The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway through E-Syt1 Phosphorylation

Hyun Jung Jun¹, Hannah Johnson⁵, Roderick T. Bronson³, Sebastien de Feraudy⁴, Forest White⁵, and Alain Charest¹²

Abstract

Patients with lung cancer often present with metastatic disease and therefore have a very poor prognosis. The recent discovery of several novel ROS receptor tyrosine kinase molecular alterations in non–small cell lung cancer (NSCLC) presents a therapeutic opportunity for the development of new targeted treatment strategies. Here, we report that the NSCLC-derived fusion CD74-ROS, which accounts for 30% of all ROS fusion kinases in NSCLC, is an active and oncogenic tyrosine kinase. We found that CD74-ROS–expressing cells were highly invasive in vitro and metastatic in vivo. Pharmacologic inhibition of CD74-ROS kinase activity reversed its transforming capacity by attenuating downstream signaling networks. Using quantitative phosphoproteomics, we uncovered a mechanism by which CD74-ROS activates a novel pathway driving cell invasion. Expression of CD74-ROS resulted in the phosphorylation of the extended synaptotagmin-like protein E-Syt1. Elimination of E-Syt1 expression drastically reduced invasiveness both in vitro and in vivo without modifying the oncogenic activity of CD74-ROS. Furthermore, expression of CD74-ROS in noninvasive NSCLC cell lines readily conferred invasive properties that paralleled the acquisition of E-Syt1 phosphorylation. Taken together, our findings indicate that E-Syt1 is a mediator of cancer cell invasion and molecularly define ROS fusion kinases as therapeutic targets in the treatment of NSCLC. Cancer Res; 72(15); 1–11. ©2012 AACR.

Introduction

ROS is an orphan receptor tyrosine kinase (RTK) proto-oncogene expressed in glioma and lung cancer (1), whose function in cancer remains unknown. Chromosomal rearrangements of the e-ROS locus that create fusion kinases have been reported in gliomas (1%; refs. 2, 3) and cholangiocarcinomas (8.7%; ref. 4), suggesting that ROS fusion kinases may represent a new therapeutic target.

Lung cancer is the leading cause of cancer-related deaths in the United States and worldwide (5). Non–small cell lung cancer (NSCLC) is a clinically challenging disease to control and in recent years, our understanding of the molecular events driving NSCLC formation and maintenance has increased dramatically, leading to changes in the treatment of this disease where targeted therapy against activated kinases can be an effective and successful approach (6). The majority of patients with NSCLC are diagnosed with advanced stage that spread beyond the primary site and approximately half of patients have metastatic (stage IV) disease at diagnosis thus limiting treatment options to palliative management (7). The extent of the invasive component seen in lung cancer is strongly associated with clinical outcomes. Patients presenting with noninvasive tumors, which are biologically indolent, have a much better prognosis than those with adenocarcinomas, a highly invasive tumor with increased risk of metastatic disease and death. As invasion is an early step of cancer metastasis, a detailed understanding of the molecular mechanisms of tumor cell invasion is required to provide new treatment options.

Using split FISH BAC assays to screen for ROS gene rearrangements, 2 groups recently reported that approximately 1.4% of NSCLCs harbor ROS rearrangements, defining a new genetic subtype of NSCLC (8, 9). The authors identified known and novel fusion partners for ROS and to date, ROS fusion partners are TPM3, SDC4, SLC34A2, LRIG3, CD74, and EZR with the most common event reported being CD74-ROS. With an estimated >200,000 new cases of lung cancer per year in the United States alone, there are approximately 3,000 new ROS-rearranged NSCLC tumors per year (10). In both studies, the authors found that ROS fusion–positive patients tend to be younger, never-smokers with a histologic diagnosis of adenocarcinoma presenting with stage IV disease (8, 9).
Here, we report that the NSCLC ROS fusion kinase CD74-ROS, similar to FIG-ROS, is highly oncogenic. We provide evidence that pharmacologic inhibition of ROS fusion kinases produces antitumorigenic effects, and we observed that CD74-ROS–expressing cells are highly invasive than FIG-ROS–positive cells. We uncovered the molecular mechanism driving this invasiveness using phosphoproteomics. We report that E-Syt1, an extended synaptotagmin-related C2-domain containing protein, is highly phosphorylated (Y993) in CD74-ROS–expressing cells and that elimination of E-Syt1 expression abolishes invasion of these cells both in vitro and in vivo. Our results uncover a function for E-Syt1 in the transduction of invasive signals in cancer cells.

