Characterization of a novel PERK kinase inhibitor with anti-tumor and anti-angiogenic activity

Charity Atkins¹, Qi Liu¹, Elisabeth Minthorn¹, Shu-Yun Zhang¹, David J Figueroa¹, Katherine Moss¹, Thomas B. Stanley², Brent Sanders¹, Aaron Goetz², Nathan Gaul³, Anthony E Choudhry³, Hasan Alsaid⁴, Beat M Jucker⁴, Jeffrey M. Axten¹ and Rakesh Kumar¹

GlaxoSmithKline, ¹Oncology R&D, Collegeville, PA; ²Platform Technology & Science, Research Triangle Park, NC; ³Platform Technology & Science, Collegeville, PA; ⁴Preclinical and Translational Imaging, LAS, King of Prussia, PA.

Running Title: PERK Kinase Inhibitor

Key words: PERK, eIF2α, Unfolded Protein Response, ER stress

Request for reprints: Rakesh Kumar, GlaxoSmithKline, Oncology R&D, 1250 South Collegeville Road, Collegeville, PA 19426, USA. Phone: 610-917-4855; E-mail: rakesh.2.kumar@gsk.com
Abstract

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC$_{50}$ of 0.9 nM. It is highly selective for PERK with IC$_{50}$ values >100 nM against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC$_{50}$ in the range of 10-30 nM as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CHOP proteins in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK auto-phosphorylation. Twice daily dosing of GSK2656157 results in dose dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density and vascular perfusion are potential mechanisms for the observed anti-tumor effect. However, despite its anti-tumor activity, given the on-target pharmacological effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.
Introduction

In order to cope with the relatively extreme conditions of the tumor microenvironment, cancer cells depend on adaptive responses to cope with stress and to continue to proliferate. Multiples lines of evidence have implicated the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress sensing/repair pathway, in cell survival and tumor progression (1-3). Stress stimuli that activate UPR include hypoxia, nutrient deprivation, increased protein synthesis, disruption of protein glycosylation (glucose deprivation), decreased luminal ER calcium, or changes in ER redox status (2, 3). These perturbations result in the accumulation of unfolded or misfolded proteins in the ER, triggering a coordinated cellular response to alleviate the impact of the stress and enhance cell survival. Responses include an increase in the level of chaperone proteins to enhance protein re-folding, degradation of the misfolded proteins, and translational arrest to decrease the burden of proteins entering the ER. These pathways also regulate cell survival by modulating apoptosis (2-4) and can trigger cell death under conditions of prolonged ER stress.

Three ER membrane proteins have been identified as primary effectors of the UPR: protein kinase R (PKR)-like ER kinase [PERK, also known as eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3), or pancreatic ER kinase (PEK)], inositol-requiring gene 1 α/β (IRE1), and activating transcription factor 6 (ATF6) (2). These proteins are held in the inactive state by binding to the ER chaperone, GRP78 (BiP). Accumulation of unfolded proteins in the ER leads to release of GRP78 from the luminal stress sensing domains of the UPR effectors resulting in their activation (5).

PERK is a type I ER transmembrane protein containing a stress-sensing domain facing the ER lumen and a cytosolic kinase domain (6, 7). Release of GRP78 from the stress-sensing
domain of PERK results in oligomerization and autophosphorylation (8, 9). PERK phosphorylates the eukaryotic initiation factor 2α (eIF2α) at serine-51 (10). This site is also phosphorylated by other PERK family members [(general control non-derepressed 2 (GCN2), protein kinase RNA-activated (PKR) and heme-regulated kinase (HRI)] in response to different stimuli. Phosphorylation of eIF2α converts it to an inhibitor of eIF2B, which hinders the assembly of the 40S ribosome translation initiation complex and consequently reduces the rate of translation initiation. However, translation of certain messages encoding downstream effectors of eIF2α, ATF4 and CHOP (C/EBP homologous protein), which modulate cellular survival pathways, is actually increased upon ER stress. A second proposed PERK substrate, Nrf2 (NF-E2-related factor 2), regulates cellular redox potential and contributes to cell adaptation (11). It is thought that the normal function of PERK is to protect secretory cells from ER stress. PERK knockout mice exhibit diabetes due to pancreatic islet cell death, skeletal abnormalities, and growth retardation (12-14). These features are similar to those seen in patients with Wolcott-Rallison syndrome, who carry inactivating germ line mutations in the PERK gene (15, 16).

PERK has also been shown to have ER stress independent effects. PERK regulates proliferation of beta cells during embryonic and neonatal development and is essential for viability of acinar cells in mouse exocrine pancreas, neither of which is associated with ER stress response (13, 14, 17). PERK is also required for ER functions including proinsulin trafficking and quality control in beta cells (18, 19). Similarly, PERK modulates proliferation and differentiation of osteoblasts as well as secretion of type I collagen (20).

