eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies

Tommy Alain1,2*, Masahiro Morita1,2*, Bruno D. Fonseca1,2, Akiko Yanagiya1,2, Nadeem Siddiqui1,2, Mamatha Bhat1,2,3, Domenick Zammit1,2,4, Victoria Marcus4, Peter Metrakos5,6,7, Lucie-Anne Voyer1,2, Valentina Gandin8, Yi Liu9, Ivan Topisirovic8,10#, Nahum Sonenberg1,2,10#

1 Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada; 2 Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada; 3 Division of Gastroenterology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, H3A 1A1, Canada; 4 Department of Pathology, McGill University Hospital Centre, McGill University, H3A 1A1, Canada; 5 Department of Surgery, Hepatopancreatobiliary and Transplant Research Unit, McGill University Health Centre, Montreal, Quebec, H3A 1A1, Canada; 6 Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 7 Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 1A3, Canada; 8 Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada; 9 Intellikine, La Jolla, California, 92037, USA; 10 Department of Oncology, McGill University, Montreal, Quebec, H2W 1S6, Canada;

* These authors contributed equally to this work

Correspondence should be addressed to:

Nahum Sonenberg, FRS
James McGill Professor
McGill University
Dept of Biochemistry
Goodman Cancer Research Centre
1160, Avenue Des Pins Ouest
Cancer Pavilion, Room #615
Montréal, Québec, H3A 1A3
Tel: (514) 398-7274
Fax: (514) 398-1287
email: nahum.sonenberg@mcgill.ca

Ivan Topisirovic, M.D., Ph.D.,
Investigator, Lady Davis Institute for Medical Research,
Assistant Professor, Dept. Of Oncology, McGill University,
Sir Mortimer B. Davis Jewish General Hospital
Office E-445
3755 Côte Ste-Catherine Road,
Montreal, Quebec H3T 1E2
Tel: (514) 340-8222 ext 3146
email: ivan.topisirovic@mcgill.ca

RUNNING TITLE: eIF4E/4E-BP ratio determines efficacy of mTOR inhibitors

KEY WORDS: translation initiation, eIF4E, 4E-BP, mTOR inhibitors

AUTHOR CONTRIBUTION: Study concept and design (TA, MM, IT, NS), Acquisition of data (TA, MM, BDF, NSi, MB, DZ, AY, LAV, VG), drafting of the manuscript (TA, MM, IT, NS), Critical revision of the manuscript for important intellectual content (TA, MM, PM, YL, IT, NS), Technical or material support (VM, MB, VG, YL), Study supervision (IT, NS).

DISCLOSURE: The authors declare that there are no conflicts of interest.
ABSTRACT

Active-site mTOR inhibitors (asTORi) hold great promise for targeting dysregulated mTOR signaling in cancer. Due to the multifaceted nature of mTORC1 signaling, identification of reliable biomarkers for the sensitivity of tumors to asTORi is imperative for their clinical implementation. Here, we show that cancer cells acquire resistance to asTORi by downregulating eukaryotic translation initiation factor (eIF4E)-binding proteins (4E-BPs – EIF4EBP1, EIF4EBP2). Loss of 4E-BPs or overexpression of eIF4E renders neoplastic growth and translation of tumor promoting mRNAs refractory to mTOR inhibition. Conversely, moderate depletion of eIF4E augments the anti-neoplastic effects of asTORi. The anti-proliferative effect of asTORi in vitro and in vivo is therefore significantly influenced by perturbations in eIF4E/4E-BP stoichiometry, whereby an increase in the eIF4E/4E-BP ratio dramatically limits the sensitivity of cancer cells to asTORi. We propose that the eIF4E/4E-BP ratio, rather than their individual protein levels or solely their phosphorylation status, should be considered as a paramount predictive marker for forecasting the clinical therapeutic response to mTOR inhibitors.

PRECIS

This report establishes that a ratio of the translational regulatory factors eIF4E and 4E-BP, rather than simply their individual levels or phosphorylation status, may serve as a generalized marker to predict the clinical therapeutic response to mTOR inhibitors in any cancer setting.
INTRODUCTION