Materials and Methods

ROS fusion constructs, retrovirus production, and transformation assays

The various ROS fusion constructs depicted in Fig. 1A were assembled using standard molecular biology techniques as detailed in Supplementary Materials and Methods. The cDNAs were expressed using the pLXSN retrovirus system (11) produced in Phoenix cells (Gary Nolan, Stanford University) and

Figure 1. ROS fusion kinases are oncogenic. A, schematic representation of the ROS fusion kinases used in this study. The numbering refers to the amino acid position for the indicated domains of the fusion proteins. All constructs are Myc epitope tagged. B, growth curves of ROS fusion kinases expressing Rat1 clones. For each indicated ROS fusion construct, results from 3 independent clones are averaged and plotted as the mean ± SD. Representative photographs of Rat1 cells expressing the indicated ROS fusion kinase variants in focus formation (C) and anchorage-independent growth (D) in soft agar assays. Quantitation of the focus formation assay is depicted in Supplementary Fig. S1B. E, growth of the indicated ROS fusion–expressing Rat1 clones as subcutaneous xenografts in immunocompromised mice. A total of 10^6 Rat1 cells were injected into the flanks of NIH^{	ext{nu/nu}}^ mice and tumors developed within 20 to 25 days. Mice that did not develop tumors were observed for a period of 50 days. Kinase-inactive (KM) versions of these ROS fusion proteins were included as controls. The construct SLC34A2-ROS is abbreviated to SLC-ROS. Scale bar, 250 μm.
used to infect Rat1 or NSCLC cells as described (12). Monoclonal cell lines were isolated by selecting individual G418-resistant colonies and assayed for density saturation growth, colony formation assays, growth in soft agar, and migration assays as described in detail in Supplementary Materials and Methods and elsewhere (2).

Immunoprecipitation and immunoblotting
Target proteins were immunoprecipitated as follows: cells were lysed by resuspension in lysis buffer (2). The lysates were incubated for 10 minutes on ice, and the cell debris was pelleted by centrifugation. The indicated antibodies were added to the supernatants along with protein A/G-agarose beads (Invitrogen), and binding was allowed to proceed for 16 hours at 4°C. The bead-bound protein complexes were washed before being subjected to SDS-PAGE. Western blotting was carried out as follows: cell lysates were prepared as earlier and total cell lysates were separated on PAGE and transferred to a polyvinylidene difluoride membrane (Immobilon P, Millipore). Blots were blocked for 1 hour and primary antibodies were added to the blocking solution and incubated overnight at 4°C on a shaker. Blots were washed several times and then the secondary antibodies were incubated for 1 hour followed by several washes and chemiluminescence (ECL) reactions were carried out as described by the manufacturer (Western Lightning Kit, Perkin Elmer).

Growth in immunocompromised mice
All animal procedures were conducted in accordance with Tufts University’s recommendations for care and use of animals and were maintained and handled under protocols approved by Institutional Animal Care and Use Committee. Assays of tumorigenicity in immunocompromised mice were conducted as previously described (13). Briefly, 1 × 10⁶ of the indicated cells were injected subcutaneously in PBS or Matrigel and tumor growth was monitored over time using caliper measurements.

Sample preparation, phosphopeptide immunoprecipitation, labeling, and MS
Clonal Rat1 cells expressing the indicated ROS fusion proteins were incubated for 24 hours in serum-free media then lysed and differentially labeled with 8plex. Instrumentation settings and reagents are described in details in the Supplementary Materials and Methods.