Disruption of PERK kinase activity in human tumor cell lines has been shown to increase apoptosis under hypoxia in vitro and impair tumor growth in vivo (21). Tumor cells experience episodes of hypoxia and nutrient deprivation during their growth due to inadequate blood supply.
and aberrant blood vessel function (22, 23). Thus, they are likely to be dependent on active UPR signaling to facilitate their growth. Consistent with this, mouse fibroblasts derived from PERK^{−/−}, XBPI^{−/−}, and ATF4^{−/−} mice and fibroblasts expressing mutant eIF2α show reduced clonogenic growth and increased apoptosis under hypoxic conditions <i>in vitro</i> and reduced growth in mice (21, 23-25). In these studies, the regions of UPR activation coincided with hypoxic areas and exhibited higher rates of apoptosis. Further evidence supporting the role of PERK in promoting tumor growth was shown in transgenic mice expressing the SV40 T-antigen in the insulin-secreting beta cells, where insulinoma growth and vascularity was profoundly reduced in PERK^{−/−} mice compared to wild-type controls (17). PERK and other UPR effectors regulate VEGF-A mRNA stability along with upregulation of VEGF-A and other pro-angiogenic factors under hypoxia or chemical stress (26).

Activation of the UPR has also been observed in human cervical carcinomas, glioblastomas (21), lung cancers (27) and breast cancers (28, 29). Thus, targeting various UPR signaling components offers a novel therapeutic approach for cancers, especially those of secretory nature (adenocarcinoma, neuroendocrine tumors and multiple myeloma) as well as those with greater hypoxia (pancreatic adenocarcinoma and glioblastoma). This manuscript describes the biological characterization of a novel, highly selective inhibitor of PERK and its potential utility as an anticancer agent.

Materials and Methods

Reagents

GSK2656157 was synthesized at GlaxoSmithKline. It was dissolved in DMSO to a stock concentration of 10 mM, and stored in the dark at -20°C. Compound stock solution was thawed
at room temperature prior to dilution into aqueous media at selected concentrations for use in biological assays. For in vivo studies, GSK2656157 was formulated in 0.5% hydroxypropyl methyl cellulose, 0.1% tween-80 in water (pH 6.75). Tunicamycin (Molecular BioProducts™, SanDiego, CA), thapsigargin (Sigma-Aldrich™, St. Louis, MO) and cyclohexamide (Tocris Bioscience™, Ellisville, MO) were commercially obtained. EasyTag™ EXPRESS S35 Protein Labeling Mix, [35S]-, 2 mCi (74 MBq) was purchased from Perkin Elmer, Bridgeville, PA.

NuPAGE™ SDS-polyacrylamide gel electrophoresis (PAGE) and transfer solutions and consumables were purchased from Invitrogen™, Carlsbad, CA. Odyssey® blocking buffer was purchased from LI-COR™ Biosciences, Lincoln, NE. RNeasy™ RNA isolation kits were purchased from Qiagen™, Valencia, CA. Quantitative Pathway PCR Arrays were purchased from SABiosciences™, Frederick, MD.

Animals

Eight to twelve week old naïve female CD-1, female nu/nu CD-1 mice (Charles River Laboratories) and severe combined immunodeficient (SCID) mice (Taconic Farms) were used. All animal studies were conducted after review by the Institutional Animal Care and Use Committee at GSK and in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals.

Cell lines and culture

Cell lines were purchased from the American Type Culture Collection (Manassas, VA) and were routinely cultured in the recommended growth medium containing 10% fetal bovine
serum (FBS). All cell lines were maintained in humidified incubators at 37°C under 5% CO₂. The cell lines used in this study were not authenticated by any tests in our laboratory.

Kinase Assay

Inhibitory potency of GSK2656157 was measured using recombinant GST-PERK (536-1116 a.a.) with 6-His-full-length human eIF2α as a substrate (30). Kinase selectivity was evaluated using 27 kinases at GSK as well as a panel of 300 kinases at Reaction Biology Corp (Malvern, PA).

Evaluation of PERK signalling induced by ER stress in human tumor cells

BxPC3 (human pancreatic adenocarcinoma) or LL/2 (murine lung carcinoma) cells were treated with DMSO or various concentrations of GSK2656157 for 1 h, followed by addition of 5 μg/mL tunicamycin or 1 μM thapsigargin for an additional 6 h to induce ER-stress. Cells were lysed in cold RIPA buffer [150 mM NaCl, 50 mM Tris-Cl pH 7.5, 0.25% sodium deoxycholate, 1% NP-40, protease inhibitors (Roche Diagnostics, Indianapolis, IN) and 100 mM sodium orthovanadate (Sigma Aldrich)]. Clarified lysates were resolved by SDS-PAGE and transferred to nitrocellulose membrane using Invitrogen’s NuPAGE™ system. Blots were incubated with antibodies to total PERK (R&D Systems), p-eIF-2α Ser51, total eIF-2α (Cell Signaling Technologies), ATF4 and CHOP (Santa Cruz Technologies). IRDye®700DX-labelled goat anti-mouse IgG, IRDye®800-CW donkey anti-goat IgG and IRDye®800-CW goat anti-rabbit IgG (LI-COR Biosciences, Lincoln, NE) were used as secondary antibodies. Proteins were detected on the Odyssey™ Infrared Imager (LI-COR Biosciences, Lincoln, NE).
Measurement of De Novo Protein Synthesis

