Inhibition of Stathmin1 Accelerates the Metastatic Process

Karin Williams*, Ritwik Ghosh*, Premkumar Vummidi Giridhar¹, Guangyu Gu³, Thomas Case⁴, Scott M. Belcher⁵ and Susan Kasper¹#

¹Department of Environmental Health; University of Cincinnati; Cincinnati, OH 45267, USA
²Department of Medicine; Vanderbilt University School of Medicine, Nashville, Tennessee; TN 37232
³Department of Pathology; ARUP Laboratories / University of Utah; Salt Lake City, UT 84108
⁴Department of Urologic Surgery; Vanderbilt University School of Medicine, Nashville, Tennessee; TN 37232
⁵Department Pharmacology & Cell Biophysics; University of Cincinnati; Cincinnati, OH 45267, USA

#Correspondence; susan.kasper@uc.edu phone (513)558-2106/ Fax (513)558-4397

* These authors have contributed equally to this body of work.
ABSTRACT

The oncoprotein Stathmin 1 (STMN1) is upregulated in most, if not all, cancers of epithelial cell origin; therefore STMN1 is considered a target for cancer therapy. However its role during metastasis has not been investigated. Here we report for the first time that STMN1 strongly inhibits metastatic behavior in both normal epithelial and cancerous epithelial cells. Initially, loss-of-STMN1 compromises cell-cell adhesion. This is followed by epithelial-to-mesenchymal-like transition (EMT), increased cell migration, and metastasis via cooperative activation of p38 and through TGF-β-independent and dependent mechanisms. In contrast, expressing STMN1 restores cell-cell adhesion and reverses the metastatic cascade. Primary prostate epithelial cell cultures from benign to undifferentiated adenocarcinoma clinical biopsies demonstrate that EMT-like cells arise while the cancer is still organ-confined and that their emergence is tumor-stage specific. Furthermore, primary EMT-like cells exhibit metastatic behavior both in vitro and in vivo as compared to their non-EMT counterpart. These observations predict that using STMN1 as a generic therapeutic target might accelerate metastasis. Instead, there may be a tumor stage-specific “window-of-opportunity” in which conserving STMN1 expression is required to inhibit emergence of metastatic disease.
INTRODUCTION

The oncoprotein stathmin (Stmn1) has been identified in profiling signatures of many cancers ranging from prostate, breast, and colorectal cancers to pheochromocytomas and multiple myeloma (1-5). Increased Stmn1 expression correlates with disease progression and poor prognostic outcome (6). Therefore, it has gained considerable interest as a prognostic marker and potential therapeutic target (7). STMN1 is a phosphoprotein which regulates cell spindle formation and microtubule dynamics (8). Dephosphorylation activates STMN1, resulting in microtubule disassembly through the binding of two α,β-tubulin heterodimers per STMN1 molecule (9). This step is critical during late metaphase/anaphase where rapid STMN1 dephosphorylation prevents cells from re-entering the cell cycle (10). In contrast, phosphorylation of STMN1 at serine residues Ser16, Ser25, Ser38, and Ser63 inactivates STMN1 by reducing its interaction with tubulin, thereby increasing free α,β-tubulin heterodimers and promoting microtubule assembly (11-13). During initiation of mitosis, STMN1 phosphorylation is required for mitotic spindle assembly (14). Based upon these observations, it is postulated that oncogenesis may arise through constitutive STMN1 phosphorylation or decreased protein expression which deregulates spindle formation and promotes cell cycle progression (14).

A further mechanism in which STMN1 may be oncogenic is through regulation of cytoskeletal dynamics during EMT and cell migration. In migrating cells, STMN1 is locally inactivated at the leading edge of the cell to allow localized microtubule growth down a gradient of phosphorylated stathmin (15). Collectively, these observations imply that both promotion of cell cycle progression and EMT requires phosphorylation and subsequent inhibition of STMN1 activity.

STMN1 is phosphorylated in response to p38 and its activity is inhibited by treatment with the p38 inhibitor SB203580 (16, 17). In MDA-MB-231 cells, p38 signaling enhances cell migration (18); whereas a ternary complex formed by Ca²⁺/calmodulin-dependent protein kinase
II (CaMK II), Siva1, and STMN1 results in STMN1 phosphorylation at Ser16, weakened STMN1-α-tubulin interactions, and inhibition of EMT and cell migration (19). Further, p38 promotes EMT through TGF-β-independent and/or TGF-β-dependent signaling (20-22). Whether MAP kinase signaling directly down-regulates STMN1 to promote EMT through either TGF-β-dependent or -independent mechanisms remains to be determined.

