoumarol were similarly spared from deoxynyboquinone lethality as were stable NQO1 knockdown shNQ PC-3 cells (Fig. 2E). Colony forming assays confirmed the NQO1 dependency of deoxynyboquinone (Fig. 2F). LD_{50} values for deoxynyboquinone versus β-lapachone cytotoxicities in various cancers are listed in Supplementary Table S3, highlighting the NQO1-dependent potency of deoxynyboquinone.

Deoxynyboquinone NQO1-dependent lethality involves a futile cycle generating ROS

β-Lapachone-induced lethality involves a futile cycle mediated by NQO1, in which approximately 60 moles of NAD(P)H are used, forming approximately 120 moles superoxide (O_{2}^{-}) per mole β-lapachone in 2 minutes (10). We compared OCR in A549 NSCLC cells after deoxynyboquinone versus β-lapachone treatments. As with β-lapachone (Fig. 3A), deoxynyboquinonetreated A549 cells (Fig. 3B) showed dramatic OCR increases that were dose dependent and reached peak levels in 30 minutes at LD_{50} levels (Fig. 3C and D). Minimal differences between β-lapachone and deoxynyboquinone were noted, except that significantly lower deoxynyboquinone doses were needed (Fig. 3B). Dicoumarol blocked OCR from either deoxynyboquinone- or β-lapachone-treated cells, strongly suggesting that O_{2} consumption was NQO1 mediated. Similar OCR increases were noted in NQO1^{+}, but not in NQO1^{-}, H596 cells (Supplementary Fig. 3A and B). Low, but detectable, O_{2} consumption in NQO1^{+} A549 cells after cotreatment of β-lapachone and dicoumarol (Fig. 3A and C) may be due to one-electron oxidoreductases (b5R and p450R) metabolizing β-lapachone. Interestingly, such OCRs with dicoumarol were not noted with deoxynyboquinone, suggesting that deoxynyboquinone was not as good a substrate for one-electron oxidoreductases (Fig. 3B and D).

We then monitored superoxide (O_{2}^{-}) formation using DHE staining. Deoxynyboquinone (0.25 μmol/L) induced dramatic ROS formation in 60 minutes in A549 cells that was prevented by dicoumarol (Fig. 3E). Exogenous catalase (CAT, 1,000 U) partially rescued deoxynyboquinone cytotoxicity (Fig. 3F). Thus, NQO1-dependent deoxynyboquinone metabolism
resulted in extensive OCR, O$_2^-$ formation, and long-lived H$_2$O$_2$ production similar to β-lapachone (2), but at 20-fold lower concentrations.

Deoxynoquinoine induces PARP1 hyperactivation, loss of essential nucleotides

Deoxynoquinoine-treated A549 cells were examined for poly(ADP-ribosyl)ated protein (PAR) formation using an ELISA method, in which peak levels were noted at approximately 10 minutes (Fig. 4A). PAR-PARP1 (PAR) formation was confirmed by Western blot analyses with similar kinetics, lasting approximately 20 minutes (Fig. 4B). Dicoumarol effectively suppressed PAR formation and blocked PARP1 hyperactivation in deoxynoquinone-treated A549 cells (Fig. 4A). PARP1 hyperactivation induced by deoxynoquinone in A549 cells was accompanied by dramatic NAD$^+$ and ATP losses. Both dose–response and time–course studies showed that NAD$^+$ and ATP were rapidly and extensively depleted (Figs. 4C–F), and a 2-hour exposure was sufficient for near complete NAD$^+$ loss in deoxynoquinone-exposed cells (0.25 μmol/L, 2 hours, Fig. 4C and E). Dramatic ATP loss followed NAD$^+$ depletion in both dose- and time-dependent manners (Fig. 4D and F) that were prevented by dicoumarol. Deoxynoquinone-induced ATP losses occurred in an NQO1-dependent manner in NQO1$, but not in NQO1$, H596 cells (Supplementary Fig. 4A and B).

Both PARP1 and Ca$^{2+}$ play pivotal roles in deoxynoquinone-induced cell death

We then transiently knocked down PARP1 using specific siRNA, which did not affect NQO1 expression (Fig. 5A). PARP1 knockdown significantly prevented NAD$^+$ (Fig. 5B) and ATP losses (Supplementary Fig. S5) in deoxynoquinone-exposed A549 cells versus parental or nontargeting siRNA-treated (siNT) cells. Transient PARP1 knockdown significantly decreased programmed necrosis (TUNEL$^+$) 24 hours after treatment with either LD$_{50}$ (0.125 μmol/L) or lethal (0.25 μmol/L) deoxynoquinone doses (Fig. 5C and D), similar to effects noted with β-lapachone (2). Dicoumarol spared parental and PARP1 knockdown cells (Fig. 5D).