mTOR is a multifunctional serine/threonine kinase, which exists in two distinct complexes, mTOR complex 1 and 2 (mTORC1 and 2) (1). mTORC1 governs many cellular processes including mRNA translation, cell growth and proliferation, by phosphorylating downstream targets such as 4E-BPs and S6Ks (1). mTORC2 controls cell survival and cytoskeleton organization by modulating the activity of AGC kinases (e.g. Akt, SGK1), and regulates nascent polypeptide stability (2). Hyperactivation of mTOR signaling frequently occurs in cancer (in more than 70% of patients) (3). Therefore, targeting mTOR represents one of the most attractive anti-cancer therapeutic strategies. Rapamycin, a naturally occurring allosteric inhibitor of mTORC1, and its analogs (rapalogs), are clinically approved for treatment of renal cell carcinomas, mantle cell lymphomas, and pancreatic neuroendocrine tumors (4, 5). Nonetheless, the overall success of rapalog monotherapies is limited. This has been attributed to the incomplete inhibition of mTORC1-mediated phosphorylation of 4E-BPs, and the activation of Akt via the loss of a negative feedback mechanism (4, 6, 7). Recently, asTORi (also referred to as TORKin or dual mTORC1/mTORC2 inhibitors) were developed to overcome these issues. asTORi abolish phosphorylation of 4E-BPs via the inhibition of mTORC1, suppress Akt signaling via the inhibition of mTORC2, and exhibit stronger anti-proliferative and anti-tumorigenic effects than rapamycin (8-11). However, mTOR regulates various cancer-related processes via a multitude of substrates, and this complexity of mTOR signaling represents a significant challenge for identifying surrogate biomarkers that could serve to predict the efficacy of asTORi in the clinic (12).

eIF4E is the 5’ mRNA cap binding subunit of the eIF4F complex, which recruits mRNA to the ribosome. eIF4F also includes the large scaffolding protein eIF4G and the DEAD-box RNA helicase eIF4A (13, 14). 4E-BPs (in mammals 4E-BP1, 2 and 3) are small-molecular weight translational repressors, which impair the assembly of the eIF4F complex by competing with eIF4G for binding to
eIF4E (14, 15). mTORC1 phosphorylates 4E-BPs leading to their dissociation from eIF4E, thus increasing the amount of eIF4E available to engage in the eIF4F complex assembly (15-17). Ectopic expression of eIF4E leads to transformation of immortalized rodent and human cells (18, 19) and is tumorigenic in vivo (20). About 30% of cancers exhibit elevated eIF4E levels, which correlate with poor prognosis (21). eIF4E overexpression induces cell transformation by selectively augmenting translation of mRNAs referred to as “eIF4E-sensitive mRNAs”, which encode proliferation- and survival-promoting proteins (e.g. cyclins, c-myc, Bcl-xL) (18, 22). Multiple factors can induce the overexpression of eIF4E in cancer cells including gene amplification (23), transcriptional upregulation by c-myc (24), and increase in eIF4E mRNA stability by HuR (25). Dysregulated expression and/or increased phosphorylation of 4E-BPs in cancer have also been linked to poor patient outcomes (21, 26). 4E-BPs mediate the effects of mTOR signaling on translation of mRNAs which encode proteins that are associated with cancer progression, invasion and metastasis (e.g. Y-box protein 1, vimentin and CD44) (11). 4E-BP1 expression is controlled at the transcriptional and protein stability levels by ATF4 (27) and the KLHL25-CUL3 complex (28), respectively.

In this study, we demonstrate that cancer cells acquire resistance to asTORi by increasing eIF4E availability via downregulation of 4E-BP1 and 2. Accordingly, we show that an increase in eIF4E, or reduction in 4E-BP levels by RNAi, strongly attenuates the anti-neoplastic effects of the asTORi PP242, Torin1, and INK1341 (an analog of the recently characterized INK128 compound) (11). Conversely, a decrease in the eIF4E/4E-BP ratio ameliorates the inhibitory effects of asTORi on translation of “eIF4E-sensitive” cyclin D3 and E1 mRNAs. Thus, the eIF4E/4E-BP ratio in the tumor could be a significant predictive marker of the efficacy of asTORi that should be considered in devising personalized asTORi treatments.
MATERIALS AND METHODS

