Genetic Polymorphisms and Protein Expression of NRF2 and Sulfoiredoxin Predict Survival Outcomes in Breast Cancer

Jaana M. Hartikainen1,3,4, Maria Tengström2,5, Veli-Matti Kosma1,3,4, Vuokko L. Kinnula6, Arto Mannermaa1,3,4, and Ylemi Soini1,3,4

Abstract

NRF2 activates several protective genes, such as sulfoiredoxin (SRXN1), as a response to oxidative and xenobiotic stress. Defects in NRF2 pathway may increase cancer susceptibility. In tumor cells, activation of NRF2 may lead to chemoresistance and thus affect patient outcome. Nine single-nucleotide polymorphisms on NRF2 and eight on SRXN1 were genotyped in 452 patients with breast cancer and 370 controls. Protein expression of NRF2 and SRXN1 was studied in 373 breast carcinomas by immunohistochemistry. Statistical significance of the associations between genotypes, protein expression, clinicopathologic variables, and survival was assessed. A high level (>25%) of cytoplasmic NRF2 positivity was observed in 237 of 361 (66%) and SRXN1 positivity was observed in 82 of 363 (23%) cases. The NRF2 rs6721961 genotype TT was associated with increased risk of breast cancer \(P = 0.008; \) OR, 4.656; confidence interval (CI), 1.350–16.063] and the T allele was associated with a low extent of NRF2 protein expression \(P = 0.0003; \) OR, 2.420; CI, 1.491–3.926] and negative SRXN1 expression \(P = 0.047; \) OR, 1.867; CI, 1.002–3.478]. The NRF2 rs2886162 allele A was associated with low NRF2 expression \(P = 0.011; \) OR, 1.988; CI, 1.162–3.400] and the A4 genotype was associated with a worse survival \(P = 0.032; \) HR, 1.687; CI, 1.047–2.748]. The NRF2 rs1962142 T allele was associated with a low level of cytoplasmic NRF2 expression \(P = 0.036] and negative sulfoiredoxin expression \(P = 0.042]. The NRF2 rs2706110 AA genotype was associated with an increased risk of breast cancer, and the SRXN1 rs6053666 C allele was associated with a decrease in breast cancer risk \(P = 0.011 and 0.017]. NRF2 and SRXN1 genetic polymorphisms are associated with breast cancer risk and survival, implicating that mechanisms associated with reactive oxygen species and NRF2 pathway are involved in breast cancer initiation and progression. Cancer Res; 72(21); 1–10. ©2012 AACR.
overoxidation of peroxiredoxins, thus salvaging them from inactivation (11). Sulfiredoxin is also involved in deglutathionylation of proteins following nitrosative or oxidative stress (12). In cell lines, overexpression of sulfiredoxin has been shown to stimulate cell proliferation and apoptosis induced by cisplatin, the effects of which were mediated by phosphorylation of cell-cycle regulators and kinases (13). Sulfiredoxin is induced by NRF2 and AP-1 and protects the lung from tobacco-mediated oxidative damage (14,15). Increased sulfiredoxin has been linked with oncogenic transformation, and it is overexpressed in various skin cancers (16).

There are many risk factors associated with the development of breast carcinoma, and 1% to 5% of them have a hereditary basis (17). Even though oxidative damage is considered as one mechanism for cancer development, its role in breast cancer has not been extensively studied. Because NRF2 is known to be a sensor of oxidative damage, we studied its expression in different types of breast carcinoma. In addition, we investigated the expression and significance of sulfiredoxin, a known target for NRF2, in breast carcinoma. We also evaluated the effect of NRF2 and SRXN1 genetic variation on the protein expression, as well as their role in breast cancer risk and development. The genetic variants and the level of protein staining were also evaluated as predictive factors. This is the first report on SRXN1 polymorphisms in (breast) cancer.

Materials and Methods

DNA samples

DNA from 452 patients with invasive breast cancer and 370 control subjects from the Kuopio Breast Cancer Project (KBCP) sample set were available for genotyping (Supplementary Table S1). The KBCP sample set consists of 497 prospective breast cancer cases and 458 controls from the province of Northern Savo in Eastern Finland. The KBCP sample material is characterized in more detail by Hartikainen and colleagues (18) and Pellikainen and colleagues (19). Genomic DNA was extracted from peripheral blood lymphocytes of both cases and controls using standard procedures (20). The KBCP has been approved by the ethical committee of University of Eastern Finland and Kuopio University Hospital (Kuopio, Finland).

