INHIBITION OF SRC CORRECTS GM-CSF HYPERSENSITIVITY THAT UNDERLIES JUVENILE MYELOMONOCYTIC LEUKAEMIA

Severa Bunda1, Michelle W. Kang2, Stephanie S. Sybingco1, Julie Weng2, Helene Favre2, Danielle H. Shin2, Meredith S. Irwin3, Mignon L. Loh2,4,*, Michael Ohh1,*

1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
2Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
3Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
4Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
*Co-corresponding authors

Running title: Deregulated Src underlies JMML

Key words: Cbl, Src, GM-CSF, dasatinib, JMML

Financial support: This work was supported by grants from the Canadian Institutes of Health Research (CIHR: MOP119356; M.O.), Cancer Research Society (M.O.), the Leukaemia Lymphoma Society Translational Research Program (M.L.L.), and the Frank A. Campini Foundation (M.L.L.). S.B. is a recipient of the CIHR and Kidney Cancer Foundation fellowship award.

Corresponding authors’ contact information:
Michael Ohh, PhD: Medical Sciences Building, Room 6306, 1 King’s College Circle, Toronto, ON, Canada, M5S 1A8; Tel: (416) 946-7922; Fax: (416) 978-5959; E-mail: michael.ohh@utoronto.ca
Mignon L. Loh, MD: 513 Parnassus Ave, Health Sciences East 302, UCSF, San Francisco, CA 94143 Tel: (415) 476-3831; Fax: (415) 502-5127; E-mail: lohm@peds.ucsf.edu

Conflict of interest: None of the authors have a financial interest related to this work.

Word count (excl. references): 4479

Figure count: 5

Supplementary figure count: 4

Supplementary table count: 1
ABSTRACT

Juvenile myelomonocytic leukaemia (JMML) is an aggressive myeloproliferative neoplasm in children characterised by the over-production of monocytic cells that infiltrate the spleen, lung and liver. JMML remains a disease for which few curative therapies are available other than myeloablative haematopoietic stem cell transplant (HSCT); however, relapse remains a major cause of treatment failure and the long-term morbidities of HSCT for survivors are substantial. A hallmark feature of JMML is acquired hypersensitivity by clonal myeloid progenitor cells to granulocyte macrophage-colony stimulating factor (GM-CSF) via a largely unknown mechanism. Here, we identify c-Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) adaptor protein that targets Src for ubiquitin-mediated destruction upon GM-CSF stimulation, and show that a loss of negative regulation of Src is pivotal in the hyperactivation of GMR signalling in Cbl-mutated JMML cells. Notably, dasatinib, an FDA-approved multi-kinase inhibitor that also targets Src family, dramatically attenuated the spontaneous and GM-CSF-induced hypersensitive growth phenotype of mononuclear cells from peripheral blood and bone marrow collected from JMML patients harbouring Cbl or other known JMML-associated mutations. These findings reveal Src kinase as a critical oncogenic driver underlying JMML.
INTRODUCTION

The majority of JMML-associated mutations have been mapped to genes that encode proteins that signal through the Ras/mitogen-activated protein kinase (MAPK) pathway, including NF1, NRAS, KRAS, and PTPN11 (SHP2), which account for approximately 75% of JMML patients\(^1\). Recently, we identified CBL (Casitas B-lineage Lymphoma) mutations that were reduced to homozygosity in leukaemic cells as a result of acquired isodisomy in approximately 10-15% of children with JMML\(^2, 3\), thereby establishing CBL as a new JMML tumour suppressor gene. Importantly, CBL mutations in JMML patient samples were mutually exclusive with respect to other Ras pathway-associated mutations but nevertheless displayed the classic GM-CSF hypersensitivity phenotype, which suggests a possible convergence of Cbl and Ras signalling pathways. Consistent with this notion, CBL mutations have been confirmed in other Ras-related disorder, Noonan Syndrome\(^4\), as well as in myelodysplastic syndromes, atypical chronic myelogenous leukaemia and chronic myelomonocytic leukaemia, diseases that primarily occur in adults that share some clinical and molecular features with JMML\(^5\)-\(^7\).