BxPC3 cells were treated with DMSO or 1 µM GSK2656157 for 1 h prior to adding 5 µg/mL tunicamycin for an additional hour. Cells were metabolically labelled with 125 µCi 35S-methionine for the subsequent 1 h. Cells were lysed in cold RIPA buffer as previously described and lysates were resolved by SDS-PAGE, followed by exposure to a phosphorimager screen. Control cells were also pre-treated with 100 µM cyclohexamide for one hour followed by metabolic labelling. Radioisotope incorporation was quantitated using ImageQuant™ 5.2 software.

UPR Gene Expression Profiling

BxPC3 cells were treated with DMSO or 1 µM GSK2656157. One hour later, 5 µg/mL tunicamycin was added to the cells for an additional 6 h followed by RNA isolation using the Qiagen™ (Valencia, CA) RNeasy spin column method. For *in vivo* experiments, naïve female CD-1 mice were given either vehicle or a single 50 mg/kg oral dose of GSK2656157. One hour later, pancreas was harvested and snap frozen. Total RNA was isolated as described above. Subsequent cDNA synthesis was performed followed by quantitative PCR analysis using a human UPR PCR array developed by SABiosciences™ (Valencia, CA). Data analysis was performed using manufacturer’s online tools.

Pharmacodynamic studies

Naive female CD-1 mice were given a single oral dose of vehicle or GSK2656157. Animals were euthanized at various times, and blood and pancreas were collected. Frozen pancreas samples were homogenized in cold RIPA buffer. Lysates were resolved by SDS-PAGE
and transferred to nitrocellulose membrane. Blots were incubated with antibodies against various antigens followed by secondary antibodies. Proteins were detected on the Odyssey™ Infrared Imager.

GSK2656157 concentrations were quantified in blood/water (1/1, v/v) and tissue homogenates by protein precipitation followed by HPLC-MS/MS analysis employing positive-ion atmospheric pressure chemical ionization or Turbo Ionspray ionization (API4000 or API5000, Applied Biosystems, Foster City, CA). The lower limit of quantification of compound was as low as 1.0 ng/mL and the assays were linear over at least a 1000-fold drug concentration range.

Effect on Tumor vasculature

Vascular density of BxPC3 tumors treated with 50 or 150 mg/kg GSK2656157 (twice daily for 3 weeks) was analyzed using immunohistochemistry with rat anti-mouse pan-endothelial cell antigen (MECA-32, BD Biosciences, San Jose, CA) and anti-von Willerbrand factor (Dako, Carpinteria, CA). Effect on vascular perfusion was evaluated in mice bearing BxPC3 tumor xenografts using DCE-MRI on days 0, 7 and 14 post-treatment with vehicle or GSK2656157 at 150 mg/kg, BID. Detailed methods are described in Supplemental materials.

Histopathology of the Mouse Pancreas

Female CD-1 nude mice were treated with 150 mg/kg GSK2656157 (PO, BID) for 14 days and pancreas were harvested on days 15 and 29. Pancreas wet weights were taken for comparison. These tissues were then fixed in 10% neutral buffered formalin for 24 h followed
by paraffin embedding. Sections were cut (6 μM) and stained with hematoxylin and eosin. Slides were reviewed by a pathologist and images taken at 200x magnification.

In vivo efficacy studies

Exponentially growing HPAC (5 x 10^6 cells/mouse), Capan-2 (10 x 10^6 cells/mouse) or NCI-H929 (1 x 10^6 cells/mouse) cells were implanted subcutaneously into the right flank of 8-12 week old female SCID mice. Similarly, 10 x 10^6 BxPC3 cells/mouse were implanted in female nude mice. When the tumors reached approximately ~200 mm^3 in size, the animals were weighed, and block randomized according to tumor size into treatment groups of 8 mice each. Mice were dosed orally (PO) with the formulating vehicle or GSK2656157. Mice were weighed and tumors measured by calipers twice weekly. Tumor volumes were calculated using the formula: tumor volume = (Length x Width^2)/2. The percentage of tumor growth inhibition was calculated on each day of tumor measurement using the formula: 100x[1-(average growth of the compound-treated tumors / average growth of vehicle-treated control tumors)].

Results

Kinase activity of GSK2656157

Recently we reported the discovery of a series of potent and selective PERK inhibitors (30). Further medicinal chemistry optimization led to the identification of GSK2656157 (Table 1), a potent and selective inhibitor of PERK kinase with an IC_{50} of 0.9 nM. In a panel of three hundred kinase assays (Reaction Biology Corp, Malvern, PA), forty-four were inhibited >50% at 10 μM GSK2656157 (Supplementary Table 1). Fifteen of these kinases demonstrated > 80% inhibition @ 10 μM and were chosen together with EIF2AK3 (PERK), EIF2AK1 (HRI),...
EIF2AK2 (PKR), and GCN2 (S808G) for dose response (IC$_{50}$) analysis. Additionally, IC$_{50}$s were measured for available kinase assays in-house and for VEGFRs. None of the kinases tested were inhibited at IC$_{50}$ values of ≤100 nM confirming that GSK2656157 has outstanding selectivity for PERK inhibition (Table 1).