Cell culture, constructs, viral infections and lentiviral shRNA silencing. E1A/Ras-transformed WT (p53−/−) and 4E-BP1/2 DKO (p53−/−) MEFs, referred to as WT^{E1A/Ras} and 4E-BP1/2 DKO^{E1A/Ras} MEFs respectively, were previously described (7). HeLa, SK-HEP-1, and HepG2 cells were directly purchased from and authenticated by ATCC. Cells were maintained in DMEM (Invitrogen), supplemented with 10% fetal bovine serum (FBS; Invitrogen), 2 mM L-glutamine, and 100 units/ml penicillin/streptomycin (all from Invitrogen) at 37°C and 5% CO2. To induce acquired resistance to asTORi, WT^{E1A/Ras}, HepG2 and SK-HEP-1 cell lines were cultured in the continuous presence of the PP242 (1 μM for 8 weeks). NIH3T3 cells transduced with pMV7-eIF4E or empty vector (pMV7) were described previously (18). For overexpression studies, pcDNA3-3HA-4E-BP1 (4E-BP1^{WT}) and pACTAG2-3HA-4E-BP1 (4E-BP1^{S49E}) have been described previously (29, 30). 4E-BP1 and mutant cDNA were amplified by PCR and inserted into BamHI/Sall sites of the retroviral vector pBABE. Cell lines that stably express 4E-BP1 were generated as described previously (31). Briefly, pBABE constructs were transiently transfected into the Ecotropic Phoenix-293T packaging cell line. After 48 h, virus-containing medium was filtered (0.45 μm), collected, and used to infect MEFs in the presence of 5 μg/mL polybrene (Sigma-Aldrich). Infection was repeated the next day. Twenty-four hours after the second infection, medium supplemented with puromycin (1 μg/mL, Sigma-Aldrich) was added, and cells were subjected to selection for 1 wk after which time colonies were pooled. pcDNA3-FLAG-eIF4E^{WT} and eIF4E^{W56A} (cap binding mutant) were constructed by cloning the entire coding sequence of mouse eIF4E into pcDNA3-FLAG using a polymerase chain reaction (32). These vectors were transfected and cells selected in G418 for two weeks. Lentiviral vectors were from Sigma (St. Louis, MO). shRNA vector accession numbers are: mouse eIF4E (Sigma: TRCN0000077474), the Non-Target shRNA Control (Sigma: SHC002). shRNA vectors were co-transfected into HEK293T cells with the lentivirus packaging plasmids PLP1, PLP2, and PLP-VSVG (Invitrogen) using Lipofectamine.
2000 (Invitrogen). Supernatants were collected 48 and 72 hours post-transfection, passed through a 0.45 μm nitrocellulose filter and applied on target cells with polybrene (5 μg/ml). Cells were re-infected the next day and selected with puromycin for 48 hours (1 μg/ml, Sigma). PP242 and INK1341 were provided by Intellikine (La Jolla, CA, USA).

Cell cycle analysis and apoptosis. Cells were seeded in 100 mm dishes, grown overnight, and treated as indicated in figure legends. Twenty-four or Forty-eight hours later, cells were harvested by trypsinization, washed twice with PBS containing 2% FBS and once in PBS. For cell cycle analysis, cells were resuspended in 200 μl of NPE Nuclear Isolation Media (NIM)-DAPI (Beckman Coulter, Mississauga, ON) and analyzed using a Cell Lab Quanta SC (Beckman Coulter) flow cytometer. For apoptosis, cells were analyzed by flow cytometry using the Annexin V-FITC apoptosis detection kit according to the manufacturer’s protocol (Bio Vision).

Cell proliferation, soft agar and anchorage-dependent foci formation assay. For the BrdU incorporation assay (Cell Proliferation ELISA BrdU kit from Roche), cells were seeded in 96 well plates (1,000 cells/well) and maintained as indicated in the figure legends. Absorbance at 370 nm (reference wavelength 492 nm) was measured using a Varioskan microplate reader (Thermo Electron Corporation, Waltham, MA). For Trypan blue exclusion, cells were seeded in 6 well plates (50,000 cells/well) overnight, and maintained under conditions outlined in the figure legends. Cell proliferation was determined by direct counting (dead cells were excluded by Trypan blue staining). For soft agar assays, experiments were carried out in 6 well plates coated with a base layer of 0.5% agarose (Agar Noble, Difco). WtE1A/Ras and 4E-BP1/2 DKO E1A/Ras MEFs were seeded in triplicates at a density of 5,000 cells/well in 0.35% agarose containing either vehicle (DMSO), PP242 (1 μM) or INK1341 (250 nM). Cells were overlaid with DMEM supplemented with 10% FBS, 2 mM L-glutamine, and 100 units/ml penicillin/streptomycin (Invitrogen) containing either DMSO, PP242 (1 μM) and incubated for
up to 10-14 days. Media containing vehicle or PP242 was changed every 3-4 days during the course of the experiment. Colonies were counted using a light microscope. For focus formation assays, cells were seeded at a density of 10,000 cells/10cm dish and allowed to grow in the presence of either vehicle (DMSO) or PP242 (1 µM) or INK1341 (250 nM). Media containing drugs was changed as above every 3-4 days.