Cbl is a RING-type E3 ubiquitin ligase that ubiquitylates receptor and non-receptor tyrosine kinases\(^8\). Cbl contains a highly conserved N-terminal tyrosine kinase-binding (TKB) domain that mediates interaction between Cbl and phosphorylated tyrosines on activated receptor tyrosine kinases such as epidermal growth factor receptor (EGFR)\(^9\), platelet-derived growth factor receptor (PDGFR)\(^10\) and c-Kit\(^11\), as well as non-receptor tyrosine kinases JAK2, ZAP-70 and Syk\(^12\). The RING finger is separated from the TKB domain by an alpha helical structure known as the linker region, which is critical for the regulation of E3 function\(^13\). Crystallographic study has revealed that the linker region contacts the TKB domain, the RING finger, and the E2 ubiquitin-conjugating enzyme\(^14\). Y371 within the linker region becomes phosphorylated upon interaction with tyrosine kinases such as EGFR and insulin receptor, leading to conformational change in Cbl and activation of its E3 activity\(^13\). Moreover, C-terminal to the RING finger is a proline-rich domain that mediates interaction with SH3-containing and
SH2 proteins such as the p85 subunit of PI3K. Notably, while Cbl’s E3 function serves as a negative regulator of signalling, its role as an adaptor molecule potentiates signal transduction.

We and others have recently demonstrated that JMML-associated CBL mutations, including the most common Y371H substitution, result in the loss of E3 function. Although these studies have provided important insights into the possible consequences of CBL mutations, the mechanisms responsible for the GM-CSF hypersensitivity phenotype invariably displayed by JMML progenitor cells remains largely unknown.

MATERIALS AND METHODS

Cells. HEK293 and TF-1 cells were obtained from the American Type Culture Collection. HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supplemented with 10% heat-inactivated foetal bovine serum (FBS; Wisent) at 37°C in a humidified 5% CO2 atmosphere. TF-1 cells were maintained similarly in RPMI-1640 (Wisent) medium supplemented with 10% FBS and 2ng/ml GM-CSF (Invitrogen).

Retroviral production and BaF3-GMR cell generation. GMRα and βc were subcloned into pRUFneo:IRES retroviral expression system (pRUFneo:IRES-GMRα/βc) and co-transfected with pEQEco packaging plasmid (both generous gifts from Dr. Tim Hercus; Centre for Cancer Biology, Adelaide, Australia) into HEK293 cells. The media was replaced with fresh media the next day. Viral supernatant was harvested 2 and 3 days post-transfection and passed through a 0.45µm filter (Pall). BaF3-HA-Cbl (WT, Y371H, 70Z) cells were generated as previously described, maintained in RPMI-1640 with 10% FBS, 10ug/ml mIL-3 (R&D), 10ng/ml puromycin (Sigma), and transduced with RUFneo:IRES-GMRα/βc retrovirus with polybrene (Millipore). Cell populations stably expressing GMR were established using G418 resistance (Sigma) and confirmed by Western blot analysis. These BaF3-GMR-HA-Cbl (WT, Y371H, 70Z) cells were...
maintained in RPMI-1640 medium with 10% FBS, 2ng/ml GM-CSF, 10ng/ml puromycin, and 0.25mg/ml G418.

Generation of shCbl and ShLyn cell lines. TF-1-shCbl and -shScr cells were generated using SMARTvector 2.0 Lentiviral shRNA particles targeted against human Cbl (Dharmacon). Cell populations with stable Cbl knockdown were selected with puromycin, sorted on a FACS Aria (BD Biosciences) and further confirmed by Western blot analysis. The stable cell lines were maintained in RPMI-1640 medium with 10% FBS, 2ng/ml GM-CSF, and 10ng/ml puromycin. BaF3-GMR-HA-Cbl(Y371H)-ShLyn and -shScr cells were generated using mouse lentiviral shRNA directed against Lyn kinase obtained from Dr. Jason Moffat (Donnelly Centre for Cellular and Biomolecular Research, University of Toronto).