Cellular activity of GSK2656157

Cellular PERK-dependent signaling was measured in the BxPC3 pancreatic tumor cell line. PERK has been shown to be hyperactivated in cells upon treatment with pharmacological agents that disturb the Ca$^{2+}$ balance (thapsigargin), protein folding (DTT), or glycosylation (tunicamycin) in the endoplasmic reticulum. Treatment of cells with tunicamycin (5 µg/mL) or thapsigargin (1 µM) leads to activation and auto-phosphorylation of PERK which was visualized by a mobility shift in western blot using anti-PERK antibodies, as there are no selective antibodies against human phospho-PERK. Pre-treatment of cells with GSK2656157 resulted in inhibition of PERK activation as well as decreases in the downstream substrates, phospho-eIF2α, ATF4 and CHOP with an IC$_{50}$ in the range of 10-30 nM (Figure 1A). Similar results were also obtained using DTT (5 mM) in BxPC3 cells as well as all 3 UPR inducers in HPAC cells, another human pancreatic adenocarcinoma cell line (data not shown).

PERK activation results in the repression of global protein synthesis (31). Using a pulse-chase experimental approach, the effects of tunicamycin and GSK2656157 on _de novo_ protein synthesis in BxPC3 cells were evaluated. Tunicamycin treatment caused a 36% reduction in 35S-methionine incorporation compared to DMSO-treatment alone in the BxPC3 cells (Figure 1B). Cells that were exposed to 1 µM GSK2656157 prior to UPR induction were able to block this
effect on *de novo* protein synthesis. These findings are consistent with PERK’s role in maintaining cellular homeostasis under stress conditions.

Changes in RNA expression of 84 UPR-related genes was analyzed in BxPC3 cells. The excellent biochemical and cellular selectivity of GSK2656157 was also evidenced by lack of change in gene expression with GSK2656157 treatment compared to DMSO, in the absence of UPR induction (data not shown). Seventeen genes were found to be transcriptionally regulated (either up or down by ≥4-fold) in response to tunicamycin-induced UPR activation (Figure 2). Five of these genes (DDIT3, HERPUD1, PPP1R15A, C/EBP-beta and ERN1) were downregulated >4 fold by GSK2656157, consistent with published reports using PERK siRNA (32).

Anti-proliferative activity of GSK2656157 against multiple human tumor cell lines as well as primary human microvascular endothelial cells was evaluated in a 3-day proliferation assay using standard culture medium. In the absence of exogeneous UPR inducers, GSK2656157 had no significant effect on the growth of any of these cells with IC₅₀ range of 6-25 µM (data not shown), suggesting the UPR is inactive under normal cell culture conditions.

In vivo pharmacological activity of GSK2656157 in mice

Demonstration of inhibition of PERK activation and downstream signalling with GSK2656157 in human xenograft models were unsuccessful due to the lack of available reagents (e.g., lack of phospho-specific antibodies to human PERK and Nrf2). However, a mouse specific phospho-PERK antibody is available and was used to measure PERK inhibition in the mouse pancreas, where PERK is highly expressed and activated (31). As such, we chose to evaluate the naïve mouse pancreas as a surrogate tissue to investigate the pharmacodynamic
(PD) activity of GSK2656157 in vivo and correlate changes in phospho-PERK with pharmacokinetic (PK) properties.

The effect of GSK2656157 on Thr980 phosphorylation of endogenous pancreatic PERK in mice was assessed after a single oral administration of the compound. Complete inhibition of phospho-PERK Thr980 was observed through eight hours after a single 50 mg/kg oral dose of GSK2656157 (Figure 3A). Endogenous PERK activity was restored to almost normal levels by eighteen hours. Interestingly, there was no effect on phospho-eIF2α (Ser51) level as a result of PERK inhibition. Concentrations of GSK2656157 in blood and pancreas tissue were similar and followed the same overall concentration-time profile (Figure 3B). The lower blood and pancreas compound concentrations observed at eighteen and twenty-four hours post GSK2656157 administration correlate with the loss of effect on basal phospho-PERK level. A dose response experiment using a single oral dose of GSK2656157 ranging from 1.5 to 150 mg/kg, followed 4 hours later with tissue collection resulted in dose-dependent inhibition of phospho-PERK Thr980 with >80% inhibition at 50 and 150 mg/kg (Supplementary Figure 1).