PARP1 hyperactivation required endoplasmic reticulum Ca$^{2+}$ release as BAPTA-AM, an endogenous cytosolic Ca$^{2+}$-chelator, spared β-lapachone-induced lethality (2). BAPTA-AM pretreatment significantly spared deoxynoquinone-induced lethality in NQO1$^+$ A549 or H596 NSCLC cells using long-term survival assays (Fig. 5E, Supplementary Fig. S6), and significantly suppressed PARP1 hyperactivation, noted by abrogation of NAD$^+$ depletion (no addition vs. BAPTA-AM, Fig. 5F).
Potential NQO1-dependent therapeutic window of deoxynyboquinone

Differential NQO1 expression in various solid tumors versus normal tissue can be effectively exploited using β-lapachone, resulting in a wide therapeutic window in vitro (4) that predicted its antitumor efficacy in vivo (3, 16). A549 cells were exposed to various deoxynyboquinone doses, with or without dicoumarol (40 μmol/L), at various times to assess the long-term survival "potential therapeutic window," as done with β-lapachone in NSCLC, pancreatic, and prostate cancers (3, 12, 16). In A549 cells, deoxynyboquinone exhibited a much broader therapeutic window than β-lapachone (compare Figs. 6A–J to those in ref. 4). Deoxynyboquinone-treated (0.25 μmol/L) A549 cells were rescued by dicoumarol (Fig. 6A–H). However, as the length of deoxynyboquinone exposure was increased to more than 24 hours, only approximately 70% of the cells were spared by dicoumarol (Fig. 6I). Lethality was further increased after more than 48 hours of deoxynyboquinone exposure in cells treated with dicoumarol (Fig. 6J), with limited lethality increases in parental NQO1+ cells (compare solid square lines at 2 vs. 24 hours, Fig. 6C and H, respectively). Similar responses were noted in NQO1+ vs. NQO1− H9696 cells (Supplementary Fig. S7A–C).

Deoxynyboquinone antitumor efficacy

Using an extremely aggressive orthotopic LLC model in athymic mice, we examined the antitumor efficacy of deoxynyboquinone (Fig. 7); murine LLC tumors have approximately 80 U of NQO1 activity versus less than 100 U in mouse normal lungs. Mice were treated every other day for 5 injections with HPβCD alone, deoxynyboquinone (2.5, 5, and 10 mg/kg) or β-lapachone (30 mg/kg). Later (18 days), lungs were removed, weighed, and visually scored for tumor nodules (Fig. 7A and B). DNQ-HPβCD (5 and 10 mg/kg) or β-Lap-HPβCD–treated mice showed significant tumor growth reductions, confirmed by decreases in tumor nodule formation and histology (Fig. 7A and B). No long-term pathologic effects (monitored 18 days after one regimen) of deoxynyboquinone or β-lapachone were noted in liver (Fig. 7C), lung, bone marrow, spleen, or thymus; unlike humans, mice have relatively high liver NQO1 levels. Overall survival confirmed significant antitumor efficacy of deoxynyboquinone (at 5 mg/kg; P ≤ 0.04), at a 6-fold lower dose...
than β-lapachone (30 mg/kg; Fig. 7D). Finally, PAR formation and energy (ATP) losses in LLC tumors after deoxynyboquinone or β-lapachone exposures confirmed their PARP1 hyperactivation-mediated programmed necrotic mechanism (Fig. 7E and F); tumor-specific ATP losses were confirmed by LC/MS/MS analyses. In contrast, associated normal lung tissue was unaffected, showing no PARP1 hyperactivation or ATP loss (Fig. 7E and F).

Metabolic stability measurements using murine hepatocytes and plasma pharmacokinetic analyses revealed greater metabolic stability and prolonged plasma half-life of deoxynyboquinone versus β-lapachone (Supplementary Fig. S8A and B and Supplementary Table S4).