Tumor material in tissue microarray

The tumor material consisted of 373 cases of invasive breast carcinomas included in the KBCP. The clinical characteristics of the material are shown in Supplementary Table S1. Paraffin-embedded tumor tissue from the primary tumor was obtained from breast cancer surgery. Tissue microarray was constructed as previously described (21).

Single-nucleotide polymorphism selection

Tagging single-nucleotide polymorphisms (tagSNP) for NRF2 and SRXN1 genes were selected using the HapMap Genome Browser release 2 (Phase 3, NCBI build 36, b36SNP b126) as of February 24 and November 8, 2010 (22). TagSNPs for regions chr2:177799989–177853228 and chr20:573580–583579 were picked out for the CEU population using the Tagger multimarker algorithm with R^2 cutoff at 0.8 and minor allele frequency (MAF) cutoff at 0.05. Two functional polymorphisms on the NRF2 promoter region were selected on the basis of previous publications (refs. 23,24; Supplementary Fig. S1A and S1B).

Genotyping of NRF2 and SRXN1 SNPs

Genotyping of 6 NRF2 and 8 SRXN1 TagSNPs and 2 NRF2 functional SNPs was done using MassARRAY (Sequenom, Inc.) and iPLEX Gold (Sequenom, Inc.) on 384-well plate format. MassARRAY mass spectrometer (Sequenom, Inc.) was used for spectra acquisitions from the SpetroCHIP. Data analysis and genotype calling were done using TyperAnalyzer Software version 4.0.3.18 (Sequenom, Inc.). Each 384-well plate contained a minimum of 8 nontemplate controls. Duplicate analysis was done for 6.7% of the samples for quality control. All primer sequences and reaction conditions are available upon request. Genotyping of the NRF2 tagSNP rs2886162 was conducted by 5′-nuclease assay (TaqMan) using the Mx3000P Real-Time PCR System (Stratagene) according to manufacturer’s instructions. Primers and probes for rs2886162 were supplied from Applied Biosystems as TaqMan Genotyping Assays. Reactions were carried out in 10-μL volume in 96-well format as previously described (21). Duplicate genotypes were done for 4.2% of samples for quality control. If the duplicate and its pair were discordant, the genotypes for the sample would be discarded.

Immunohistochemistry

Four-micrometer thick tissue sections were cut from the paraffin-embedded blocks. The construction of the microarray blocks and the immunohistochemical staining procedure has been described previously (21,25). The primary antibodies, rabbit polyclonal anti-human NRF2 (sc-722, Santa Cruz Biotechnology, Inc.), and rabbit polyclonal anti-human sulfiredoxin (14273-1-AP, Proteintech Group) were diluted with 1% bovine serum albumin in PBS to 1:200 and 1:500 working solutions, respectively. The evaluation of NRF2 immunostaining was conducted separately in tumor cell nuclei and cytoplasm. For sulfiredoxin, cytoplasmic immunoreactivity was evaluated. The results for NRF2 were semiquantitated as follows: 0%–5%, negative; >5% to 25%, weak positivity; >25% to 75%, moderate positivity; and >75% to 100%, strong positivity. In the analyses, NRF2 expression was divided in 2 groups: low extent (<25%) and high extent (>25%) expression. For sulfiredoxin, the presence (>1%) or absence of cytoplasmic expression was recorded.

Statistical analysis

The statistical analyses were conducted with SPSS for Windows software v 14.0 (SPSS). Continuous data were compared using ANOVA. When ANOVA results indicated that groups differed, post hoc comparisons were conducted using 2-tailed t tests. Categorical data were compared using the Fisher exact test designed for small sample groups. The significance levels for comparisons of the genotype frequencies between cases and controls and for the association between the genotypes and protein expression and clinical variables [tumor grade and size, histologic type, nodal status, estrogen
receptor (ER) status, progesterone receptor (PR) status, HER status] among the cases were also computed using Armitage trend test. The concordance of the genotypes with Hardy–Weinberg equilibrium (HWE) was tested using standard \(\chi^2 \) test. Survival data were analyzed using the Kaplan–Meier method with the use of the log-rank, Breslow, and Tarone–Ware test in SPSS v 14.0 (SPSS). In multivariate survival analyses, the Cox regression analysis in SPSS v 14.0 (SPSS) was used. \(P \) values less than 0.05 (2-sided) were considered statistically significant in all tests.