Wolcott-Rallison syndrome patients and PERK−/− knockout mice exhibit permanent neonatal or early-infancy insulin-dependent diabetes (15, 31, 33). We thus evaluated the effect of GSK2656157 on the pancreas in naïve female CD-1 mice. The wet weight of pancreas in mice was reduced by ~50% in mice following 150 mg/kg, BID x 14 days (Figure 3C). Additional animals were included to observe recovery of the pancreas following drug discontinuation. Discontinuation of GSK2656157 for 2 weeks resulted in almost complete recovery of pancreas weight (Figure 3C). Histopathological analysis of pancreas sections showed degeneration and atrophy of exocrine acinar cells as well as degeneration of islet cells (Figure 3D). These results are consistent with pancreatic changes observed in rats after 2 weeks of treatment with
GSK2656157, where a decrease in proinsulin and insulin staining in beta cells was also observed (34). Similar to the recovery of the pancreas wet weight, histological analysis confirmed almost complete recovery of acinar cell changes following a 2 week recovery period.

Anti-tumor activity of GSK2656157 in vivo

The ability of GSK2656157 to affect tumor growth in vivo was assessed in human tumor xenograft models of pancreatic cancer and multiple myeloma in immunocompromised mice. Treatment of mice with 50 or 150 mg/kg, BID of GSK2656157 resulted in dose-dependent inhibition of tumor growth in all four models; reaching 54-114% tumor growth inhibition at the 150 mg/kg, BID dose (Figure 4). Differential sensitivity of these xenografts to the PERK inhibitor might be related to the intra-tumoral hypoxia and nutrient deprivation and/or other stresses. It is interesting to note that the most sensitive tumor xenograft (Capan2) grows slower than other 3 xenografts used, suggesting rate of tumor growth, a potential manifestation of various physiologic stresses, may be a reflection of dependency on PERK signaling.

As previously mentioned, we have been unsuccessful in demonstrating inhibition of the PERK phosphorylation in tumor xenograft studies due to a lack of antibodies against human phospho-PERK. We were also not able to detect any change in downstream signaling, such as phospho-eIF2α, ATF4 or CHOP levels in either mouse pancreas or tumor xenografts. Gene expression analysis in BxPC3 tumor xenografts showed statistically significant changes in RNA expression of very few genes, 11 of which were confirmed by RT-PCR analysis (ASNS, PSAT1, CYP26A1, vWF, KNCF1, NES, KCNQ3, ZBED2, CDO1, TYR). We evaluated the expression of these 11 genes in HPAC (pancreatic carcinoma) and RPMI-8226 (multiple myeloma) xenografts. Expression of Asparagine synthase (ASNS), phosphoserine aminotransferase 1...
(PSAT1) and cytochrome P450 26A1 (CYP26A1) mRNA was increased in all 3 tumor models in samples treated with GSK2656157, whereas expression of von-Willebrand factor (vWF) was decreased in all 3 models (Supplementary Figure 3). ASNS and PSAT1 regulate amino acid metabolism, whereas CYP26A1 is an ER membrane protein involved in retinoic acid metabolism. vWF is an endothelial cell marker and is likely reflective of changes in vascular density in GSK2656157 treated tumors. This is consistent with the emerging role of PERK in translational regulation of angiogenic genes (23). BxPC3 tumors from mice treated with GSK2656157 for three weeks were analyzed for vascular density by immunohistochemistry. There was a dose-dependent decrease in blood vessel density in tumors from mice treated with PERK inhibitor compared to vehicle treated mice (Figure 5A).

To further analyze the effect of PERK inhibition on vascular function, DCE-MRI imaging using Gd-DTPA was performed in mice bearing BxPC3 tumor xenografts. Mice were treated with vehicle or 150 mg/kg GSK2656157, BID for 14 days. No mortality was observed in the vehicle group. Six mice treated with PERK inhibitor died between day 7 and day 14 post treatment. Mortality was not observed in previous tumor growth experiments at this dose up to 57 days, suggesting that repeated anesthesia and other protocols associated with imaging might have contributed to the toxicity along with the compound treatment. One PERK inhibitor treated mouse was excluded due to a failure of Gd-DTPA injection at baseline. K_{trans} values were significantly decreased in the GSK2656157 treated group from baseline to -72% at day 7, and -57% at day 14. In comparison, no significant differences were observed in the vehicle treated group: +6.22% at day 7, and -4.47% at day 14 (Figure 5B).

Discussion
Development of pharmacological tools that selectively modulate an enzyme greatly facilitates the evaluation of the protein’s biological function and therapeutic potential. To our knowledge, GSK2656157 and related compounds are first in-class small molecule inhibitors of PERK, one of the key mediators of UPR signalling. Excellent biochemical potency against PERK, coupled with >100-fold selectivity over all 300+ kinases suggest that GSK2656157 can be used to evaluate the biological function of PERK in various biological contexts.