Western blot analysis and cap (m⁷GDP)-pull down assay. Cell lysates were prepared, and Western blotting was carried out as described (33). Antibodies against 4E-BP1, 4E-BP2, phospho-4E-BP1 (Thr37/46, Ser65, Thr70), rpS6, phospho-rpS6 (Ser240/244), Akt, phospho Akt (S473), eIF4G1, and cyclin D3 were from Cell Signaling Technology (Danvers, MA). Antibody against cyclin E1 was from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies against eIF4E and β-actin were from Sigma, St. Louis, MO. Horseradish peroxidase-conjugated anti-rabbit IgG and anti-mouse IgG were from Amersham Biosciences (Baie d’Urfé, QC, Canada). For cap-binding affinity assay, cells were lysed in the lysis buffer (50 mM HEPES-KOH (pH 7.5), 150 mM KCl, 1 mM EDTA, 2 mM DTT and 0.2% Tween) containing protease inhibitors. Cell lysates were incubated with m⁷GDP-agarose, and washed four times using the lysis buffer. m⁷GDP-bound proteins were determined by Western blotting.

Polysome analysis, RNA isolation and sqRT-PCR. Polysome profile analysis was carried out as previously described (34). Briefly, cells were cultured in 15 cm dishes and treated with PP242 (1 µM), INK1341 (250 nM) or vehicle (DMSO) for 8 hours. Cells were washed with cold PBS containing 100 µg/ml cycloheximide, collected, and lysed in a hypotonic lysis buffer (5 mM Tris-HCl (pH 7.5), 2.5 mM MgCl₂, 1.5 mM KCl, 100 µg/ml cycloheximide, 2 mM DTT, 0.5% Triton X-100, and 0.5% sodium deoxycholate). Lysates were loaded onto 10-50% sucrose density gradients (20 mM HEPES-KOH (pH 7.6), 100 mM KCl, 5 mM MgCl₂) and centrifuged at 36,000 rpm for 2 hours at 4°C. Gradients were fractionated and the optical density (OD) at 254 nm was continuously recorded using
an ISCO fractionator (Teledyne ISCO; Lincoln, NE). RNA from each fraction was isolated using Trizol (Invitrogen) and treated with DNaseTurbo (Ambion) according to the manufacturer’s instructions. RT-PCR and RT-qPCR reactions were carried out using SuperScript III First-Strand Synthesis System (Invitrogen) and iQ SYBR Green Supermix (BIO-RAD) according to the manufacturer’s instructions. The list of primers and the number of cycles used for each of the transcripts were described (7).

Tumor growth curves. Six- to 8-week-old NudeNCR (Nu/Nu) mice were obtained from Taconic (Albany New York). The animals were maintained under specific pathogen-free conditions and treated according to a protocol approved by the McGill University Animal Care Committee. 5×10^6 WT$^{E_{1A/R}\text{ras}}$ and 4E-BP1/2 DKO$^{E_{1A/R}\text{ras}}$ MEFs in 100 μl PBS were injected in the hind flank of the mice and allowed to grow until palpable tumors were established. For drug treatment, PP242 at 60mg/kg in a solution containing 40% PEG-400, 40% PBS, and 20% DMSO was administrated intraperitoneally in 100 μl volume. Two-dimensional tumor measurements were performed with calipers every other day for 10 days or until the animals showed severe complications due to excess tumor burden.

Statistical Analysis. Error bars for all data represent Standard Deviations (SDs) from the mean. P values were calculated using Student t-tests.
RESULTS

Acquired resistance to asTORi coincides with downregulation of 4E-BP1 and 2 expression. To investigate the potential mechanism of acquired resistance to asTORi in cancer cells, we cultivated E1A/Ras transformed p53⁻/⁻ MEFs (WT⁴E1A⁴Ras) and two liver cancer cell lines; HepG2 and SK-HEP-1 in the presence of the asTORi PP242 (1 μM for 8 weeks). Strikingly, all three cell lines acquired resistance to PP242, which correlated with a downregulation of 4E-BP1 and 2 (Figures 1A-C; S1A-F), but not with a loss of mTORC1 or 2 inhibition, inasmuch as asTORi induced similar suppression of ribosomal protein S6 (S6) and Akt phosphorylation in resistant and control cells (Figures S1G-H).

To ascertain that 4E-BPs are responsible for the anti-neoplastic activity of asTORi, we investigated the effects of PP242 on the neoplastic growth of WT⁴E1A⁴Ras and E1A/Ras transformed p53⁻/⁻⁻/⁴e-bp1/2⁻/⁻ MEFs (4E-BP DKO⁴E1A⁴Ras). 4E-BP DKO⁴E1A⁴Ras MEFs are devoid of all 4E-BPs, since MEFs do not express 4E-BP3 (7). WT⁴E1A⁴Ras and 4E-BP DKO⁴E1A⁴Ras MEFs proliferated at the same rate in full growth medium (Figure 1D) where mTOR activity is high and 4E-BP1 and S6 are hyperphosphorylated (Figure 1E). However, while PP242 inhibits mTORC1 signaling to a similar extent in these cells, as illustrated by a comparable reduction in the phosphorylation of S6 (Figure 1E), the effects of PP242 on neoplastic growth were significantly less pronounced in 4E-BP DKO⁴E1A⁴Ras MEFs (~45% reduction in number of colonies and foci relative to control) as compared to WT⁴E1A⁴Ras MEFs (~70%; Figures 1F-G and S2A-C). Moreover, depletion of 4E-BP1 and 2 rendered neoplastic growth of SK-HEP-1 and HepG2 cells partially resistant to PP242 (Figures S1A-C and S2D-F). These results demonstrate that loss of 4E-BPs attenuates the anti-neoplastic efficacy of asTORi.