Discussion

Identifying exploitable differences between cancerous and healthy tissue is critical for development of next-generation cancer treatments. NQO1 is overexpressed in a majority of solid tumors, in angiogenic and bone marrow endothelial cells (18, 19), and is induced by exposure to certain quinones (20) or ionizing radiation (21, 22). NQO1 overexpression in solid tumors versus associated normal tissue was reported in approximately 80% NSCLC tumors at 20- to 40-fold (4), approximately 70% breast tumors at 10- to 20-fold (23), approximately 90% pancreatic tumors at 20- to 30-fold (24), approximately 60% prostate tumors at 10- to 20-fold (3), and approximately 60% colon tumors at 5- to 10-fold (25). Thus, compounds "bioactivated" by NQO1 have potential for "personalized" anticancer therapy.

β-Lapachone and deoxynyboquinone kill cancer cells through the same NQO1-dependent programmed necrotic (necroptosis) pathway. At minimally lethal doses of each agent (0.25 μmol/L for deoxynyboquinone, 5 μmol/L for β-lapachone), a minimum exposure time (2 hours) was noted for 100% lethality in vitro; H₂O₂ was the apparent obligatory ROS intermediate required for PARP1 hyperactivation and lethality, as catalase prevented both; Ca²⁺ release (2, 26) for PARP1 hyperactivation and lethality was required, as BAPTA-AM prevented both; PARP1 hyperactivation caused dramatic ATP and NAD⁺ losses; and cells were killed in the same time frame and with unique proteolysis (e.g., atypical PARP1 and p53 cleavage). Understanding this mechanism will lead to further improvement in their efficacy.
The potency and NQO1-dependent therapeutic window (Fig. 6) of deoxynyboquinone and its apparent reduced metabolism by one-electron oxidoreductases, make this drug (or derivatives) very promising. We elucidated its mechanism of action in various cancer cells, showing that it induced programmed necrosis identical to β-lapachone, but with approximately 20-fold increased potency. NQO1+ cells were selectively hypersensitive to deoxynyboquinone, whereas genetically matched NQO1− cells were resistant. NQO1+ cells were rescued from deoxynyboquinone-induced cytotoxicity by NQO1 knockdown or by chemical inhibition (via DIC) of NQO1. Exposure of NQO1+ cancer cells to deoxynyboquinone elicited elevated superoxide levels, with concomitant and significant OCR. Downstream, deoxynyboquinone stimulated PARP1 hyperactivation in a mechanism essentially identical to β-lapachone, which correlated well with NAD+/ATP losses, and NADH recycling assays confirmed futile cycling of deoxynyboquinone by NQO1.

Deoxynyboquinone shows a broad NQO1-dependent therapeutic window. Relative survival was monitored in A549 cells treated with various deoxynyboquinone concentrations (μmol/L) ± dicoumarol (40 μmol/L) for 30 minutes (A), 1 hour (B), 2 hours (C), 4 hours (D), 6 hours (E), 8 hours (F), 12 hours (G), 24 hours (H), 48 hours (I), and 72 hours (J). Graphed are means ± SE of duplicate experiments, repeated in sextuplets. DNQ, deoxynyboquinone.
is consistent with a lower affinity for one-electron oxidoreductases (i.e., b5R and P450R), as these enzymes are elevated in mouse liver. Deoxynyboquinone showed equivalent antitumor activity, suppressed tumor growth, and increased survival of tumor-bearing mice as β-lapachone, but at 6-fold lower doses (Fig. 7), consistent with its therapeutic window in vitro (Fig. 6). However, our studies in vivo are in no way an optimization of deoxynyboquinone delivery. Significant dose-limiting methemoglobinemia was noted in deoxynyboquinone-treated mice, and much less with β-lapachone (12). Such blood-borne toxicity can be easily resolved, however, as methemoglobinemia was completely prevented using β-lapachone “stealth” micellar delivery (12). In addition, novel deoxynyboquinone analogs that we believe will avoid such limiting toxicities are currently being tested using orthotopic breast, lung, prostate, and pancreatic tumor models.

Our comparison of deoxynyboquinone to various quinones as NQO1 substrates in vitro using NADH reutilization assays (10) may explain its increased potency. At 1 μmol/L, NQO1 processed deoxynyboquinone approximately 13-fold more efficiently than β-lapachone (1,400 \pm 80 vs. 110 \pm 20 relative units, Supplementary Table S1). At equitoxic (LD$_{100}$) levels, similar NQO1 enzymatic activities (680 \pm 110 vs. 530 \pm 60 relative units for 5 μmol/L β-lapachone vs. 0.25 μmol/L deoxynyboquinone, respectively, Supplementary Table S2) were noted. The potential therapeutic window of deoxynyboquinone seems superior to β-lapachone, making deoxynyboquinone a potentially safer candidate for use as a chemotherapeutic drug, although increased potency may translate into greater normal tissue toxicity. Thus, our studies strongly suggest that deoxynyboquinone and future more soluble derivatives and/or stealth polymeric nanoparticles will be very promising anticancer therapeutics for the treatment of NSCLC, pancreatic, and breast cancers.