RNA interference
RNA interference (RNAi)-mediated knockdown was carried out using the lentiviral pSicoR-pgkPURO vector system (14). Five short hairpin sequences were designed using the pSICO-LIGOMAKER L.5 software against rat E-Syt1 mRNA sequence and cloned, along with a scrambled sequence control shRNA, into pSicoR-pgkPURO according to established protocols (http://web.mit.edu/jacks-lab/protocols/pSico.html). Lentivirus were prepared as described elsewhere (14) and used to infect Rat1 CD74-ROS cells followed by selection with puromycin (4 μg/mL). Individual clones were selected and expanded for analysis.

Statistical analysis
Statistical analyses were conducted using the 2-tailed, unpaired Student t test in Prism 5.0 (GraphPad Software).

Results
Oncogenic activity of ROS fusion kinases
We have previously shown the oncogenic activity of FIG-ROS both in vitro and in vivo (2, 3, 15). Here, we sought to validate the oncogenic activities of the newly described NSCLC-derived CD74-ROS and SLC34A2-ROS fusion kinases. Using standard molecular biology techniques, we recreated the CD74-ROS and 2 isoforms of the SLC34A2-ROS fusion cDNAs and expressed these, along with FIG-ROS, in immortalized, nontransformed Rat1 cells (Fig. 1A). After selection, clonal isolates were screened for expression levels and kinase activity by immunoblots (Supplementary Fig. S1A) and 3 clones for each constructs showing similar expression levels and kinase activity were chosen for transformation studies.

Expression of kinase active (wild-type, WT) forms of FIG-ROS and CD74-ROS but not SLC34A2-ROS proteins in Rat1 cells led to a drastic change in cellular morphology, which correlated with their capacity to reach elevated saturation densities (Fig. 1B). Expression of active CD74-ROS and FIG-ROS can overcome saturation-dependent growth arrest in Rat1 cells in a focus formation assay. Foci were not observed with their kinase-inactive versions (KM), vector (pLXSN) control, or from the SLC34A2-ROS-expressing cells (Fig. 1C and Supplementary Fig. S1B). Cells expressing FIG-ROS-WT and CD74-ROS-WT are capable of sustained growth in an anchorage-independent environment whereas control cell lines and cells expressing SLC34A2-ROS were incapable of growing under the same conditions (Fig. 1D and Supplementary Fig. S1C). To further examine their tumorigenicity, FIG-ROS- and CD74-ROS–expressing cells were injected subcutaneously into immunocompromised mice. FIG-ROS- or CD74-ROS–expressing cells developed tumors with a relatively short latency (20–25 days) whereas no tumors were found in mice injected with cells expressing kinase-inactive versions, pLXSN vector control, or SLC34A2-ROS (Fig. 1E). Finally, we showed that CD74-ROS and FIG-ROS are capable of conferring enhanced migratory potential to cells in an in vitro “scratch” assay (Supplementary Fig. S1D). Together, these results show that FIG-ROS and CD74-ROS fusion kinases are oncoproteins. Surprisingly, SLC34A2-ROS lacks transformation potential under identical circumstances, suggesting perhaps that localization or signaling differences between SLC34A2-ROS and FIG-ROS or CD74-ROS might be responsible for this observation.

Distinct cellular localization and signaling of ROS fusion kinases
CD74 and SLC34A2 are integral plasma membrane–spanning proteins. To determine the cellular localization of CD74-ROS and SLC34A2-ROS, we conducted indirect immunofluorescence microscopy. Unlike FIG-ROS, which is a Golgi apparatus–associated oncoprotein (2), the staining pattern of CD74-ROS and SLC34A2-ROS in Rat1 cells advocate that these fusion kinases reside within the plasma membrane (Supplementary Fig. S2A). Furthermore, CD74-ROS and SLC34A2-ROS
colocalized with the plasma membrane marker EGF receptor (EGFR). These results were validated by subcellular fractionation studies that showed that CD74-ROS and SLC34A2-ROS proteins are present within plasma membrane fractions (Supplementary Fig. S2B).