Increased eIF4E availability renders cells resistant to asTORi. When mTOR signaling is inhibited, 4E-BPs limit the fraction of eIF4E available for the assembly of the eIF4F complex (15-17). Thus, we
investigated whether the sequestration of eIF4E by 4E-BPs is required for the anti-neoplastic activity of INK1341, by overexpressing 4E-BP1WT and 4E-BP1Δ4E mutant, which lacks the eIF4E-binding motif and thus cannot bind eIF4E (35) (Figure 1H). Expression of 4E-BP1WT, but not 4E-BP1Δ4E augmented the anti-neoplastic effect of INK1341 (Figures 1I-J). Moreover, forced expression of 4E-BP1WT markedly reduced the association between eIF4E and eIF4G1 as compared to a control (Figures S2G-H). Taken together, these results demonstrate that 4E-BPs mediate the anti-tumorigenic activity of asTORi by limiting the availability of eIF4E to associate with eIF4G1 thereby impeding the eIF4F complex assembly.

eIF4E is frequently overexpressed in cancer (21). We examined whether overexpression of eIF4E, akin to loss of 4E-BPs, alleviates the anti-proliferative effects of the asTORi, Torin1 (9). Torin1 equally inhibited mTORC1 signaling in vector transfected NIH3T3 cells and NIH3T3 cells which stably overexpress eIF4E (NIH3T3/4E) (18), as shown by comparable reduction in the phosphorylation of 4E-BP1 and S6 (Figure S3A). In contrast, Torin1 inhibited proliferation and G1 to S phase cell cycle progression in NIH3T3/4E cells to a dramatically lesser extent (~15%) as compared to control cells (~85%) (Figures S3B-C).

To further establish that the alterations in eIF4E availability determine the anti-neoplastic effects of asTORi, we depleted eIF4E in WT E1A/Ras MEFs and compared the anti-neoplastic effects of PP242 to those observed in control cells. Since significant eIF4E downregulation inhibits proliferation and survival (36), we selected cells in which eIF4E depletion (~50% of control) does not affect cell proliferation under optimal nutrient conditions wherein mTOR is active (Figures 2A-B). Nonetheless, a ~50% decrease in eIF4E levels strongly augmented the sensitivity of WT E1A/Ras MEFs to PP242 (~85% reduction in colony and foci formation), as compared to control (~65%; Figures 2C-D and S3D-F). Similar results were obtained using INK1341 (Figures 2E-G and S3G-H). Suppression of neoplastic growth by asTORi was caused by the inhibition of cell cycle progression from G1 to S phase, whereas asTORi did not exert a major effect on cell survival (Figures S4A-C). Importantly, the asTORi-
induced inhibition of G1/S progression was alleviated in cells with high eIF4E/4E-BP ratio (Figure S4A). These results support a model whereby asTORi suppress neoplastic growth by limiting eIF4E availability and cell cycle progression.

Persistent translation of "eIF4E-sensitive" mRNAs renders cells refractory to asTORi. The eIF4E/4E-BP ratio dictates cap-dependent mRNA translation rates (15). Thus, we investigated whether translational activity of eIF4E is required for attenuation of the anti-neoplastic effects of asTORi, by overexpressing wild type (eIF4EWT) and a translationally inactive W56A eIF4E mutant (eIF4E W56A) (37, 38) in WT E1A/Ras MEFs. Both proteins were expressed to a comparable level (Figure 2H). Cells overexpressing eIF4EWT exhibited significantly lower sensitivity (~50% inhibition of proliferation) to the anti-neoplastic and anti-proliferative effects of PP242 as compared to control cells (~70%), whereas suppression of proliferation and neoplastic growth by PP242 in cells overexpressing eIF4E W56A was similar to that observed in control cells (Figures 2I-J and S4D-E). Similar results were obtained in HeLa cells (Figures S4F-H).