Results

NRF2 rs6721961 and rs2706110 associate with increased risk of breast cancer and *SRXN1* rs6053666 protects against breast cancer

Seven TagSNPs (rs1806649, rs2886162, rs1962142, rs2364722, rs10183914, rs2706110, and rs13035806) and 2 functional SNPs (rs6721961 and rs6053669) were analyzed in the *NRF2* gene region. Eight TagSNPs (rs6085283, rs13043781, rs6076869, rs6706649, rs6053666, rs2008022, rs161929, rs7269823, and rs6053728) were analyzed in the *SRXN1* gene region (Supplementary Table S2). The SNP genotypes were tested for concordance with the HWE. Among the controls, *NRF2* rs6706649 deviated slightly from HWE with \(P = 0.029 \). All other genotypes were concordant with the HWE.

Among the invasive breast cancer cases, an association with breast cancer risk was observed with *NRF2* rs6721961 and rs2706110 and *SRXN1* rs6053666 genotypes (Table 1). The rare homozygous genotypes of *NRF2* rs6721961 (TT) and rs2706110 (AA) associated with increased risk of breast cancer, whereas the common allele was protective (Table 1). The rare allele C of *SRXN1* rs6053666 was protective (Table 1). A near-significant association was observed with *NRF2* rs13035806 (Table 1).

NRF2 expression associates with sulfiredoxin expression

High extent (>25%) cytoplasmic NRF2 positivity was seen in 66% (237 of 361) and nuclear (>25%) positivity in 26% (96 of 365) of cases (Fig. 1A–D). High-extent nuclear positivity was observed in 20% (43 of 219) of ductal, 47% (33 of 70) of lobular, and 29% (17 of 59) of other types. Most notably, lobular carcinomas showed significantly more high-extent nuclear NRF2 expression than ductal ones (\(P = 0.001 \)). Twenty-three percent (82 of 363) of the breast tumors displayed positivity for sulfiredoxin (Fig. 1E and F). Twenty-three percent (50 of 219) of

Table 1. Significant associations between the *NRF2* and *SRXN1* genotypes and risk of breast cancer

<table>
<thead>
<tr>
<th>SNP</th>
<th>(\chi^2)</th>
<th>(P_{\text{trend}})</th>
<th>Associated allele</th>
<th>(P)</th>
<th>OR (CI)</th>
<th>(P)</th>
<th>OR (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRF2</td>
<td></td>
<td></td>
<td></td>
<td>Homozygous</td>
<td>Allele positivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs13035806</td>
<td>0.065</td>
<td>0.824</td>
<td>G</td>
<td>0.058</td>
<td>0.353 (0.115–1.085)</td>
<td>0.048</td>
<td>0.339 (0.111–1.040)</td>
</tr>
<tr>
<td>rs2706110</td>
<td>0.029</td>
<td>0.058</td>
<td>A</td>
<td>0.011</td>
<td>2.079 (1.175–3.679)</td>
<td>0.300</td>
<td>1.162 (0.875–1.543)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>0.011</td>
<td>0.481 (0.272–0.851)</td>
<td>0.010</td>
<td>0.487 (0.279–0.851)</td>
</tr>
<tr>
<td>rs10183914</td>
<td>0.474</td>
<td>0.913</td>
<td>ns</td>
<td></td>
<td>0.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1962142</td>
<td>0.335</td>
<td>0.224</td>
<td>ns</td>
<td></td>
<td>0.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1806649</td>
<td>0.850</td>
<td>0.571</td>
<td>ns</td>
<td></td>
<td>0.561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2364722</td>
<td>0.276</td>
<td>0.348</td>
<td>ns</td>
<td></td>
<td>0.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6706649</td>
<td>0.141</td>
<td>0.398</td>
<td>ns</td>
<td></td>
<td>0.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6721961</td>
<td>0.028</td>
<td>0.113</td>
<td>T</td>
<td>0.008</td>
<td>4.656 (1.350–16.063)</td>
<td>0.377</td>
<td>1.150 (0.843–1.569)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>0.008</td>
<td>0.215 (0.062–0.741)</td>
<td>0.008</td>
<td>0.217 (0.063–0.746)</td>
</tr>
<tr>
<td>rs2886162</td>
<td>0.352</td>
<td>0.449</td>
<td>ns</td>
<td></td>
<td>0.619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRXN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs611929</td>
<td>1</td>
<td>0.991</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6076869</td>
<td>0.948</td>
<td>0.922</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6053666</td>
<td>0.052</td>
<td>0.028</td>
<td>C</td>
<td>0.079</td>
<td>0.673 (0.432–1.048)</td>
<td>0.017</td>
<td>0.702 (0.524–0.939)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>0.079</td>
<td>1.486 (0.954–2.314)</td>
<td>0.345</td>
<td>1.215 (0.811–1.820)</td>
</tr>
<tr>
<td>rs7269823</td>
<td>0.319</td>
<td>0.150</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2008022</td>
<td>0.222</td>
<td>0.364</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs13043781</td>
<td>0.535</td>
<td>0.307</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6085283</td>
<td>0.247</td>
<td>0.784</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6053728</td>
<td>0.472</td>
<td>0.257</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(P_{\text{trend}} = P \) value from the Armitage trend test for the overall association with breast cancer risk. Bold text indicates statistical significance.