Based upon these previous studies, it appears that inactivation of STMN1, and not over-expression and/or increased STMN1 activity, is key to promoting oncogenesis and EMT. Therefore a conundrum exists between the observations that increased STMN1 expression correlates with oncogenesis and disease progression and decreased STMN1 activity promotes oncogenesis and EMT. We initiated the following study to elucidate whether STMN1 exhibited oncogenic or metastasis suppressor activity. Our study shows that loss-of-STMN1 induces a cascade of events that result in a prometastatic phenotype in both normal and cancerous epithelial cells. Loss-of-STMN1 directly upregulates p38 signaling which in cooperation with TGF-β promotes EMT and metastasis. Furthermore, analyses of primary epithelial cells cultured from prostate biopsies demonstrate that tissue-derived, STMN1-negative EMT-like cells are predictive of tumor stage and exhibit a metastatic phenotype \textit{in vitro} and \textit{in vivo}.
MATERIALS AND METHODS

Cells and reagents. Radical retropubic prostatectomy and transurethral resection of the prostate specimens were obtained in compliance with the laws and institutional guidelines approved by the Institutional Review Board Committee of Vanderbilt University. Cells were cultured as described by Gu and coworkers (23). The DU-145 (HTB-81) and NMuMG (CRL-1636) cell lines were obtained from ATCC. TGF-β1 (R&D Cat. 240-B) was reconstituted according to manufacturer’s instructions. SB203580 hydrochloride (Tocris bioscience Cat. 1402) was reconstituted in sterile water according to manufacturer’s instructions. Antibodies against E-Cadherin (H-108), GAPDH (A-3), Vimentin (H-84) AR (N-20) and PSA (C-19) were obtained from Santa Cruz biotechnology. p38 (#9212), p-p38 (#9215), Smad2 (#3102), p-Smad2 (#3104), STMN1 (#3352) and DRAQ5 (#4084) were obtained from Cell Signaling. ZO-1 was obtained from Zymed, MMP-2 (VB3) was purchased from Thermo Scientific and MMP-9 (Ab-3) from Oncogene. Human specific Vimentin (V9) was purchased from Sigma, CD59 (CBL467) and Adipophilin (PRO610102) from RDI Division of Fitzgerald Industries Intl, and antibodies to Smad3 and p-Smad3 from Rockland. Fluorescent secondary antibodies were Alexa conjugates from Invitrogen.

qPCR. Total RNA was isolated from cells using Tri Reagent (Ambion). Random primed cDNA was synthesized using the RevertAid kit (Fermentas). STMN1 primers, 5'-AGCCCTCGGTCAAAAGAATC-3' and 5'-TTCAAGACCTCAGCTTCATGG-3', and ribosomal protein L32 (RPL32) primers, 5'-CAGGGTTCTAGAAGATTCAAGGG-3' and 5'-CTTGGAGGAAACATTGTGAGCGATC-3' used as an internal qPCR control, were purchased from IDT. qPCR was performed using ABI SYBR green reaction mix and the ABI 7300 Real-Time PCR System.
Transduction and transfection protocols. The DU-145/pLKO and DU-145/shStmn1 cell lines stably expressing pLKO/non-targeting siRNA or pLKO/STMN1 shRNA were generated using protocols and Lentiviral particles purchased from Sigma. DU-145 transient transfection assays were performed using Lipofectamine 2000 (Invitrogen), STMN1 siRNA (siGENOME SMARTpools) or non-targeting siRNA control (Dharmacon). NMuMG transfection assays were performed using pDream control vector or verified pDream-STMN1-FLAG Mission clone (Genscript). DU-145 and NMuMG cells were treated with TGF-β1 and/or SB203580 as detailed in the text below.

Western blot analysis. Western blot analysis was performed as described previously (1) with the modification that 50μg total cell lysate were loaded per lane.

Confocal imaging. Cells were cultured on poly-L-lysine coated slides using 2-well or 8-well flexiperm gaskets, fixed in ice cold methanol, rehydrated in buffered saline (PBS) and stained with primary antibodies (1:200 dilution) [exceptions: anti-STMN1 (1:50); anti-Vimentin (1:2000)] using standard immunofluorescence protocols (24, 25). Images were captured using a Nikon eclipse TE 2000-U confocal microscope.