Disclosure of Potential Conflicts of Interest
P.J. Hergenrother, J. Gao, and D.A. Boothman are consultants for StemPAR Sciences, Inc., which licensed patents from UT Southwestern and University of Illinois at Urbana-Champaign. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: X. Huang, Y. Dong, E.A. Bey, P.J. Hergenrother, D.A. Boothman
Development of methodology: X. Huang, Y. Dong, E.A. Bey, M. Patel, Y. Wang, J. Gao, P.J. Hergenrother, D.A. Boothman
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): X. Huang, Y. Dong, J.A. Kilgore, L.-S. Li, E.I. Parkinson, Y. Wang, D.A. Boothman

Figure 7. Deoxynyboquinone shows equivalent efficacy to β-lapachone at a 6-fold lower dose. In A–C, mice bearing visible tumors were treated once every other day for 5 injections as in the text, and average wet weight tumor volumes assessed (A and B). Tumor nodules were confirmed visually (A) and histologically (not shown), and average wet weights calculated (B). DNQ-HPbCD (5 or 10 mg/kg) or β-Lap-HPbCD (30 mg/kg) caused tumor weight decreases that were equivalent ($P > 0.6$). Normal tissues were assessed with no long-term pathologic injury noted; see H&E-stained livers (C). D, Kaplan-Meier survival curves showed significant ($P < 0.04$) survival advantages of deoxynyboquinone (5 mg/kg) or β-lapachone-treated (30 mg/kg) groups. Groups were HPbCD alone (1,000 mg/kg), deoxynyboquinone (2.5, 5.0 mg/kg), or β-lapachone (30 mg/kg) in HPbCD. * $P < 0.04$; ** $P < 0.01$. In E and F, PAR formation and ATP loss confirmed programmed necrotic mechanism of deoxynyboquinone- or β-lapachone-treated LLC tumors where animals were treated as in A–C with 3 doses and 24 hours later lungs were removed. Note the lack of response of associated normal lung tissue. ** $P < 0.01$; *** $P < 0.001$; a-tub, a-tubulin; and PAR, PAR-PARP1. DNQ, deoxynyboquinone; β-lap, β-lapachone.
Huang et al.

Analysis and interpretation of data (e.g., statistical analysis, bio-statistics, computational analysis): X. Huang, Y. Dong, E.A. Bey, J.A. Kilgore, J.S. Bair, L.S. Li, M. Patel, E. Parkinson, Y. Wang, N.S. Williams, P.J. Hergenrother, D.A. Boothman

Writing, review, and/or revision of the manuscript: X. Huang, Y. Dong, E.A. Bey, J.A. Kilgore, J.S. Bair, L.S. Li, E.I. Lewis AM, Ough M, Hinkhouse MM, Tsao MS, Oberley LW, Cullen JJ.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): X. Huang, Y. Dong, L.S. Li, M. Patel, E. Parkinson, P.J. Hergenrother, D.A. Boothman

Study supervision: L.S. Li, N.S. Williams, P.J. Hergenrother, D.A. Boothman

Acknowledgments
The authors thank Dr. William G. Bornmann (MD Anderson) for supplying β-lapachone and the Imaging and Chemistry and Cancer Shared Resources, SCC.

References
5. Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-lapachone and the Imaging and Chemistry and Cancer Shared Resources, SCC.

Grant Support
This work was supported by NIH/NCI grant CA102792 to D.A. Boothman and separate support from the University of Illinois. This work was also supported by an AACR Innovator Award, PanCan Block Foundation grant to D.A. Boothman.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 21, 2011; revised April 13, 2012; accepted April 16, 2012; published OnlineFirst April 24, 2012.

Dec. 31, 2011

Cancer Res; 72(12) June 15, 2012
An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis

Xiumei Huang, Ying Dong, Erik A. Bey, et al.

Cancer Res Published OnlineFirst April 24, 2012.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-3135

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/04/24/0008-5472.CAN-11-3135.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.