Abbreviation: ns, no statistically significant association observed.

\(^a \)\(\chi^2 \) test for overall association with breast cancer risk.

\(^b \)OR, OR, and CI for the homozygous allele carriers.

\(^c \)OR, OR, and CI for the homozygous and heterozygous allele carriers.
ductal, 15% (10 of 68) of lobular, and 30% (15 of 50) of other types expressed positivity. Nuclear and cytoplasmic NRF2 expression was associated with sulfi
redoxin expression ($P = 0.003$ and $P = 0.008$, respectively; Supplementary Table S3).

NRF2 SNP rare alleles associate with low-extent cytoplasmic NRF2 and sulfi
redoxin protein expression

A significant association was observed with cytoplasmic NRF2 protein expression and the
NRF2 rs1962142, rs2886162, and rs6721961 genotypes among the invasive breast cancer cases, the rare alleles associating with low-extent cytoplasmic NRF2 protein expression (Table 2). The rare alleles of
NRF2 rs1962142 and rs6721961 also associated with negative sulfi
redoxin protein expression (Table 2). More specifically, NRF2 rs6721961 rare allele associated with grade 2 tumors ($P_{\text{overall}} = 0.041$, $P_{\text{allele-specific}} = 0.012$; OR, 1.975; confidence interval (CI), 1.159–3.365) and
NRF2 rs2886162 rare homozygous genotype AA associated with ER-positive breast cancer ($P_{\text{overall}} = 0.008$, $P_{\text{allele-specific}} = 0.008$; OR, 2.518; CI, 1.276–4.969).
NRF2 SNP rs1962142 allele T also associated with grade 2 tumors (data not shown). This SNP resides in the same haplotype block with rs6721961 and most likely represents the same association as rs6721961.

SRXN1 SNP rs6076869 rare allele associates with cytoplasmic NRF2 protein expression

SRXN1 rs6076869 genotypes associated with cytoplasmic NRF2 protein expression among the invasive breast cancer cases. The rare allele T associated with high-extent cytoplasmic NRF2 protein expression (Table 2) and with lobular histology ($P_{\text{overall}} = 0.019$, $P_{\text{allele-specific}} = 0.022$; OR, 1.830; CI, 1.092–3.066).

NRF2 and SRXN1 genotypes associate with prognosis/survival

NRF2 rs2886162 rare homozygous genotype AA associated with a worse survival compared with the carriers of the common allele G [Kaplan–Meier: $P_{\text{log-rank}} = 0.017$ (Supplementary Table S4 and Supplementary Fig. S2)]. This association remained significant in the multivariate analysis [Cox regression: $P = 0.032$; HR, 1.687; CI, 1.047–2.748 (Table 3 and Fig. 2)]. In this multivariate analysis also, the cytoplasmic NRF2

Figure 1. Immunohistochemical staining of NRF2 and sulfi
redoxin. Ductal breast carcinoma showing strong nuclear positivity for NRF2 (A), negative nuclear staining for NRF2 (B), strong cytoplasmic positivity for NRF2 (C), negative cytoplasmic staining for NRF2 (D), strong cytoplasmic positivity for sulfi
redoxin (E), and negative cytoplasmic staining for sulfi
redoxin (F). Magnification, $\times 250$ in A, C, and E and $\times 110$ in B, D, and F.
expression was included but it did not associate with survival. However, in the Kaplan–Meier analysis, a difference in the genotype-associated survival was observed between the strata (cytoplasmic NRF2 low vs. high extent, \(P = 0.023 \), log-rank = 5.163), implying that the genotypes association is most significant among those with low-extent cytoplasmic NRF2 only (Supplementary Table S5 and Supplementary Fig. S3A and S3B). Similar trend was observed with nuclear NRF2 protein expression \(P = 0.019 \), log-rank = 5.490 (Supplementary Table S5 and Supplementary Fig. S4A and S4B).