Antibodies. Rabbit polyclonal antibodies against Cbl, pCblY774, Lyn, Src, phosphorylated (p)Src(Y416) as well as Src phosphorylated on Y527, JAK2, pJAK2, pSTAT5, and STAT5 were obtained from Cell Signalling Technologies. Antibodies against GMRα, GMRβc (monoclonal and polyclonal), Cbl (monoclonal) and pERK were obtained from Santa Cruz Biotechnology. Monoclonal antibodies against HA (12CA5), pTYR (4G10) and ubiquitin were obtained from Boehringer Ingelheim, Millipore and Dako, respectively. Monoclonal β-actin and polyclonal ERK antibodies were obtained from Sigma.

Plasmids. Plasmids encoding pDEST4.0-HA-Cbl (WT, Y371H, 70Z) were generated as previously described. pSG5-GMRα and pSG5-GMRβc constructs were also generously provided by Dr. Tim Hercus. All constructs were verified by direct DNA sequencing.

Src knockdown via siRNA. Endogenous Src in HEK293 cells was silenced using ON-TARGETplus SMARTpool siRNA (Dharmacon) according to the manufacturer’s instructions.
Immunoprecipitation and immunoblotting. Immunoprecipitation and Western blotting were performed as described previously\(^{16}\).

Chemicals. Dasatinib, cycloheximide, AG490, and PP2 were obtained from Sigma. MG132 was obtained from Peptides International.

Primary patient studies:

Sample Collection. Bone marrow or peripheral blood samples were collected from children suspected of having JMML. The UCSF Committee on Human Research approved this study. All samples were obtained with informed consent. Mononuclear cells were isolated according to standard procedures. Genomic DNA was isolated using Puregene reagents (Qiagen). Patients were genotyped for mutations in **PTPN11** exons 3 and 13, **NRAS/KRAS** exons 1 and 2, and **CBL** exons 8 and 9 according to previously reported methods\(^{2,17-19}\).

Human haematopoietic progenitor assays. In CFU-GM assays, mononuclear cells from peripheral blood or bone marrow were plated in MethoCult H4230 (StemCell Technologies) and supplemented with recombinant human GM-CSF (Peprotech). Colonies were counted after 14 days, as previously described\(^{20}\). For CFU-GM assays in which cells were exposed to dasatinib (LC laboratories) or imatinib (LC laboratories), inhibitor was diluted in DMSO and directly added to the MethoCult prior to plating.

Western blots. Mononuclear cells were rested for 30 min in IMDM and 1% bovine serum albumin followed by exposure to inhibitor for 30 min. Cells were stimulated with 10ng/mL recombinant human GM-CSF (Peprotech) for 15 min. Resting, inhibitor exposure, and
stimulation were all performed at 37°C, 5% CO₂. Whole lysates were prepared, resolved on SDS-PAGE and immunoblotted with the indicated antibodies as previously described20.

Statistical analyses. Unpaired two-tailed Student t test was used to compare between treatment groups and cell types. All statistical analysis was performed using GraphPad PRISM 5.0 software. Statistical significance was achieved at the confidence limit indicated.

RESULTS

GMR is composed of a ligand-specific α chain (GMRα) and the β common (GMRβc) signalling subunit, which is shared with the IL-3 and IL-5 receptors21. Upon binding of GM-CSF to GMRα, a higher-order signalling complex is formed that promotes the activation of non-receptor tyrosine kinases JAK2 and Src family kinases c-Src and Lyn, which subsequently phosphorylate GMRβc22. Activated GMR serves as a docking site for adaptors and signalling molecules resulting in activation of downstream signalling, including the ERK pathway23. However, the role of Cbl in GMR-mediated signalling has been unexplored.