Next, we ascertained whether these differences in localization affect the signaling profiles of these kinases. Studies on ROS signaling showed that ROS activates SHP-1 and SHP-2, ERK1/2, IRS-1, PI3K, AKT, and STAT3 signaling pathways (1). We conducted Western blot analysis using phospho-specific antibodies against known ROS target signaling pathways and showed that expression of FIG-ROS and CD74-ROS but not their kinase-inactive counterparts nor SLC34A2-ROS activates the mitogen-activated protein kinase (MAPK), SHP-2, STAT-3, Akt, and mTORC1 pathways (Supplementary Fig. S3A–D). These results show that although SLC34A2-ROS is localized

![Image]

Figure 2. Cells expressing ROS fusion kinases are sensitive to ALK inhibitors. A, ROS fusion kinases–expressing Rat1 cells were grown in the presence of NVP-TAE684 to determine IC50 values. B, Western blot analysis of total cell lysates from pooled Rat1 clones of ROS fusion kinases treated with NVP-TAE684 for 24 hours and probed for the indicated signaling proteins using phospho-specific antibodies. Blots were stripped and rehybridized with the indicated antibodies to control for expression levels and loading. C–E, NVP-TAE684 reverses ROS fusion kinase–expressing Rat1 cells transformed phenotype. Cells were treated with NVP-TAE684 (10 nmol/L) or vehicle and assayed for saturation density growth inhibition (C), focus formation (D), and growth in soft agar (E). Quantitation of the focus formation assay is depicted in Supplementary Fig. S4B.
to the plasma membrane and is an active kinase, it is incapable of stimulating signaling pathways that are common between FIG-ROS and CD74-ROS and known to be oncogenic.

ROS fusion kinases are potential therapeutic targets

The amino acid sequence of the kinase domain of ROS is highly homologous to that of the ALK RTK. We hypothesized that ROS fusion kinase–expressing cells would be sensitive to the tool compound ALK inhibitor NVP-TAE684 (16) and the clinical compound crizotinib (PF-02341066; ref. 17). Treatment of FIG-ROS or CD74-ROS cells with NVP-TAE684 led to a dose-dependent reduction in growth with IC₅₀ values of less than 10 nmol/L (Fig. 2A). This reduction in growth parallels the inhibition of the kinase activity of ROS fusion kinases (Supplementary Fig. S4A) and an attenuation of their signaling networks (Fig. 2B). To validate ROS fusion kinases as genuine therapeutic targets, we evaluated the activity of NVP-TAE684 on the transformation capacity of ROS fusion kinases. We carried out experiments on cell growth, saturation-dependent growth inhibition, and anchorage-independent growth assays on FIG-ROS- and CD74-ROS–expressing Rat1 cells in the presence of vehicle control or 10 nmol/L of NVP-TAE684 (Fig. 2C–E and Supplementary Fig. S4B) and showed that inhibition of ROS fusion kinases has drastic anticancer effects on these cells. Treatment of cells expressing FIG-ROS or CD74-ROS with the clinically available drug crizotinib led to a dose-dependent reduction in growth with IC₅₀ values of less than 5 nmol/L (Supplementary Fig. S4C). Finally, we evaluated the effects of a recently described ROS-specific kinase inhibitor; KIST301080 (18, 19) and determined that the optimal concentrations of this compound for ROS kinase inhibition is relatively high (10–50 μmol/L; Supplementary Fig. S5A–E), and was not pursued further. Taken together, these results show that small-molecule–based inhibition of ROS fusion kinase activity with an inhibitor is a potent antioncogenic treatment that can reverse the transformed phenotype of these cancer cells.