<table>
<thead>
<tr>
<th>SNP</th>
<th>(P \text{}_{\text{trend}})</th>
<th>(P \text{}_{\text{trend}})</th>
<th>Associated allele</th>
<th>(P \text{ OR (CI)})</th>
<th>(P \text{ OR (CI)})</th>
<th>(P \text{ OR (CI)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1962142</td>
<td>0.030</td>
<td>0.022</td>
<td>T</td>
<td>0.036</td>
<td>1.742 (1.035–2.933)</td>
<td>0.042</td>
</tr>
<tr>
<td>rs6721961</td>
<td>0.0008</td>
<td>0.018</td>
<td>T</td>
<td>0.0003</td>
<td>2.420 (1.491–3.926)</td>
<td>0.047</td>
</tr>
<tr>
<td>rs2886162</td>
<td>0.041</td>
<td></td>
<td>A</td>
<td>0.011</td>
<td>1.988 (1.162–3.400)</td>
<td></td>
</tr>
<tr>
<td>SRRX1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6076869</td>
<td>0.012</td>
<td></td>
<td>T</td>
<td>0.005</td>
<td>1.927 (1.217–3.051)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>0.360</td>
<td>0.712 (0.343–1.478)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Bold text indicates statistical significance.

Abbreviation: ns, no statistically significant association observed.

a\(P \) from the Armitage trend test for the overall association with cytoplasmic NRF2 protein expression.
b\(P \) value from the Armitage trend test for the overall association with sulfiredoxin protein expression.
c\(P \), OR, and CI for the homozygous and heterozygous allele carriers.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(n)</th>
<th>B (SE)</th>
<th>Wald</th>
<th>HR (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>168</td>
<td>0.859 (0.235)</td>
<td>13.424</td>
<td>2.362 (1.491–3.740)</td>
<td>0.0002485</td>
</tr>
<tr>
<td>Positive</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2 status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>251</td>
<td>0.932 (0.262)</td>
<td>12.633</td>
<td>2.539 (1.519–4.244)</td>
<td>0.000379</td>
</tr>
<tr>
<td>Positive</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2886162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG+GA</td>
<td>219</td>
<td>0.523 (0.243)</td>
<td>4.613</td>
<td>1.687 (1.047–2.718)</td>
<td>0.032</td>
</tr>
<tr>
<td>AA</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Analysis stratified by tumor grade, nodal status, ER status, PR status, histologic type, tumor size, HER2 status, cytoplasmic NRF2 expression, and rs2886162 genotypes. HR (95% CI), HR of breast cancer death and 95% CI from Cox regression survival analysis.

Abbreviations: B (SE), B coefficient with standard error from the Cox regression survival analysis. Ref, reference category.
nodal status, ER status, PR status, histologic type, tumor size, and HER2 status (Cox regression, data not shown).