Migration, invasion and proliferation. Migration and invasion assays were performed using a Neuroprobe AP48 chamber as described previously (26, 27).

Tissue recombination assay. All animals were housed in pathogen-free units at Vanderbilt University Medical Center, and all procedures were done in compliance with Institutional Animal Care and Use Committee regulations. Tissue recombinant grafts were generated as described by Gu et al (23).
Statistical analysis. P values were calculated using the Student’s t-test and GraphPad PRISM4 software.
RESULTS

Loss-of-STMN1 expression promotes loss of cell-cell adhesion and prometastatic behavior.

We generated DU-145 prostate cancer cell lines expressing either STMN1 shRNA (termed DU-145/shSTMN1) or the non-targeting pLKO vector control (termed DU-145/pLKO) to investigate the consequences of STMN1 depletion on DU-145 epithelial cell morphology and metastatic behavior. Depletion of STMN1 expression dramatically altered epithelial cell morphology. DU-145/shSTMN1 cells appeared spindle-shaped as compared to DU-145/pLKO cells (Fig. 1A). In addition, few, if any, cell-cell adhesions remained, resulting in DU-145/shSTMN1 cells being significantly distanced from one another as compared to DU-145/pLKO cells expressing STMN1.

Zona occludens 1 (ZO-1) is a phosphoprotein expressed on the cytoplasmic membrane surface of intercellular tight junctions of epithelial cells (28). In control DU-145/pLKO cells, ZO-1 remained arranged in a cortical pattern at cell-cell junctions. In response to decreased STMN1 expression, ZO-1 expression decreased below detection levels (Fig. 1A). Proteins including E-cadherin form the core of Adherens junctions to initiate and stabilize cell-cell adhesion (29). In response to depleted STMN1 levels, E-cadherin expression decreased below immunofluorescence detection. In contrast, vimentin expression increased, suggestive of a more mesenchymal phenotype. These changes in protein expression were confirmed by Western blot analysis (Fig. 1B).

Functional hallmarks of an epithelial to mesenchymal-like transition include increased cell migration, invasion and cell proliferation. To test whether STMN1 modulated cell migration, invasion and/or proliferation, DU-145/shSTMN1 or DU-145/pLKO cells were plated on uncoated polycarbonate membranes and subjected to a serum gradient from serum free medium in the upper chamber to 10% fetal bovine serum (FBS) containing medium in the lower chamber. Both
migration (Fig. 1D) and invasive activity (Fig. 1E) in DU-145/shSTMN1 cells increased 3-fold as compared with DU-145/pLKO cells. In contrast, cell proliferation rates in DU-145/shSTMN1 cells decreased (Fig. 1F).

Taken together, these observations imply that STMN1 is required in maintaining cell-cell adhesion and in suppressing metastatic characteristics.

Loss-of-STMN1 activates p38 MAPK signaling

p38 MAPK activity is reported to promote EMT, cell migration and invasive behavior (22, 30). Control DU-145/pLKO cells expressed low basal levels of phospho-p38 (Fig. 2A), E-cadherin and ZO-1 was junctional, and vimentin expression remained at basal levels (Fig. 2B). In DU-145/shSTMN1 cells however, loss-of-STMN1 expression resulted in a 4-fold increase in p38 phosphorylation levels. In addition, an EMT-like phenotype emerged as demonstrated by spindle-shaped morphology, increased vimentin expression, and loss of ZO-1 and E-cadherin expression (Fig. 2B).

To determine whether the phenotypic change was mediated by phospho-p38, cells were treated with the kinase inhibitor SB203580. In DU-145/shSTMN1 cells, SB203580 treatment decreased phospho-p38 expression below detection levels (Fig. 2A). Consequently, epithelial cell morphology and cell-cell adhesion were re-established as demonstrated by re-expression and localization of ZO-1 and E-cadherin to cell-cell junctions and a concomitant decrease in vimentin expression to basal levels (Fig. 2B). In addition, SB203580 treatment inhibited phospho-p38-mediated migration in DU-145/shSTMN1 cells by 3.5-fold down to basal levels observed in DU-145/pLKO cells (Fig. 2C). Furthermore, cell invasion (Fig. 2D) and cell proliferation (Fig. 2E) rates in DU-145/shSTMN1 cells decreased by 15-fold and 2-fold respectively. SB203580 also decreased basal phospho-p38 expression in DU-145/pLKO cells and this was sufficient to decrease invasion and proliferation rates by >8-fold and 2-fold respectively; however basal migration rates were not altered (Fig. 2C). Collectively, these
observations indicate that loss-of-STMN1 directly upregulates p38 phosphorylation which, in turn, induces a metastatic phenotype in DU-145 tumor cells.