CD74-ROS–expressing cells are highly invasive and metastatic

Histopathologic analysis of FIG-ROS and CD74-ROS Rat1 xenograft tumors revealed that CD74-ROS tumors are more invasive than those derived from FIG-ROS, capable of infiltrating through the parietal peritoneum, extraperitoneal fat, and muscle layers (Fig. 3A), and observed to metastasized to lymph nodes (Fig. 3B). This difference in invasiveness between FIG-ROS and CD74-ROS is also observed in vitro in a Matrigel Boyden chamber invasion assay (Fig. 3C). CD74-ROS–expressing cells are 15.8-fold more invasive than vector control cells whereas FIG-ROS–expressing cells are 1.6-fold more invasive than control cells. These results show that expression of CD74-ROS in Rat1 cells triggers a mechanism that renders cells highly invasive and metastatic.

Quantitative phosphotyrosine profiling of FIG-ROS-, CD74-ROS-, and SLC34A2-ROS–expressing Rat1 cells

We surmised that the observed difference in invasiveness between FIG-ROS- and CD74-ROS–expressing cells might be due to potential differences in the activation of tyrosine phosphorylation signaling pathways. We conducted a quantitative phosphoproteomics analysis across kinase active and kinase dead versions of FIG-ROS, CD74-ROS, SLC34A2-ROS, and vector control Rat1 cells. Quantitative analysis of 3 biologic replicates yielded 89 phosphotyrosine peptides identified and quantified in 2 or more analyses. The mean ratio for each peptide was calculated along with the SD and coefficient of variation across biologic replicates (the complete data set is summarized in Supplementary Table S1). To identify the phosphotyrosine sites that are specifically associated with CD74-ROS-WT–expressing Rat1 cells, and thus the invasive phenotype, we compared the relative iTRAQ intensities of signals observed in the FIG-ROS-WT- and the CD74-ROS-WT–expressing Rat1 cells. Of the 89 phosphotyrosine peptides, 35 were significantly different with an associated P value of ≤0.05 (Fig. 4A). This list of significantly different tyrosine phosphorylated peptides was then sorted on the basis of those with the greatest relative intensity in the CD74-ROS-WT–expressing cells. E-Syt1 phosphorylation on site pY993 was found to be the most highly increased in CD74-ROS-WT– than FIG-ROS-WT–expressing cells (Fig. 4B and C). The observed increase in tyrosine phosphorylation of E-Syt1 was validated by immunoprecipitation Western blotting using lysates from vector control, FIG-ROS-WT-, and CD74-ROS–expressing Rat1 cells (Fig. 4D). The increase in phosphorylation at pY993 appears to be due to an increase in the upstream signaling pathways, as the E-Syt1 protein levels remains constant across pLXSN, CD74-ROS-WT, and FIG-ROS-WT cells (Fig. 5A).

Figure 3. CD74-ROS–expressing cells are highly invasive and metastatic. A and B, representative photomicrographs of hematoxylin and eosin-stained paraffin-embedded cross-sections of subcutaneous xenograft tumors from clonal FIG-ROS- and CD74-ROS–expressing Rat1 cells. Arrows point to invasive areas. Stars mark the locations of ribs. T, tumor; LN, lymph node. Scale bars: 500 μm (A), 250 μm (B). C, graphical representation of CD74-ROS invasiveness as measured by in vitro Boyden chamber Matrigel invasion assays.
To solidify the role of E-Syt1 in conferring increased invasiveness in CD74-ROS–expressing cells, we used RNAi to knockdown the expression of E-Syt1 in these cells. Two potent E-Syt1 shRNAs and a scrambled sequence control shRNA were chosen to create clonally selected cell lines from Rat1 cells expressing FIG-ROS, CD74-ROS, and from vector control Rat1 cells (Supplementary Fig. S6A and S6B). We conducted invasion assays and showed that E-Syt1 knockdown CD74-ROS–expressing cells no longer invade in vitro (Fig. 5B) and in vivo when grown subcutaneously as xenograft tumors (Fig. 5C). These results show that expression of CD74-ROS confers invasiveness to cells through the activity of E-Syt1. We confirmed that the loss of invasiveness was not