Effect of combined NRF2 and SRXN1 genotypes on prognosis/survival

We further studied the effect of the combined SRXN1 survival–associated polymorphisms by summing up the number of the risk alleles of the SRXN1 polymorphisms rs61169295, rs2008022, rs7269823, and rs6085283 for each patient. The highest value possible was 8 and the lowest was 0. The patients were divided in 2 groups: 0–3 risk alleles and 4–8 risk alleles. A trend toward poorer survival was observed with increasing amount of risk alleles in Kaplan–Meier analysis ($P_{log-rank} = 0.009$ for 0–3 vs. 4–8 risk alleles (Supplementary Table S4 and Supplementary Fig. S6)). However, the poorest survival was still defined by rs2008022. When the effect of NRF2 rs2886162 was also considered together with the combined SRXN1 SNPs, there was a difference in the survival between the strata defined by rs2886162 genotype ($P = 0.014$, log-rank $= 6.009$). Among the rs2886162 rare allele (A) carriers, poorer survival was observed among those with 4–8 SRXN1 risk alleles ($P_{log-rank} = 0.010$) but no difference among the rs2886162 common homozygotes (GG) was observed ($P_{log-rank} = 0.638$ (Supplementary Fig. S7A and S7B)). This reflects that the rs2886162 genotype is a stronger prognostic factor than the combined SRXN1 SNP genotypes; otherwise the effect on survival by SRXN1 genotypes should also be seen among the rs2886162 common homozygotes. Indeed, in the multivariate analysis including the combined SRXN1 genotypes, NRF2 rs2886162 genotype, and other prognostic factors, only rs2886162 genotype, nodal status, and HER2 status remained significant (Supplementary Table S6 and Supplementary Fig. S8A). Similar results were obtained from the multivariate analysis including the clinicopathologic variables, NRF2 protein expression (cytoplasmic and nuclear), sulfiredoxin protein expression, and combined SRXN1 genotypes and rs2886162 (Supplementary Table S7 and Supplementary Fig. S8B).

NRF2 rs2886162 A4 genotype independently predicts poorer survival among patients who received chemotherapy or radiotherapy

The effect of NRF2 rs2886162 rare homozygous genotype A4 on poor prognosis was also seen separately in the group that had received adjuvant chemotherapy and among those that received postoperative radiotherapy. In the group that had received adjuvant chemotherapy, the rs2886162 genotype A4 associated with poorer breast cancer survival ($P = 0.019$; HR, 2.43; CI, 1.16–5.08; Fig. 3A) and with poorer recurrence-free survival ($P = 0.003$; HR, 2.83; CI, 1.43–5.61). In the group that received postoperative radiotherapy, the rs2886162 genotype A4 associated with poorer recurrence-free survival ($P = 0.025$; HR, 1.68; CI, 1.07–2.64; Fig. 3B). Among patients who did not receive any adjuvant therapy ($n = 137$), the rs2886162 genotypes did not associate with survival (data not shown).

SRXN1 genotypes independently predict survival among patients receiving radiation treatment

The effect of the SRXN1 genotypes on prognosis also holds when radiation treatment is taken into account. SRXN1 rs6116929 rare homozygous genotype GG and rs2008022 rare allele carriers CAD44 predicted better prognosis among the patients who received radiotherapy (Supplementary Table S8 and Fig. 4A and B). Also, among the patients treated with radiotherapy, the SRXN1 rs7269823 and rs6085283 rare allele carriers (AG&GG and CT&TT, respectively) had poorer survival than the patients carrying the common homozygous genotypes (Supplementary Table S8 and Fig. 4C and D). In addition, among the patients treated with radiotherapy, the SRXN1 rs6053666 rare homozygous genotype CC predicted better prognosis than the common allele carriers (Supplementary Table S8). Interestingly, rs6053666 rare allele also associates with decreased breast cancer risk.

Discussion

NRF2 is a transcription factor, which senses xenobiotic and oxidative stress and activates several anti-oxidative and other protective genes if such stress occurs. Upregulation of NRF2 may thus protect cells from oxidative damage and prevent initiation of carcinogenesis due to mutations caused by such damage. In tumor tissue, on the other hand, activation of NRF2 may thus protect cells from oxidative damage and prevent initiation of carcinogenesis due to mutations caused by such damage. In tumor tissue, on the other hand, activation of NRF2 may thus protect cells from oxidative damage and prevent initiation of carcinogenesis due to mutations caused by such damage. In tumor tissue, on the other hand, activation of NRF2...
Our results show that in the NRF2 pathway, there are genetic polymorphisms that affect both the susceptibility for breast cancer and the outcome of the patients with breast cancer, thus underlining the complex effect of NRF2 in cancer progression. On one hand, the *NRF2* promoter polymorphism rs6721961 associates with breast cancer risk referring to the role of NRF2 in cancer predisposition. The rare allele T associates with increased risk of breast cancer and low protein level of both NRF2 and sulfiredoxin. The T allele is predicted to destroy a binding site for a transcription factor (intronic enhancer) c-Rel (FastSNP; ref. 27; Supplementary Table S9). Previously, rs6721961 has been shown to be functional (24) and hence it would directly affect the protein expression level of NRF2. Indeed, here we have shown the connection between the T allele and decreased NRF2 protein expression in breast cancer tissue, as well as the resulting decrease in sulfiredoxin expression. This is also concordant with the hypothesis that impaired NRF2 function leads to decreased sulfiredoxin function, which in turn affects the function of peroxiredoxins and leads to increased cancer proneness. Decreased NRF2 level presumably might affect also the activation of other NRF2 targets and hence increase cancer susceptibility.