UPR signaling is believed to play a fundamental role in the establishment and maintenance of tumors, particularly those with severe hypoxia or with a secretory phenotype. Inhibition of PERK-dependent eIF2α phosphorylation has been implicated in translational control in response to cellular stresses such as an increase in misfolded proteins, nutrient deprivation and hypoxia. GSK2656157 treatment potently inhibits phospho-eIF2α levels and subsequent de novo protein synthesis in response to chemically-induced ER stress in multiple tumor cell lines. Phosphorylation of eIF2α also induces preferential translation of ATF4, a transcription activator of the integrated stress response. Consistent with earlier reports, the PERK/p-eIF2α/ATF4 pathway is required not only for translational control, but also for transcriptional activation of many genes which critically regulate the unfolded protein response (Figure 2). Induction of the UPR by various pharmacological agents has been shown to activate all 3 arms of UPR in mammalian cells (PERK, IRE-1 and ATF-6), however, the relative contribution of each or their inter-dependence is poorly understood. We therefore evaluated the effect of PERK inhibitor on the mRNA levels of 84 UPR related genes in BxPC3 cells following tunicamycin treatment (see supplementary Table 2 for full list of genes). Transcript levels of all 17 genes modulated by tunicamycin were attenuated to various degrees by GSK2656157, suggesting that transcriptional regulation of these genes is dependent on the activation of
multiple pathways. The PERK inhibitor completely blocked tunicamycin-induced changes in expression of PPP1R15A (GADD34), C/EBP-beta, ERN1 (IRE1), HSPA1L and HSPA1B genes, whereas the effect of PERK inhibition on the remaining genes was more modest. The latter data suggests that IRE1 or ATF6 activation under ER stress may regulate the expression of those genes, consistent with prior studies (35). Since tunicamycin induced expression of IRE1 mRNA was completely blocked by PERK inhibition, it is possible that the inhibition of some of the mRNA changes by the PERK inhibitor is an indirect result of IRE1 regulation. Our data clearly shows that PERK regulates IRE1 by increasing its mRNA expression under ER stress, possibly via ATF4 transcription factor, thus highlighting the inter-dependence of various UPR signaling pathways for a concerted response.

To further characterize the in vivo pharmacological activity of GSK2656157, we performed multiple studies using the normal mouse pancreas. Endogenous PERK activation can be easily detected in this tissue using a commercially available rodent-specific phospho-PERK (Thr980) antibody. Treatment with GSK2656157 resulted in time and dose-dependent inhibition of phospho-PERK. Since loss of PERK during embryonic development in mice results in severe dysfunction and cell death in both exocrine and endocrine pancreas, we evaluated the effect of GSK2656157 on pancreas tissue (12-14) Pharmacological inhibition of PERK in adult mice caused damage to exocrine cells as well as pancreatic beta cells. These effects were also observed in rat and dog treated with GSK2656157 (data not shown), suggesting an evolutionarily conserved role of PERK in the homeostasis of pancreatic function.

Despite the potent inhibition of PERK activity in the mouse pancreas as shown by decrease in phospho-PERK and histological changes, we were unable to demonstrate inhibition
of canonical, downstream PERK signaling. No change in phospho-eIF2α, ATF or CHOP protein levels was detected in pancreas of mice following GSK2656157 treatment. We do not see any change in PERK mobility on a western blot using anti-total PERK antibody in human tumor xenograft tissues from mice treated with GSK2656157 (data not shown), as observed in cell lines treated with tunicamycin or other ER stress inducers. Furthermore, using multiple technical approaches, we have also not been able to demonstrate PERK-dependent p-eIF2α, ATF4 or CHOP changes in these in vivo tumor models. It is very likely that other eIF2α kinases such as GCN2 contribute to the regulation of eIF2α in the context of the pancreas or tumor homeostasis. It is also speculated that PERK-dependent signalling may be limited to the very anoxic areas of the tumor and therefore difficult to detect by currently available technical methods. Gene expression results from tumor xenograft studies suggest that the PERK inhibitor GSK2656157 regulates amino acid metabolism and angiogenesis. ASNS and PSAT1 were previously reported to be regulated by PERK and the UPR (36, 37). Thus, even in the absence of measurable changes in canonical PERK signaling (PERK-eIF2α-ATF4-CHOP), protein homeostasis might be impacted. Our results are consistent with ER stress independent role of PERK in tumor physiology, as shown for beta cell proliferation, pancreatic exocrine cell viability and proliferation and differentiation of osteoblasts (13, 14, 20). Similarly, PERK plays a role in trafficking and secretion of proinsulin and type I collagen in beta cells and osteoblasts, respectively (18-20). Further studies to understand molecular mechanism(s) of transcriptional regulation of ASNS and PSAT1 by PERK will be required to define any shared function in these various cell types.