E-Syt1 mediates CD74-ROS–triggered invasiveness

To solidify the role of E-Syt1 in conferring increased invasiveness in CD74-ROS–expressing cells, we used RNAi to knockdown the expression of E-Syt1 in these cells. Two potent E-Syt1 shRNAs and a scrambled sequence control shRNA were chosen to create clonally selected cell lines from Rat1 cells expressing FIG-ROS, CD74-ROS, and from vector control Rat1 cells (Supplementary Fig. S6A and S6B). We conducted invasion assays and showed that E-Syt1 knockdown CD74-ROS–expressing cells no longer invade *in vitro* (Fig. 5B) and *in vivo* when grown subcutaneously as xenograft tumors (Fig. 5C). These results show that expression of CD74-ROS confers invasiveness to cells through the activity of E-Syt1. We confirmed that the loss of invasiveness was not
due to a loss of oncogenic activity from CD74-ROS by carrying out growth curves, colony formation assays, and growth in soft agar assays and growth of xenograft using CD74-ROS expressing cells and E-Syt1 knockdown cells. We showed that elimination of E-Syt1 does not affect the ability of CD74-ROS to transform cells (Supplementary Fig. S6C–G). The effects of eliminating E-Syt1 expression on the activation of ROS signaling networks parallel those on cell transformation, that is, loss of E-Syt1 had no effect on the signaling of MAPK, SHP-2, STAT-3, Akt, and mTORC1 pathways (Supplementary Fig. S7A–S7D). These results show that eliminating the expression of E-Syt1 in CD74-ROS expressing cells abolished the invasiveness of these cells without affecting the oncogenic transformation capacity of CD74-ROS.

To validate these results in a model of NSCLC, CD74-ROS was expressed in 3 noninvasive NSCLC cell lines (NCI-H1915, NCI-H2009, and NCI-H1755) and 3 independent clones for each construct were selected for in vitro invasion studies (Fig. 6A). Expression of CD74-ROS in the H1915, H1755, and H2009 lines induced invasion 18.4-, 13.3-, and 3.5-fold over control vector cells, respectively (Fig. 6B). Expression of kinase inactive CD74-ROS was incapable of conferring invasive properties to the same cells. Similar to the Rat1 cells, the acquisition of an invasive phenotype parallel the appearance of phosphorylated E-Syt1 in CD74-ROS–expressing cells (Fig. 6A). Finally, we ascertained the ROS canonical signaling networks in NSCLC lines stably expressing CD74-ROS. Unlike the Rat1 cell model, only SHP-2 is activated in all 3 lines whereas the MAPK, mTORC1, and STAT-3 pathways are moderately engaged or absent (Fig. 7A and B).

Discussion
In recent years, our understanding of the molecular events driving NSCLC formation and maintenance has increased dramatically, fueling paradigm shifts in treatment of this disease. The subdivision of NSCLC into clinically relevant molecular subsets according to specific driver mutations led to seminal trials for patients with NSCLC with mutant EGFR treated with gefitinib that resulted in a prolonged progression-free survival and an improved quality of life when compared with patients given only cytotoxic chemotherapy (20, 21). Similarly, the EML4-ALK fusion kinase defines a second clinically actionable oncogenic driver mutation in NSCLC that yielded a similarly impressive response rate (22). Two recent large-scale screens for ROS fusion kinases in NSCLCs have revealed that 1.4% of NSCLC have rearrangements at the c-ROS locus, which defines a new molecular subclass of NSCLC. Of the ROS fusion–positive tumors, 30% are known to harbor a recurrent translocation t(5;6)(q32;q22), which creates the CD74-ROS fusion kinase described herein.

The advent of large-scale molecular genetic studies of cancer, such as the ones described earlier, continues to uncover a significant number of mutations in various genes. Although the results of many of these studies appear a priori to be oncogenic, there is a requirement for empirical validation of their oncogenicity in controlled paradigms. Our studies show that CD74-ROS, like FIG-ROS, is a potent oncoprotein capable of readily transforming fibroblast cells through activation of the canonical signaling pathways SHP-2, STAT-3, and MAPK. Surprisingly, in the same context, the SLC34A2-ROS fusion kinase was unable to activate these pathways and is incapable of transformation even though its tyrosine kinase activity is comparable with that of CD74-ROS and FIG-ROS. This lack of
oncogenicity for SLC34A2-ROS is similar to results recently reported by Takeuchi and colleagues (9) and suggests that cellular transformation by SLC34A2-ROS might be context dependent.