Matrix metalloproteinases (MMPs) modulate tumor microenvironment, including extracellular matrix turnover and cancer cell migration (31). Kim et. al reported that p38 MAPK signaling upregulated MMP-2 and MMP-9 expression (32). We determined that DU-145/pLKO cells did not express MMP-2 or MMP-9 protein (Fig. 2A). By contrast, MMP-2 and MMP-9 expression and activity were significantly induced in DU-145/shSTMN1 cells (Fig. 2A,F). MMP-2 proteinase activity appeared predominant, being 3.5-fold greater than that observed for MMP-9 (Fig. 2F). In response to SB203580 treatment, MMP-2 and MMP-9 expression were inhibited (Fig. 2A) and MMP proteinase activity decreased in a dose-dependent manner (Fig. 2F). Together, these observations imply that down-regulating STMN1 promotes p38 phosphorylation which in turn, induces MMP-2 and MMP-9 expression and activity, resulting in extracellular matrix degradation and increased cell invasion.

Another mechanism by which p38 promotes EMT is through TGF-β3-activated Smad-independent signaling (21, 22). To determine a potential role for TGF-β signaling, DU-145/shSTMN1 and DU-145/pLKO cells were treated with 5ng/ml TGF-β1 for 48 h. EMT morphology was not observed (data not shown) and cell migration and invasion rates were similar in DU-145/shSTMN1 and DU-145/pLKO cells (Fig. 2C, 2D). Furthermore, SB203580 treatment had no effect, indicating that activation of p38 appeared to be independent of short-term TGF-β1 treatment.

Increasing STMN1 expression restores a normal epithelial cell phenotype.

The non-transformed normal murine mammary gland (NMuMG) cell line has been extensively used to study EMT mechanisms (20, 33). One mechanism by which NMuMG cells undergo EMT is through TGF-β-induced activation of p38 MAP kinase (34), suggesting that NMuMG cells might express low endogenous STMN1 levels. Indeed, NMuMG cells expressed the lowest
levels of STMN1 of all the cell lines tested (data not shown). Therefore, NMuMG cells were transfected with pDream/STMN1 expression vector (termed NMuMG/pSTMN1 cells) or pDream control vector (termed NMuMG/pDream cells). As expected, TGF-β1 induced EMT in control NMuMG/pDream cells within 48 h. This morphologic change was accompanied by loss of junctional ZO-1 and E-cadherin, decreased ZO-1 and E-cadherin expression, and a concomitant increase in vimentin expression (Fig. 3A). These changes were inhibited by SB203580 treatment. By contrast, NMuMG/pSTMN1 cells retained their cobblestone-like appearance despite TGF-β1 or TGF-β1 plus SB203580 treatment. ZO-1 and E-cadherin remained junctional and ZO-1, E-cadherin and vimentin expression was not altered. Thus, STMN1 expression appeared sufficient to block TGF-β-mediated EMT.

Phospho-p38, MMP-2 and MMP-9 expression were also determined (Fig. 3B, 3C). In NMuMG/pDream cells, TGF-β1 treatment induced phospho-p38, MMP-2 and MMP-9 expression (Fig. 3B, 3C) and this could be inhibited with SB203580 treatment. TGF-β1 also increased cell migration (3-fold) and invasion (4-fold) which was inhibited by SB203580 treatment (Fig. 3D, 3E). While TGF-β1 inhibited endogenous STMN1 expression, SB203580 treatment was sufficient to re-express STMN1 with/or without addition of TGF-β1 (Fig. 3B, 3C). Increasing STMN1 expression was also sufficient to decrease cell proliferation (Fig. 3F).

These observations suggest STMN1 expression is modulated by both TGF-β-dependent and TGF-β-independent activation of p38. Furthermore, restoring STMN1 expression promotes cell-cell adhesion and prevents prometastatic behavior.

Down-regulation of endogenous STMN1 expression by long-term TGF-β1 treatment.