Consistent with our primary hypothesis, treatment of mice with GSK2656157 resulted in inhibition of tumor growth in multiple human tumor xenografts. Our results are also consistent
with earlier studies showing reduced growth of tumors lacking the PERK gene (17, 21). Altered amino acid metabolism and angiogenesis appear to be the primary effector mechanism of anti-tumor activity. Activation of both PERK and IRE1 has been shown to regulate angiogenesis (23, 38), and our data showing the reduction in vascular density as well as a decrease in vascular perfusion in tumor xenograft in mice treated with GSK2656157 further validates the role of PERK in tumor angiogenesis. Angiogenesis inhibitors have shown clinical success in the treatment of patients with multiple cancers, however, most of these patients relapse. A PERK inhibitor may offer a therapeutic advantage by acting on another (yet undefined) node of angiogenic signaling. Given the on-target pharmacological effects of PERK inhibitor on exocrine and endocrine pancreas, development of any PERK inhibitor in human subjects would need to be cautiously pursued in patients with greatest unmet medical need and where pancreatic function may already be compromised, e.g., a subset of pancreatic cancer patients.

Disclosure of Potential Conflicts of Interest

All authors are employees of GlaxoSmithKline. E. Minthorn and B.M. Jucker have ownership interest in GlaxoSmithKline. No potential conflicts of interest were disclosed by other authors.
References:

Figure Legends:

Figure 1. Cellular effect of GSK2656157 on PERK signaling and protein translation

A, BxPC3 cells were pre-treated with different concentrations of GSK2656157 followed by UPR induction for 6 h. Cell lysates were analyzed by Western blot. B, BxPC3 cells were treated with GSK2656157, followed by tunicamycin and labelling with 35S-methionine. Lysates were run on SDS-PAGE and analyzed using phosphorimager.

Figure 2. PERK inhibitor attenuates tunicamycin-induced UPR gene transcription

BxPC3 cells were treated with DMSO or 1 µM GSK2656157 with and without tunicamycin and RNA expression of UPR-related genes was analyzed as described in materials and methods. Data represent mean fold change in RNA expression of genes significantly modulated by tunicamycin. Bars represent 95% confidence interval.

Figure 3. Pharmacodynamic effect of GSK2656157 on PERK in mouse pancreas

A, B, PK-PD analysis of PERK phosphorylation in the pancreas of mice treated with a single dose of GSK2656157. A, Tissue lysates were analyzed for total and phospho-PERK and eIF2α by Western blot. B, PK-PD correlation of phospho-PERK and drug concentration in blood and pancreas. Bars represent densitometric analysis of phospho-PERK, normalized to vehicle treated control (mean ± SD). C,D, Reversibility of histological changes in pancreas of mice treated with PERK inhibitor. Mice were given 150 mg/kg GSK2656157 (BID) for 14 days. Pancreas were harvested and weighed on days 15 and 29. C, Weight of pancreas tissues (Mean ± SD, n=4 mice/group). Open bar, vehicle; dark bar, GSK2656157. D, Representative H&E sections of pancreas highlighting histological changes with PERK inhibitor on day 15 and their reversibility on day 29 (14 days after 2 weeks of treatment).

Figure 4. Antitumor activity of GSK2656157 in vivo

Mice bearing various human tumor xenografts were treated twice daily with vehicle (black) and GSK2656157 at 50 (green) or 150 mg/kg (red). Duration of treatment is shown by the horizontal orange line at the bottom of the graphs. Tumors were measured twice per week. Points, mean tumor volumes; bars, SE.
Figure 5. Vascular effects of GSK2656157 in tumor xenografts

A, Effect on vascular density. BxPC3 tumor bearing mice were treated twice daily for 21 days with GSK2656157. Tumor sections were analyzed for vascular density using immunohistochemistry for MECA and vWF (scale bar = 15 µm). Data in the graph represent mean ± SE (n=4 mice/group); *p<0.05 (t-test).

B, Effect on vascular perfusion. Percent changes in K^{trans} values from baseline DCE MRI is shown as mean ± SE (n=5 for GSK2656157; n=6 for vehicle). Statistical analysis was performed on the absolute median K^{trans} values using one-way ANOVA with post hoc Bonferroni test (**p < 0.01, *p < 0.05).
Table 1: Structure and kinase selectivity of GSK2656157

![Chemical structure of GSK2656157](image)