On the other hand, *NRF2* SNP rs2886162 A/A genotype associates with low NRF2 protein expression level and poorer survival. The effect of the genotype on survival was significant also in the multivariate analysis. In addition, the *NRF2* rs2886162 rare homozygous genotype A/A independently predicted poorer survival among patients who received adjuvant chemotherapy, and the recurrence-free survival was poorer among radiotherapy-treated A/A genotype carriers. The rs2886162 association with survival could be through impaired NRF2 (and sulfiredoxin) function as low cytoplasmic NRF2 may result in low sulfiredoxin, even though statistically significant association between rs2886162 and negative sulfiredoxin level was not observed here. (However, a positive overall correlation between NRF2 expression and sulfiredoxin expression was observed). It is also possible that low cytoplasmic NRF2 could be explained by the removal of NRF2 from cytoplasm to the nucleus where it leads to activation of stress response and survival of cancer cells (*NRF2* resistency) and thus poorer prognosis. The association with poorer survival in this case could be explained by the fact that *SRXN1* is not the sole target for NRF2 activation. Association of nuclear NRF2 staining with poorer survival has been previously observed in ovarian carcinoma (28). However, in breast cancer, this issue needs further studies, possibly including also KEAP1.

Previous studies on *NRF2* polymorphisms in breast cancer are few. In a cohort of postmenopausal women, specific polymorphisms on *NRF2* (rs1806649), *NQO1*, *NOS3*, and *HO-I* did not have any significance for the risk of breast cancer (29). When the risk polymorphisms of these genes were combined, patients with 3 risk alleles had a 1.5-fold risk and those with a high iron intake had a greater than 2-fold risk (29). In postmenopausal women with oral estrogen replacement therapy, the *NRF2* rs6721961 rare allele seems to modify the risk of thromboembolism (30). *NRF2* polymorphism has, however, been more extensively studied in pulmonary disease (24, 31, 32). While *NRF2* polymorphisms clearly may promote individuals for oxidative damage, no published studies on their significance in lung cancer exist. Lung cancer, as well known, is associated with tobacco smoke, which among other effects provoke development of ROS (33). Polymorphisms rs6721961 and rs6706649 have been studied in gastric carcinogenesis but no overall association with risk was found (34). In gastric cancer, carcinogenesis is predominantly based on *Helicobacter pylori*–induced gastritis leading to gastric atrophy and cancer whereas in breast cancer, hormonal factors play a role (35). It is known that estrogen metabolites induce the formation of ROS.

\[\text{Figure 3. Association of } \text{NRF2 rs2886162 with survival among patients with breast cancer with different therapies. A, breast cancer–specific survival among patients treated with adjuvant chemotherapy. Analysis stratified by age, stage, and radiotherapy. B, recurrence-free survival among patients treated with postoperative radiotherapy. Analysis stratified by age, stage, hormone therapy, and chemotherapy. HR (95\% CI), HR of breast cancer death with 95\% CI in Cox regression survival analysis.} \]
In this sense, NRF2 and its dysfunction may be more important in breast carcinogenesis than in gastric cancer.