Many epithelial cell lines, including DU-145, do not undergo transition to a mesenchymal phenotype in response to short-term TGF-β1 treatment (20). This suggested that chronic exposure to TGF-β might be required to down-regulate STMN1 expression and induce EMT. To test this hypothesis, native DU-145 cells were treated with 5ng/ml TGF-β1 over a 9 day period.
Few EMT-like cells were observed at 3 days of TGF-β1 treatment (Fig. 4A). At this time point, ZO-1 began to decrease while vimentin increased; E-Cadherin remained unchanged (Fig. 4B-D). On Day 9, most, if not all, cells exhibited morphological changes similar to those observed in DU-145/shSTMN1 cells. STMN1 expression was lost and correspondingly, E-Cadherin and ZO-1 were not observed. Phospho-p38, MMP-2 and MMP-9 increased after 3 days exposure to TGF-β1 and remained high with loss-of-STMN1 expression, suggesting that their expression was regulated, in part, by TGF-β signaling. Taken together, these observations suggest that the TGF-β-mediated decrease in STMN1 expression is through indirect mechanisms.

Decreasing STMN1 activates p38 and cooperates with TGF-β1 to enhance metastasis.

To investigate a potential cooperative interaction between STMN1 and TGF-β signaling, DU-145 cells were transfected with non-targeting siRNA (NTsiRNA) or with STMN1 siRNA (siSTMN1) and treated with increasing concentrations of TGF-β1 (0-5ng/ml). Smad2 and Smad3 were phosphorylated in a dose-dependent manner in DU-145/siSTMN1 cells similar to that observed in DU-145/NTsiRNA cells (Fig. 5A), albeit at lower levels (Fig. 5B). To determine the rate of Smad phosphorylation, cells were treated with 5ng/ml TGF-β1 over 8 h. In both cell lines, phospho-Smad2 and phospho-Smad3 increased and reached a peak at 1-2 h (Fig. 5C); however phosphorylation was prolonged in DU-145/siSTMN1 cells (Fig. 5D). Together, these data suggest that STMN1, in part, regulates the level of Smad2/3 phosphorylation as well as the length of time they are phosphorylated during TGF-β signaling.

The most dramatic response to loss-of-STMN1 was the 6-fold increase in phospho-p38 in untreated DU-145/siSTMN1 cells (Fig. 5C), suggesting that STMN1 could regulate p38 activity independently of TGF-β. In addition, phospho-p38 expression in DU-145/siSTMN1 cells was greater than that observed in DU-145/NTsiRNA cells with TGF-β1 treatment at all time points tested (Fig. 5D). These observations provide evidence that STMN1 and TGF-β1 interact cooperatively to regulate p38 MAPK signaling.
STMN1 level and tumor-stage determine prometastatic behavior in vitro and in vivo.

To determine whether EMT-like cells were present in clinical prostate cancer (PCa) biopsies, primary epithelial cells were cultured from prostate biopsies ranging from benign prostatic hyperplasia (BPH) to undifferentiated adenocarcinoma (UA) (23). Primary human prostate epithelial (HPE) cells exhibited typical cobblestone morphology whereas in some cell cultures, EMT-like cells were observed (**Fig. 6A**). Few, if any, EMT-like cells were in direct cell-cell contact. As summarized in **Fig. 6B**, EMT-like cell morphology was only observed in cells cultured from undifferentiated adenocarcinoma represented by Gleason Scores 8 (5/7 specimens) and 9 (5/6 specimens). EMT-like cells were not observed in cell cultures from benign prostatic hyperplasia (BPH), low grade prostate cancer (prostatic intraepithelial neoplasia, PIN), or intermediate grade PCa (Gleason Scores 5 through 7).

Immunofluorescence analysis indicated that in UA EMT-like cells, STMN1 along with ZO-1 and E-cadherin expression greatly diminished (**Fig. 6A, 6C**) whereas vimentin levels increased (**Fig. 6A**). However, UA EMT-like cells continued to express the androgen receptor (AR) and the androgen-regulated protein, prostate specific antigen (PSA) (**Fig. 6A**). In addition, they retained expression of other proteins found in mature luminal secretory cells including the prostasome proteins adipophilin and CD59 (24, 25).