Our results suggest that CD74-ROS represents a new target for the treatment of NSCLC. The high degree of homology between the kinase domains of ALK and ROS predicts that ALK inhibitors would exert inhibition of ROS. Indeed, we showed that the ALK inhibitor tool compound NVP-TAE684 and the clinically available ALK/MET inhibitor crizotinib displayed low IC50 values against ROS fusion kinases expressing cells and showed that pharmacologic inhibition of ROS fusion kinases results in compelling anticancer effects. In fact, while this article was under review, our results were validated in a patient with NSCLC afflicted with a ROS fusion kinase–positive tumor who displayed a remarkable response to crizotinib treatment (8).

So far, CD74-ROS has only been observed in NSCLC (8, 9, 23). Although parallels can be inferred and new pathways can be discovered from fibroblast expression models of cancer (as seen in the current study), they often constitute a weak alternative to cancer-specific–derived models. Because there are no established NSCLC cell lines that endogenously express CD74-ROS, we relied on ectopic expression of CD74-ROS in noninvasive NSCLC lines to study the effects of CD74-ROS kinase activity on signaling and invasion. Using 3 noninvasive NSCLC lines (H1915, H2009, and H1755), we showed that expression of active CD74-ROS drastically causes these cells to invade and that the invasion parallels the appearance of E-Syt1 phosphorylation on tyrosine residues. These results are similar to our earlier observations in fibroblasts and show that in a clinically relevant context, expression of CD74-ROS induces invasive mechanisms that likely rely on E-Syt1 activity.
Interestingly, ectopic expression of CD74-ROS in established NSCLC tumor cell lines triggers variable signaling responses. The canonical MAPK, STAT-3, and mTORC1 pathways are used to various degrees in these lines, from nonexistent to moderate. This likely result from the fact that the tumors that gave rise to these lines arose under specific combinations of tumor suppressor genes loss and oncogenes activation (other than CD74-ROS) and are thus "wired" a certain way. This "wiring" may or may not express signaling members that are canonical to an ectopically expressed oncoprotein (e.g., CD74-ROS). In this context, ectopic expression of an oncogenic protein (e.g., CD74-ROS) may display variable signaling responses when presented to different tumor cell lines. One consistent signaling response to ROS fusion kinase expression, however, is the activation of SHP-2, a known oncoprotein, which we observed both in fibroblasts and in all 3 NSCLC cell lines. It is therefore likely that the major driving signaling pathway initiated by ROS fusion kinases is the activation of SHP-2.

Although FIG-ROS and CD74-ROS are equally oncogenic, we discovered that CD74-ROS–expressing cells displayed an invasive and metastatic phenotype over FIG-ROS cells. Lymph node metastasis is rarely seen in xenograft models, underlying the strength of CD74-ROS signaling as proinvasive and metastatic. We surmised that differences in phosphorylation of down-stream targets might be responsible for this observation and a global quantitative phosphoproteomic screen revealed that the plasma membrane protein E-Syt1 is 16 times more phosphorylated on Y993 in CD74-ROS–expressing cells than in FIG-ROS cells. By eliminating E-Syt1 expression in CD74-ROS cells the invasive phenotype was abrogated in vivo and in vitro. This reduction of expression did not affect the activation of the signaling pathways SHP-2, STAT-3, and MAPK nor did it affect CD74-ROS oncogenicity. It is conceivable that localization of FIG-ROS to the Golgi membrane prevents access to E-Syt1, whereas CD74-ROS, a plasma membrane–bound receptor, readily has access to E-Syt1.