To begin addressing this question, we first asked whether phosphorylation of Cbl is associated with GMR activation. GM-CSF treatment of serum-starved human myeloid TF-1 cells, which are dependent on GM-CSF for growth and survival24, promoted phosphorylation of endogenous Cbl in a manner temporally similar to the phosphorylation pattern of GMRβc (Fig. 1A and Supplementary Fig. 1). Importantly, endogenous Cbl co-precipitated with endogenous GMRβc and GMRα in the presence of GM-CSF in TF-1 cells (Fig. 1B and data not shown). In addition, murine pro-B BaF3 cells, which were previously transduced with shRNA against endogenous murine Cbl3, were stably reconstituted with ectopic GMR and endogenous level of HA-tagged human Cbl(WT or Y371H). Consistent with TF-1 results, ectopic GMRβc associated with HA-Cbl(WT) and, as expected, GMRα in the presence of GM-CSF (Fig. 1B). These results demonstrate for the first time that Cbl is in a complex with GMR preferentially upon GM-CSF
In comparison to Cbl(WT), the JMML-associated Cbl(Y371H) mutant showed markedly increased binding to GMRβc in both BaF3-GMR cells and human embryonic kidney epithelial HEK293 cells ectopically expressing GMRα/βc in combination with HA-Cbl(WT or Y371H) (Fig. 1C and D), which suggest that Cbl(Y371H) mutant binds to GMRβc with greater affinity than Cbl(WT). Notably, HA-Cbl(Y371H) phosphorylation level was substantially higher than that of HA-Cbl(WT) even in the absence of GM-CSF stimulation (Fig. 2A). Following GM-CSF stimulation, expression of HA-Cbl(Y371H) promoted GMRβc hyper-phosphorylation (Fig. 2A). These results suggest that the amino acid Y371H substitution exaggerates mutant Cbl and also GMRβc activation. In an effort to define the mechanism responsible for the hyper-phosphorylation of Cbl(Y371H) and the associated GMRβc, we next examined the signalling events downstream of GMR. Consistent with the hypersensitive GM-CSF phenotype previously reported for JMML progenitors with the Cbl(Y371H) mutation3, BaF3-GMR-Cbl(Y371H) cells displayed elevated STAT5 and ERK phosphorylation upon exposure to a range of GM-CSF concentrations compared to BaF3-GMR-Cbl(WT) cells (Fig. 2B). Perhaps most importantly, the basal as well as GM-CSF-stimulated Src phosphorylation on Y416, representing activated Src25, were markedly increased in BaF3-GMR-Cbl(Y371H) cells (Fig. 2B).

Yokuchi et al.26 previously showed that Src phosphorylates Cbl, which triggers its E3 ligase function, including ubiquitin-mediated degradation of Src as a negative feedback. We previously showed that the loss of E3 activity prolonged the turnover rate of Cbl(Y371H) due to a failure in ubiquitin-mediated auto-destruction3. Therefore, we asked whether the loss of E3 activity via the acquisition of Y371H mutation results in the loss of negative regulation of Src and the perpetuation of Cbl(Y371H) and Src activation in the context of GMR signalling. GM-CSF treatment of serum/cytokine-starved TF-1 cells enhanced Src phosphorylation and its interaction to endogenous Cbl (Fig. 3A, left panel). In particular, Lyn, the predominant Src kinase expressed in myeloid cells27 shown previously to mediate GMRβc receptor activation and
subsequent signalling22, bound Cbl preferentially in the presence of GM-CSF (Fig. 3A, right panel). These results demonstrate for the first time that Cbl associates with Src, in particular Lyn, in the context of GMR activation in myeloid cells.