To determine whether UA EMT-like cells exhibited a more invasive phenotype, cell migration, invasion and proliferation assays were performed. Similar to that observed in DU-145/shSTMN1, DU-145/siSTMN1 and NMuMG cells, primary UA EMT-like cells exhibited increased invasion activity (14-fold; **Fig. 6E**) and cell proliferation decreased 2-fold (**Fig. 6F**); however their migration rate resembled that of HPE cells (**Fig. 6D**). In contrast, HPE cells expressed STMN1 and exhibited epithelial cell characteristics similar to those observed in control DU-145/pLKO, DU-145/NTsiRNA and NMuMG/pDream cells.
The tissue recombination assay was used to determine whether UA EMT-like cells showed evidence of metastasis in vivo. Briefly, HPE or UA EMT-like cells were combined with embryonic urogenital mesenchyme cells, grafted under the renal capsule, collected after 3 months (23), and analyzed for histopathology, PSA expression, and evidence of invasive activity. Both HPE and UA EMT-like cells formed prostatic glandular structures (Fig. 6G). Furthermore, they expressed AR, PSA, and a second human-specific biomarker hMT (human mitochondria). Since PSA is human-specific, it was used to track the ability of HPE or UA EMT-like cells to migrate out of the tumor graft and into the adjacent kidney tissue. Only PSA-producing cells from UA EMT grafts, but not HPE grafts, infiltrated locally into the kidney parenchyma (Fig. 6H). Furthermore one overt metastatic lesion to the lung was observed in the UA EMT group (Fig. 6I) and cells within this lesion expressed PSA, confirming that they were of human origin. The observation that only one overt lesion arose in a distant organ implied that while UA EMT cells could metastasize locally, additional events were likely required for a more aggressive metastatic phenotype.
DISCUSSION

Our findings, together with previous reports, demonstrate for the first time that STMN1 is a dual-function protein which is involved in suppressing metastasis and in promoting oncogenesis. In normal NMuMG as well as in DU-146 and primary prostate cancer cells, STMN1 maintains cell-cell contacts, inhibits emergence of EMT, and down-regulates expression and activation of MMP-2 and MMP-9. MMPs themselves also carry out dual roles in tumor progression and tumor suppression; however this response appears to be tumor type-specific (35-37). Our study indicates that in prostate and breast epithelial cells, MMP-2 and MMP-9 promote tumor progression. As diagrammed in Fig. 7, there may be a predicative “window-of-opportunity” in which conserving STMN1 expression would inhibit the emergence of prometastatic disease. Identifying this stage in cancer progression would have major impact on the clinical management of epithelium-derived tumors as to when targeted therapies would be most successful. Thus, the challenge is to conserve non-pathological levels of STMN1 expression in epithelial tumors, since this would be expected to limit metastatic disease, rather than ablating STMN1 which could be expected to lead to metastatic disease.

Prostate cancer is one of the most difficult cancers to diagnose because unlike breast and colon cancer, there is no evidence that PCa progresses through chronological stages from cancer initiation to metastatic disease (38). Instead, PCa is a multifocal cancer which is evaluated by a sum of the two most prominent histopathological Gleason grades (39). Gleason grades are not arranged in an order of biologic progression. Instead, they are based on physical histopathological criteria that describe the characteristic heterogeneity of morphologies found in PCa and range from 1 through 5 where 1, 2 and 3 are considered to be low to moderate grade and 4 and 5 are considered to be high grade(38, 39). Our study presents the first biological evidence that a histopathological Gleason score of 8 and 9 are predictive of the emergence of EMT-like cells. Further novel observations include the ability of these cultured human EMT-like
cells to develop into PSA-producing prostate tumors and their ability to metastasize locally into the surrounding kidney parenchyma in vivo. Interestingly, distal metastasis was limited to the discovery of one overt PSA(+) lesion, suggesting that tissue-derived EMT-like cells require additional events or mutations that promote aggressive spread of the disease. Whether these mutations arise in the tissue-of-origin or at a metastatic site remains to be determined.

A high Gleason score is associated with tumor spread (38). Down-regulation of STMN1 expression while PCa is still organ-confined could potentially be used as a prognostic biomarker for the emergence of metastatic disease. Whether STMN1 overexpression in metastatic PCa lesions is associated with improved patient survival or alternatively, poor clinical outcome, remains to be determined. Analysis of a large cohort of 546 colorectal cancers (stage I – IV) from two independent prospective cohort studies (the Nurses’ Health Study and Health Professionals Follow-up Study) demonstrated that STMN1 overexpression was independently associated with improved patient survival (35-37). The outcome of this study suggests that STMN1 overexpression could be a compensatory mechanism by which epithelial cells attempt to maintain cell-cell contact and normal cell function. In this event, it would be of benefit to conserve STMN1 expression and limit metastatic spread through therapeutic management. Alternatively, other studies have reported that STMN1 overexpression is an independent predictor of poor clinical outcome (35-37). While the correlation of STMN1 overexpression with poor prognosis is suggestive of oncogenic activity, this has not been confirmed in translational studies using cells derived from these cancers. Clearly, additional work needs to be done to elucidate the function(s) of STMN1 in both normal and cancer epithelium.