E-Syt1 is a member of the E-Syt family (E-Syt1-3; ref. 24) of membrane proteins structurally composed of an NH2-terminal transmembrane region, a highly conserved intracellular juxtamembrane domain, and 5 (E-Syt1) or 3 (E-Syt2 and E-Syt3) COOH-terminal C2 domains (24, 25). C2 domains are protein modules that generally act as Ca2+- and phospholipid-binding domains and/or as protein–protein interaction domains (26). E-Syt1 is assumed to be an integral plasma membrane protein, given its overall architecture, although Min and colleagues have shown that transiently overexpressed E-Syt1 in HEK293 cells localized to endomembranes (24). Regardless of its localization, our results show that E-Syt1 is phosphorylated on Y993 in plasma membrane–bound CD74-ROS–expressing cells and not in Golgi apparatus–located FIG-ROS–expressing cells.

Figure 7. Expression of CD74-ROS in NSCLC cells induces SHP-2 signaling. Immunoblot analysis of total cell lysates from pools of 3 independent NSCLC clones from each of the NSCLC cell lines probed for the indicated proteins using phospho-specific antibodies. A, activation of the tyrosine phosphatase SHP-2 and the mTORC1 pathways. B, the STAT-3 and MAPK pathways. All blots were stripped and rehybridized with the indicated antibodies to control for expression levels and loading.
Tyrosine 993 resides within the fifth C2 domain of E-Syt1 and is conserved among other E-Syt family members. The same C2 domain has been shown in E-Syt2 to be required for E-Syt2 plasma membrane binding (24). It is conceivable that phosphorylation on Y993 in E-Syt1 may modulate a similar C2-mediated plasma membrane association, which may be important for the regulation of E-Syt1 function in cancer cell invasion. Phosphorylation of E-Syt1 on tyrosine sites has been observed in various cancers. Phosphorylation on Y832 has been detected in breast cancer MCF-10A cells expressing PYK2-expressing NIH-3T3 cells (28), in stomach cancer MKN-45 cells treated with the MET inhibitor SU-11274 (29, 30), and the NSCLC cells H3255 treated with gefitinib (29, 30) and H1703 treated with imatinib (30). It has also been detected in human mammary epithelial cell (HMEC; ref. 31) and Jurkat cells (32). Phosphorylation of E-Syt1 on Y1019 (homologue of Y993 in rat) has also been detected in 32D cells expressing both plasma membrane and endoplasmic reticulum bound activated Flt3 RTK (33), in MKN-45 cells (29) and in numerous NSCLC human biosamples (23). It is unlikely that CD74-ROS is present in all those different cancer cell types and biosamples, suggesting that alternative events can promote the phosphorylation of E-Syt1. Our results suggest that phosphorylated E-Syt1 may confer invasive- and metastatic potential to cancer cells and offer a new therapeutic strategy against cancer cell invasion and metastasis.

Acknowledgments

The authors thank Drs. Ken Hung for critical review of the manuscript, Gary Nolan (Stanford University, Stanford, CA) for the Phoenix packaging cells, and Ibrahim El-Deeb (University of Science and Technology, Daejeon, Republic of Korea) for the KIST301080 compound.

Grant Support

This research was supported (in part) by NIH grant NCI U01 CA141556 (to A. Charest and F. White), and by American Cancer Society Research Scholar Award 117409 (to A. Charest).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 7, 2011; revised May 29, 2012; accepted May 29, 2012; published OnlineFirst June 1, 2012.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: H.J. Jun, F. White, A. Charest
Development of methodology: H.J. Jun, A. Charest
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. Johnson, A. Charest
Analysis and interpretation of data (e.g., statistical analysis, biosististics, computational analysis): H.J. Jun, H. Johnson, R.T. Bronson, A. Charest
Writing, review, and/or revision of the manuscript: H.J. Jun, H. Johnson, F. White, A. Charest
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Charest
Study supervision: F. White, A. Charest
Pathology for this article: R.T. Bronson

References

The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway through E-Syt1 Phosphorylation

Cancer Res Published OnlineFirst June 1, 2012.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-3990
Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/06/01/0008-5472.CAN-11-3990.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.