In addition to NRF2 polymorphisms, we observed that polymorphisms on SRXN1 also are associated with breast cancer risk and survival. Four SRXN1 SNPs associated with breast cancer survival in Kaplan–Meier analysis (rs6116929, rs2008022, rs7269823, and rs6085283). Among patients who received radiotherapy, these SNPs also associated independently with survival in the multivariate analysis. Interestingly, there are regulatory features in the regions where rs6116929 and rs6085283 reside (Ensembl; ref. 37). The rs6116929 is located in downstream region and the rare allele G (which is associated with better survival) is predicted to destroy binding sites for CdxA, cap, and deltaE (F-SNP; ref. 38). The rs6085283 resides in the 3′ untranslated region of the SRXN1 gene and is predicted to participate in splicing regulation (alternative splicing). Three exonic splicing enhancer (ESE)–binding sites are predicted for allele C (SF2/ASF, SC35, and SRp55), and none for allele T (FastSNP, F-SNP; Supplementary Table S9). It is possible that these polymorphisms affect the level or function of sulfiredoxin, and the cancer cells exhibiting low sulfiredoxin expression have lower tolerance for oxidative damage and the response for oxidative damage is poor, which promotes/enhances the death of the cancer cell and a better response to treatment and thus leads to better outcome. The effect of sulfiredoxin in breast carcinoma could be connected to its role in converting peroxiredoxins to a functional, reduced state. Some peroxiredoxins have been associated with progression of breast cancer. Overexpression of peroxiredoxin VI in breast carcinoma cell lines leads to a more invasive phenotype with a higher proliferative activity (39). Moreover, peroxiredoxin III promotes breast cancer cell proliferation, and peroxiredoxins I, II, and III protect cells from oxidative damage–induced apoptosis (40, 41). We also found that SRXN1 rs6053666 rare allele C lowered the risk of breast cancer and the CC genotype associated with better prognosis among the patients who received radiotherapy. Such influences may be ascribed to the known function of sulfiredoxin on the oxidative state of peroxiredoxins regulating the redox state and metabolism of hydrogen peroxide in cells. The rs6053666 resides on the 3′ untranslated region of the SRXN1 gene and is predicted to participate in splicing regulation (alternative splicing). Three exonic splicing enhancer (ESE)–binding sites are predicted for allele C (SF2/ASF, SC35, and SRp55), and none for allele T (FastSNP, F-SNP; Supplementary Table S9).

The protein expression of NRF2 has not previously been studied in large clinical materials of breast cancer. Our results show that NRF2 is strongly expressed in the cytoplasm of...
breast carcinoma cells, showing a high frequency expression in 66% of the cases. High-extent nuclear expression, indicating increased functional activity of the protein, was present in 26% of the cases. In the histologic subgroups, lobular invasive carcinomas showed a stronger expression of nuclear positivity than ductal ones. Lobular carcinoma is a tumor type showing low or nonexistent expression of E-cadherin. Interestingly, NRF2 activation by sulforaphane was reported to cause downregulation of epithelial–mesenchymal transition (EMT)-type changes in rat kidney tubular epithelial cells, including E-cadherin (42). Thus, NRF2 activation might be one additional factor influencing the loss of E-cadherin expression in lobular breast carcinoma. On the other hand, lobular carcinoma cells could be more sensitive in their reaction to oxidative stress, leading to a more abundant nuclear expression of NRF2. Previously, Loignon and colleagues found that NRF2 protein expression was decreased in 7 of the 10 breast cancer cell lines they studied (43). They also detected lower levels of NRF2 expression was decreased in 7 of the 10 breast cancer cell lines they studied (43). They also detected lower levels of NRF2 expression, as well as studies on peroxiredoxins and AP-1. Studying anti-oxidative mechanisms may thus pave the way for new treatment modalities based on inhibition of such mechanisms in breast cancer cells.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: J.M. Hartikainen, V.-M. Kosma, V.L. Kinnula, A. Mannermaa, Y. Soini

Development of methodology: A. Mannermaa

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.M. Hartikainen, A. Mannermaa, Y. Soini

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.M. Hartikainen, M. Tengström, A. Mannermaa, Y. Soini

Writing, review, and/or revision of the manuscript: J.M. Hartikainen, M. Tengström, V.-M. Kosma, V.L. Kinnula, A. Mannermaa, Y. Soini

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): V.-M. Kosma, A. Mannermaa, Y. Soini

Study supervision: A. Mannermaa, Y. Soini

Acknowledgments

The authors thank Eija Myöhänen, Helena Kemiläinen, and Aija Parkkinen for their skillful technical assistance.

Grant Support

The study was supported by The Finnish Cancer Society, the Academy of Finland (grant number 127220), EVO Research Fund (grant number 564113 and 5501) of Kuopio University Hospital, and the strategic funding of the University of Eastern Finland.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 23, 2012; revised August 3, 2012; accepted August 28, 2012; published OnlineFirst September 10, 2012.

References

Genetic Polymorphisms and Protein Expression of NRF2 and Sulfiredoxin Predict Survival Outcomes in Breast Cancer

Jaana M. Hartikainen, Maria Tengström, Veli-Matti Kosma, et al.

Cancer Res Published OnlineFirst September 10, 2012.