A challenge to the EMT hypothesis has been the inability to detect EMT cells in tissue sections from tumors (40, 41). Primary UA EMT-like cells retain expression of numerous epithelial cell-specific proteins, including PSA and prostasomal proteins. If transitioning to a mesenchymal phenotype does not abrogate epithelial cell secretory function, this may in part
account for the difficulty in identifying cells-in-transition during histopathological analysis of tissue sections.

The MAPK pathway is one of the Smad-independent mechanisms by which TGF-β regulates cell motility and EMT (34). Our study shows that loss-of-STMN1 alone is sufficient to activate p38 phosphorylation and MAPK signaling. However, TGF-β1 still increases phospho-p38 expression further in a cooperative manner. Therefore, crosstalk between STMN1 and p38 MAPK/TGF-β signaling may emerge as an important regulatory mechanism in conserving an epithelial cell phenotype.

Our study provides a crucial mechanism for STMN1-induced conservation of an epithelial cell phenotype. While STMN1 appears to be an attractive therapeutic target, its dual function as both a metastasis suppressor and oncogene would need to be considered when developing rational therapeutic modalities to treat epithelial cell-derived cancers.
ACKNOWLEDGEMENTS

Funding for this work was provided by the National Institute of Diabetes & Digestive & Kidney Diseases (R01 DK60957 and R01 DK059142) (to S.K.), the Frances Williams Preston Laboratories of the T.J. Martell Foundation (to S.K.), and the United States Department of Defense (W81XWH-06-1-0015) (to R.G.).

The authors have no conflicting financial interests.
REFERENCES

27. Kleinman, HK and Jacob, K Invasion assays. Curr Protoc Cell Biol, 2001; Chapter 12(Unit 12 12.

FIGURE LEGENDS

Figure 1. Loss-of-STMN1 disrupts cell-cell adhesion and induces a prometastatic phenotype.

(A) Top panel, phase-contrast micrographs of DU-145/pLKO and DU-145/shSTMN1 cells. Lower panels, IF analysis using anti-STMN1, ZO-1, E-Cadherin (E-Cad) and vimentin (Vim) antibodies as indicated. Nuclei were counterstained with DAPI.

(B) Western blot of STMN1, ZO-1, E-cad and Vim without/with STMN1 expression.

(C) Densitometric analysis of (B) normalized to GAPDH.

(D) Migration assay using uncoated polycarbonate membranes (8μm pores). Upper chamber, serum free medium; Lower chamber, medium containing 10% fetal bovine serum.

(E) Invasion assay using Matrigel-coated polycarbonate membranes (8μm pores). The gradient was set up as in (D).

(F) Proliferation assay (trypan blue exclusion).

n≥3 experiments. The values shown on graphs represent the total cell count mean ± s.e.m. of four wells per treatment; *, p<0.05; ***, p<0.0001.

Figure 2. STMN1 regulates p38 MAPK and MMP activity.

(A) Left panel, Western blot of DU-145/pLKO or DU-145/shSTMN1 cells treated without/with the p38 inhibitor SB203580 (SB). Right panel, densitometric analysis normalized to GAPDH.

(B) Phase contrast and IF microscopy of cells treated without/with SB203580.

(C) Migration assay. Upper chamber, serum free medium; Lower chamber, medium containing 10% fetal bovine serum (FBS). 20μM SB203580 and/or 5 ng/ml TGF-β1 were added to both chambers.

(D) Invasion assay of cells treated with SB203580 or TGF-β1 as in (C).

(E) Proliferation assay.
(F) Zymography for MMP-2 and MMP-9 in conditioned medium from DU-145/pLKO or DU-145/shSTMN1 cells treated without/with increasing concentrations of SB203580. Lanes i and ii contain recombinant MMP-2 and MMP-9 protein controls respectively.

n≥3 experiments. The values shown on graphs represent the total cell count mean ± s.e.m. of four wells per treatment; *, p<0.05; **, p<0.001; ***, p<0.0001.

Figure 3. Restoring STMN1 expression prevents TGF-β-mediated EMT and inhibits the metastatic cascade. NMuMG cells were transfected with control (pDream) or STMN1 (pDream/STMN1) expression constructs and treated with/without SB203580 and/or 5ng/ml TGF-β1 as indicated.

(A) Phase contrast and IF analyses. Nuclear stain, DRAQ5.