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC$_{50}$ (nmol/L)</th>
<th>Kinase</th>
<th>IC$_{50}$ (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIF2AK3 (PERK)</td>
<td>0.9</td>
<td>JAK2</td>
<td>24547</td>
</tr>
<tr>
<td>EIF2AK1 (HRI)</td>
<td>460</td>
<td>ACK1</td>
<td>>10000</td>
</tr>
<tr>
<td>BRK</td>
<td>822</td>
<td>MLK3</td>
<td>>10000</td>
</tr>
<tr>
<td>EIF2AK2 (PKR)</td>
<td>905</td>
<td>TRKA</td>
<td>>10000</td>
</tr>
<tr>
<td>MEKK2</td>
<td>954</td>
<td>MLK1</td>
<td>>10000</td>
</tr>
<tr>
<td>Aurora B</td>
<td>1259</td>
<td>FLT1</td>
<td>>10000</td>
</tr>
<tr>
<td>KHS</td>
<td>1764</td>
<td>KDR</td>
<td>>10000</td>
</tr>
<tr>
<td>LCK</td>
<td>2344</td>
<td>JNK1</td>
<td>>16595</td>
</tr>
<tr>
<td>MLK2</td>
<td>2796</td>
<td>RIPK2</td>
<td>>25000</td>
</tr>
<tr>
<td>MEKK3</td>
<td>2847</td>
<td>ASK1</td>
<td>>27500</td>
</tr>
<tr>
<td>ALK5</td>
<td>3020</td>
<td>BTK</td>
<td>>27500</td>
</tr>
<tr>
<td>MLCK2</td>
<td>3039</td>
<td>EGFR</td>
<td>>27500</td>
</tr>
<tr>
<td>EIF2AK4 (GCN2)</td>
<td>3162</td>
<td>GSK3B</td>
<td>>27500</td>
</tr>
<tr>
<td>c-MER</td>
<td>3431</td>
<td>IKK1</td>
<td>>27500</td>
</tr>
<tr>
<td>PI3Kγ</td>
<td>3802</td>
<td>IKK2</td>
<td>>27500</td>
</tr>
<tr>
<td>WNK3</td>
<td>5951</td>
<td>ITK</td>
<td>>27500</td>
</tr>
<tr>
<td>LRRK2</td>
<td>6918</td>
<td>JAK1, 3</td>
<td>>27500</td>
</tr>
<tr>
<td>ROCK1</td>
<td>7244</td>
<td>JNK3</td>
<td>>27500</td>
</tr>
<tr>
<td>MSK1</td>
<td>8985</td>
<td>p38α</td>
<td>>27500</td>
</tr>
<tr>
<td>NEK1</td>
<td>9807</td>
<td>PI3Kα, β, δ</td>
<td>>27500</td>
</tr>
<tr>
<td>AXL</td>
<td>9808</td>
<td>Aurora A</td>
<td>>27500</td>
</tr>
</tbody>
</table>
Figure 1

A

Tunicamycin (5 µg/mL)

<table>
<thead>
<tr>
<th>GSK2656157 (µM)</th>
<th>3.0</th>
<th>1.0</th>
<th>0.33</th>
<th>0.11</th>
<th>0.037</th>
<th>0.012</th>
<th>0.004</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPR Inducer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phospho-PERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospho-(eIF2\alpha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total eIF2(\alpha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thapsigargin (1µM)

<table>
<thead>
<tr>
<th>GSK2656157 (µM)</th>
<th>3.0</th>
<th>1.0</th>
<th>0.33</th>
<th>0.11</th>
<th>0.037</th>
<th>0.012</th>
<th>0.004</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPR Inducer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phospho-PERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospho-(eIF2\alpha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total eIF2(\alpha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Tunicamycin (5 µg/ml)

| GSK2656157A (1 µM) | - | + | + | - | - |

GSK2656157A (1 µM)

| Cyclohexamide (100 µM) | - | - | - | - | + |

\(\% 35\text{S-Methionine Incorporation}\)

0 20 40 60 80 100 120

% 35S-Methionine Incorporation
Figure 3

A

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>BxPC3 Controls</th>
<th>C</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PERK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-PERK Thr980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-eIF2α Ser51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total eIF2α</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Phospho-PERK (Thr 980) Percent of Vehicle Control

Drug Concentration (ng/ml or ng/g)

GSK2656157A (50 mg/Kg)

C

Pancreas Weight (mg)

Day 15 | Day 29

D

Histological images of pancreas tissue from Day 15 and Day 29.
Figure 4

BxPC3 (pancreas)

- VEHICLE
- GSK2665157A 50 mg/kg, PO, BIDx21d
- GSK2665157A 100 mg/kg, PO, BIDx21d

NCI-H929 (multiple myeloma)

- VEHICLE
- GSK2665157A 50 mg/kg, PO, BIDx15d
- GSK2665157A 150 mg/kg, PO, BIDx15d

HPAC (pancreas)

- VEHICLE
- GSK2665157A 50 mg/kg, PO, BIDx21d
- GSK2665157A 100 mg/kg, PO, BIDx21d

Capan2 (pancreas)

- VEHICLE
- GSK2665157A 50 mg/kg, PO, BIDx37d
- GSK2665157A 150 mg/kg, PO, BIDx37d

% reduction in tumor volume:
- BxPC3: 61%
- NCI-H929: 47%
- HPAC: 31%
- Capan2: 107%
Figure 5

A

Vehicle

GSK2656157 150 mg/kg

B

% Change in K_{trans} from baseline

0 5 10 15

Days post start of treatment

VEHICLE

GSK2656157

Number of Blood Vessels/mm²

0 25 50 75 100 125 150 175 200

Vehicle 50 150

GSK2656157A (mg/kg)

* *
Characterization of a novel PERK kinase inhibitor with anti-tumor and anti-angiogenic activity

Charity Atkins, Qi Liu, Elisabeth A Minthorn, et al.

Cancer Res Published OnlineFirst January 18, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-3109

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2013/01/21/0008-5472.CAN-12-3109.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.