Next, we examined the effect of PP242 and INK1341 on global mRNA translation in WT E1A/Ras and 4E-BP DKO E1A/Ras MEFs, as well as in WT E1A/Ras MEFs depleted of eIF4E, by studying polysome formation. The fraction of ribosomes engaged in polysomes is directly proportional to the translation initiation rate (39). Consistent with previous reports that PP242 suppresses initiation of cap-dependent mRNA translation (8), a decrease in the number of ribosomes engaged in polysomes, and a concomitant increase in 80S monosome peak was detected in all cells treated with PP242 as compared to control (Figure 3A). However, inhibition of polysome formation by PP242 was most pronounced in WT E1A/Ras MEFs in which eIF4E was depleted, intermediate in control WT E1A/Ras MEFs, and weakest in 4E-BP DKO E1A/Ras MEFs (Figure 3A). Similar results were obtained using INK1341 (Figure 3B).

While our data show that an elevated eIF4E/4E-BP ratio mitigates the inhibition of global mRNA translation by PP242 or INK1341, the lack of a complete dissociation of polysomes indicates
that the majority of mRNAs remain translationally active in asTORi treated cells. This suggests that the resistance to asTORi is caused by the resistance of “eIF4E-sensitive” mRNAs to inhibition in cancer cells with elevated eIF4E/4E-BP ratio (21, 40). Thus, we investigated the effects of PP242 and INK1341 on translation of the prototypical “eIF4E-sensitive” mRNAs cyclin D3, and cyclin E1, as well as β-actin mRNA, which is only marginally sensitive to changes in eIF4E (7, 22). In vehicle treated cells, in which the sequestration of eIF4E by 4E-BPs is minimal due to the hyperphosphorylation of 4E-BPs, loss of 4E-BPs or ~50% depletion of eIF4E had no major impact on translation of “eIF4E-sensitive” mRNAs (Figures 3C-E). PP242 and INK1341 abolished the phosphorylation of 4E-BPs (Figures 1E, 2B and 3E), and strongly suppressed translation of the “eIF4E-sensitive” mRNAs cyclin D3 and E1, as well as the expression of corresponding proteins in control WT E1A/Ras MEFs, which was further potentiated by the depletion of eIF4E (Figures 3C-E). In stark contrast, translation of cyclin D3 and E1 mRNAs and expression of cyclin D3 and E1 proteins in 4E-BP DKO E1A/Ras MEFs were largely insensitive to PP242 and INK1341 (Figures 3C-E). As expected, the translation of β-actin mRNA or expression of β-actin protein were not influenced by asTORi treatment in any of the cell lines (Figures 3C-E). Finally, Torin1 strongly reduced cyclin D3 expression in control NIH3T3 cells, but not in NIH3T3 cells overexpressing eIF4E (Figure S2A). Collectively, these results demonstrate that the resistance to the anti-neoplastic effects of asTORi of cancer cells with high eIF4E/4E-BP ratio stems from the failure of asTORi to efficiently inhibit translation of “eIF4E-sensitive” mRNAs.

eIF4E/4E-BP ratio determines sensitivity to asTORi in vivo. Next, we studied the impact of perturbations in the eIF4E/4E-BP ratio on the anti-neoplastic activity of asTORi in vivo. Mice bearing subcutaneous tumors formed by WT E1A/Ras or 4E-BP DKO E1A/Ras MEFs were treated daily with PP242 or a vehicle. Remarkably, whereas PP242 inhibited the growth of tumors formed by WT E1A/Ras MEFs, tumors lacking 4E-BPs were completely resistant to PP242. Moreover, depletion of eIF4E in WT E1A/Ras tumors further increased their sensitivity to PP242 (Figures 4A-E). PP242 strongly inhibited mTOR
signaling in vivo, as illustrated by inhibition of S6 phosphorylation 30 min and 24 hours post-injection from tumor tissues (Figure 4F). Thus, consistent with the in vitro findings, the anti-neoplastic activity of asTORi in vivo is predominantly established by the eIF4E/4E-BP ratio in the tumor.

DISCUSSION

mTOR signaling is frequently dysregulated in cancer, and is being targeted in clinical trials using asTORi (1, 41). However, there are currently no reliable markers that can predict the therapeutic efficacy of asTORi. Recently, several models have been proposed to explain resistance to asTORi as well as dual PI3K/mTOR kinase inhibitors in tumors. These include activation of alternative signaling pathways, such as the ERK pathway that can render 4E-BP1 persistently inactive despite treatment with mTOR inhibitors (42), or pathways that activate cap-independent translation of survival-promoting mRNAs (43). We have unraveled a different mechanism to explain the acquired resistance to mTOR inhibitors, whereby cancer cells become insensitive to asTORi by downregulating expression of 4E-BP1 and 2. This leads to an increase in the eIF4E/4E-BP ratio, thereby attenuating the anti-neoplastic effects of asTORi as it limits their inhibitory effect on the translation of “eIF4E-sensitive” mRNAs. Our model explains recent findings showing that resistance to BEZ235, a dual PI3K/mTOR inhibitor, can be acquired through amplification of the eIF4E gene (44). Thus, our results support a model whereby an elevated eIF4E/4E-BP ratio renders tumors resistant not only to asTORi (Figure 4G), but also to dual PI3K/mTOR inhibitors.