(B) Western blot.

(C) Densitometric analysis of (B) normalized to GAPDH.

(D) Migration assay (as described in Figure 2C).

(E) Invasion assay.

(F) Proliferation assay.

n≥3 experiments.

The values shown on graphs represent the total cell count mean ± s.e.m. of four wells per treatment; *, p<0.05; **, p<0.001; ***, p<0.0001. n≥3 experiments.

Figure 4. Long-term TGF-β1 treatment down-regulates endogenous STMN1 through indirect mechanisms. DU-145 cells were treated without/with 5ng/ml TGF-β1 for 1, 3, 7 and 9 days.

(A) Phase contrast microscopy.

(B) Phase contrast and IF microscopy.
Figure 5. p38 and TGF-β signaling pathways are activated by loss-of-STMN1.

(A) Western blot. Dose response curve of Smad2 and Smad3 phosphorylation in DU-145 cells transiently transfected with non targeting (NT) siRNA or STMN1 siRNA and treated for 24h with increasing concentrations of TGF-β1 (0-5ng/ml). These experiments were repeated at least 3 times with similar results. The Western blots and densitometry of one complete set are presented.

(B) Densitometric analysis of (A) normalized to GAPDH.

(C) Western blot. Time response curve in DU-145 cells treated with 5ng/ml TGF-β1 with increasing time (0-8 h).

(D) Densitometric analysis of (C) normalized to GAPDH.

n≥3 experiments

Figure 6. Level of STMN1 expression and tumor stage dictate EMT and prometastatic behavior in vivo. Primary prostate epithelial cells were cultured from prostate biopsies ranging from benign prostatic hyperplasia (BPH) to undifferentiated adenocarcinoma (UA) using standard epithelial cell culture conditions detailed in Gu et al (23).

(A) Phase contrast microscopy of primary HPE or UA EMT-like cells. IF microscopy of STMN1, cell junction proteins [ZO-1; E-cad], mesenchymal marker [Vim], and epithelial cell markers [AR; PSA; adipophilin (Adipo); CD59].

(B) Table summarizing the emergence of EMT-like cells from prostate tissues representing benign prostatic disease through to undifferentiated adenocarcinoma.
(C) qPCR analysis of STMN1 mRNA expression in HPE and EMT-like cells. STMN1 mRNA levels were normalized to ribosomal protein L32 (RPL32) mRNA.

(D) Migration assay.

(E) Invasion assay.

(F) Proliferation assay.

n≥3 experiments. The values shown on graphs represent the total cell count mean ± s.e.m. of four wells per treatment; **, p<0.001; ***, p<0.0001.

(G-I) HPE and EMT-like tissue recombination assay. Recombinant HPE or EMT-like grafts were analyzed for expression of human-specific markers [hMT; PSA] and AR (n=5).

(H) IF microscopy of kidneys adjacent to recombinant grafts. Upper panel, kidney from EMT-like graft. Lower panel, kidney from HPE graft. PSA (red) was used to identify infiltrating cells from the grafts into the kidney parenchyma (n=4).

(I), Left panel, Lung tissue showing metastatic nodule. Center panel, Hematoxylin & Eosin (H&E). Right panels, IF using anti-PSA antibody (red) and DRAQ5 (blue).

Figure 7. Schematic defining the “window-of-opportunity” for conserving STMN1 expression. Top panel, Epithelial cells undergoing EMT, invading through the basement membrane into the underlying stroma and establishing epithelial-like lesions at metastatic sites. Center panel, STMN1 expression and key cellular events during EMT and metastasis. The hatched blue box summarizes the findings in this study. Bottom panel, Mechanisms underlying the prometastatic events induced by decreased STMN1 expression. This represents the “window-of-opportunity” for conserving STMN1 expression to prevent metastatic spread.
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Cases</th>
<th>EMT</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPH</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIN</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gleason Score 5</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gleason Score 6</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gleason Score 7</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gleason Score 8</td>
<td>7</td>
<td>5</td>
<td>71.4</td>
</tr>
<tr>
<td>Gleason Score 9</td>
<td>6</td>
<td>5</td>
<td>83.3</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>10</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Table 1
Figure 1
Figure 3
Figure 4
Figure 5
Figure 6
Inhibition of Statmin1 Accelerates the Metastatic Process

Karin Williams, Ritwik Ghosh, Premkumar Vummidi Giridhar, et al.

Cancer Res Published OnlineFirst August 21, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-1158

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.