Recent studies have proposed that the combination of MAPK with mTOR inhibitors could overcome resistance to mTOR inhibitors (42, 45). However, data presented here raise the possibility that using therapies that target eIF4E in the tumor (21, 36) may be more beneficial in cases where elevated eIF4E/4E-BP ratio is present. Moreover, our findings strongly suggest that the eIF4E/4E-BP ratio could serve as a predictive marker to tailor personalized treatments using asTORi in the clinic.
ACKNOWLEDGMENTS AND GRANT SUPPORT

We are grateful to Thomas Kucharski and Jose Teodoro for the help with flow cytometry experiments and Colin Lister, Annie Sylvestre and Isabelle Harvey for technical assistance. TA is a recipient of a fellowship from the Brain Tumour Foundation of Canada. MM is a recipient of a Uehara Memorial foundation postdoctoral fellowship and a CIHR-funded Chemical Biology Postdoctoral fellowship. This research was funded by grants from the CIHR and CCSRI to IT and NS, and a grant from the CRS to NS. IT holds a CIHR New Investigator Award.

REFERENCES

42. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al. 4E-BPI is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer cell. 2010;18:39-51.

FIGURE LEGENDS

Figure 1. 4E-BP1 and 2 downregulation underlies acquired resistance to asTORi. (A) Western blot analysis of the indicated proteins in WT^{E1A/Ras} MEFs maintained in the presence of DMSO (control) or PP242 (1 μM) for a period of eight weeks. β-actin served as a loading control. (B) Resistant and control WT^{E1A/Ras} MEFs were treated with PP242 (1 μM) for 7 days and cell proliferation was determined by Trypan blue exclusion. Results represent the mean cell number relative to a DMSO control (set to 100%) ± SD (n=3). (C) Cells described in (B) were stained with crystal violet. (D) Phase contrast images of WT^{E1A/Ras} or 4E-BP DKO^{E1A/Ras} MEFs (upper panel). Proliferation rates of WT^{E1A/Ras} or 4E-BP DKO^{E1A/Ras} MEFs in full growth medium were determined by Trypan blue exclusion (lower panel). Results are presented as mean numbers of cells ± SD (n=3). (E) WT^{E1A/Ras} or 4E-BP DKO^{E1A/Ras} MEFs were treated with DMSO or PP242 (1 μM) for 3 hours. Levels and the phosphorylation status of the indicated proteins were determined by Western blot analysis. β-actin served as a loading control. Arrows indicate the hyperphosphorylated (hyper-P) and hypophosphorylated (hypo-P) forms of 4E-BP1. (F) Effects of DMSO and PP242 (1 μM) on anchorage-independent growth of WT^{E1A/Ras} and 4E-BP DKO^{E1A/Ras} MEFs were monitored using a soft-agar assay. Colonies were counted after 10 days of treatment. Results are presented as a mean number of colonies relative to a DMSO control (set to 100%) ± SD (n=3). (G) Representative photographs of colonies formed by the cells described in (F). (H) WT^{E1A/Ras} MEFs were transduced with an empty vector (pBabe), or vector expressing HA-tagged wild-type 4E-BP1 (4E-BP1^{WT}), or 4E-BP1^{Δ4E} mutant and expression of the indicated proteins were determined by Western blot analysis. β-actin served as a loading control. (I) Effects of INK1341 (250 nM) on anchorage-independent growth of cells described in (H) were monitored using soft-agar assay. Colonies in soft agar were counted after
10 days. Results are presented as a mean number of colonies relative to DMSO treated cells (set to 100%) ± SD (n=3). (J) Representative photographs of the colonies formed by the cells described in (H).

Figure 2. Elevated eIF4E/4E-BP ratio diminishes the anti-proliferative effects of asTORi. (A) Phase contrast images of WTE1A/Ras MEFs transduced with scrambled (Scr) or eIF4E shRNA (eIF4E KD; upper panel). Proliferation rates of the indicated cells in full growth medium were determined by Trypan blue exclusion (lower panel). Results are presented as mean numbers of cells ± SD (n=3). (B) Cells described in (A) were treated with DMSO or PP242 (1 μM) for 3 hours and the levels and the phosphorylation status of indicated proteins were determined by Western blot analysis. β-actin served as a loading control. (C) Effects of DMSO or PP242 (1 μM) on anchorage-independent growth of cells described in (A) were monitored using a soft-agar assay. Colonies in soft agar were counted after 10 days. Results are presented as a mean number of colonies relative to DMSO treated cells (set to 100%) ± SD (n=3). (D) Representative photographs of colonies formed by cells described in (A). (E) WTE1A/Ras MEFs transduced with scrambled (WTE1A/Ras + Scr) or eIF4E shRNA (WTE1A/Ras + eIF4E KD) and 4E-BP DKOE1A/Ras MEFs were treated with PP242 (1 μM) or INK1341 (250 nM) for 3 hours. Levels of the indicated proteins were determined by Western blot analysis. β-actin served as a loading control. (F) Effects of DMSO and INK1341 (250 nM) on anchorage-independent growth of cells described in (E) were monitored using a soft-agar assay. Colonies were counted after 10 days of treatment. Results represent the mean colony number relative to a DMSO control (set to 100%) ± SD (n=3) (G) Representative photographs of colonies formed by cells described in (E). (H) WTE1A/Ras MEFs were transfected with an empty vector (pcDNA3.1), or vector expressing Flag-tagged wild type (eIF4EWT) or a cap-binding mutant of eIF4E (eIF4EW56A). Levels of the indicated proteins were determined by Western blot analysis. β-actin served as a loading control. Arrows indicate exogenous
Flag-tagged (Flag-eIF4E) and endogenous eIF4E. (I) Effect of DMSO or PP242 (1 μM) on anchorage-independent growth of cells described in (H) were monitored using soft-agar assay. Colonies were counted after 10 days of treatment. Results represent the mean cell number relative to a DMSO control (set to 100%) ± SD (n=3) (J) Representative photographs of colonies formed by cells described in (H).

Figure 3. Increased eIF4E/4E-BP stoichiometry antagonizes the inhibitory effects of asTORi on mRNA translation. (A and B) UV-absorption profiles (254 nm) of ribosomes isolated from 4E-BP DKO E1A/Ras MEFs or WT E1A/Ras MEFs which were transduced with a scrambled (Scr) or eIF4E shRNA (eIF4E KD) and treated with DMSO, PP242 (1 μM; A), or INK1341 (250 nM; B) for 8 hours. 40S, 60S and 80S denote the corresponding ribosomal subunits and monosome, respectively. (C) RNA isolated from the fractions of DMSO or PP242 treated cells was visualized by ethidium bromide (EtBr; upper panel). Polysome distribution of β-actin and cyclin D3 mRNAs was determined by semiquantitative reverse transcription-polymerase chain reaction (sqRT-PCR; lower panels). (D) Indicated cells were treated as described in (B) and levels of the indicated mRNAs from the cytoplasmic and heavy polysome fractions (4 ribosomes and more; polysomal mRNA) were determined by reverse transcription-quantitative PCR (RT-qPCR). Results are presented as a mean percentage of the polysomal/cytoplasmic mRNA ratio relative to DMSO control (set to 100%) ± SD (n=3). (E) Levels of the indicated proteins in cells described in (B) were monitored by Western blot analysis. β-actin served as a loading control.

Figure 4. The eIF4E/4E-BP ratio determines the anti-neoplastic effects of PP242 in vivo. (A and B) Nude NCR mice were subcutaneously implanted with 5x10^6 WT E1A/Ras and 4E-BP1/2 DKO E1A/Ras MEFs. When tumors reached palpable size (~20 mm^2), mice were injected intraperitoneally with vehicle or PP242 (60 mg/kg) daily for 10 days. Tumor growth was followed every second day and two-dimensional measurements were taken using a caliper. (C and D) Nude NCR mice were subcutaneously
implanted with 5×10^6 WT$^{E1A/Ras}$ MEFs infected with scrambled (Scr) or eIF4E shRNA (eIF4E KD) and treated as in (A) and (B). (E) Photographs of representative tumors isolated from each group of mice. (F) Levels and the phosphorylation status of S6 and 4E-BP1 proteins at indicated time points in tumors described in (A) were determined by Western blot analysis. S6 served as loading control. Arrows indicate the hyperphosphorylated (hyper-P) and hypophosphorylated (hypo-P) forms of 4E-BP1. (G) Proposed model of cancer cell sensitivity to asTORi. asTORi induce sufficient sequestration of eIF4E to inhibit translation of “eIF4E-sensitive” mRNAs and neoplastic growth of cancer cells with low (left circle), but not high (right circle) eIF4E/4E-BP ratio.
FIGURE 1 Alain et al.
FIGURE 2 Alain et al.
FIGURE 3 Alain et al.
FIGURE 4 Alain et al.
eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies

Tommy Alain, Masahiro Morita, Bruno D Fonseca, et al.

Cancer Res Published OnlineFirst October 24, 2012.