Inhibition of Src activity via a specific Src kinase inhibitor, PP2, as well as an FDA-approved Abl and Src tyrosine kinase inhibitor, dasatinib, abolished Src phosphorylation and dramatically reduced GM-CSF-induced Cbl and GMRβc phosphorylation (Fig. 3B and C), which support the notion that Src is critical in regulating the activity of Cbl and GMR following GM-CSF stimulation. Moreover, endogenous Cbl knockdown in TF-1 cells using CBL-specific lentivirus-shRNA, but not the non-targeting scrambled lentivirus-shRNA, enhanced Src and GMRβc phosphorylation and prolonged Src turnover upon GM-CSF stimulation (Fig. 3D and E). Furthermore, Cbl(WT), but not Cbl(Y371H), promoted GM-CSF-induced Src ubiquitylation and clearance (Fig. 3F and G). These results suggest that JMML-associated Y371H mutation abrogates Cbl-mediated ubiquitylation and subsequent degradation of Src upon GMR activation. In addition, pharmacologic inhibition of Src using dasatinib or PP2 dramatically attenuated hyper-phosphorylation of Cbl(Y371H) and GMRβc upon GM-CSF stimulation (Fig. 4A, B, C, and D). The heightened phosphorylation of Cbl(Y371H) in the absence of ligand was likewise abrogated in the presence of dasatinib or PP2 (Fig. 4A, C and D). Consistent with these observations, shRNA-mediated knockdown of Lyn in BaF3-GMR cells markedly attenuated Cbl(Y371H) phosphorylation, as well as the level of phosphorylated ERK, in the presence or absence of GM-CSF (Fig. 4E). Notably, siRNA-mediated knockdown of c-Src in HEK293 cells not only suppressed Cbl(Y371H) phosphorylation, but also attenuated the association between Cbl(Y371H) and GMRβc (Fig. 4F and G). It should be noted that a highly specific JAK2 inhibitor, AG490, effectively blocked JAK2 phosphorylation, but did not attenuate Src phosphorylation and failed to inhibit Cbl(Y371H) hyper-phosphorylation upon GM-CSF stimulation (Fig. 4C). These results demonstrate that the binding of Cbl to GMRβc as well as phosphorylation of Cbl upon GMR activation is dependent on Src, and that JMML-associated
Cbl(Y371H) prolongs hyper-activation of GMR-mediated signalling due to a failure in the Cbl-mediated negative regulation of Src.

We next exposed freshly isolated mononuclear cells from peripheral blood and bone marrow collected from multiple JMML patients with confirmed CBL mutation (or canonical Ras pathway alteration, including NF1, NRAS and PTPN11 mutations) to increasing doses of dasatinib in colony forming unit-granulocyte macrophage (CFU-GM) assay (Fig. 5A and Supplementary Table 1). Notably, dasatinib is a multi-kinase inhibitor that targets Src family kinases, BCR-ABL, PDGFRA, and KIT, among others, and is an FDA approved agent commonly used in the treatment of patients with BCR/ABL positive chronic myelogenous leukaemia (CML) or in combination with chemotherapy in Ph+ acute lymphoblastic leukaemia. Importantly, it is a well-tolerated oral agent with an established toxicity profile published not only in adults but also in children and can be administered as a liquid suspension to young patients incapable of swallowing pills. Strikingly, all tested JMML cells irrespective of mutational status showed substantial inhibition of spontaneous growth in the presence of dasatinib concentrations as low as 10 nM, while approximately 50% inhibition at doses of 50 nM or higher was observed in the presence of saturating GM-CSF (Fig. 5A, Supplementary Fig. 2A and 3A). In addition to the diminution in colony number, the size of the colonies was also dramatically reduced in the presence of dasatinib with or without GM-CSF irrespective of mutational status (Fig. 5B and Supplementary Fig. 2B). Exposing cells to dasatinib at a concentration achievable in patients taking the oral drug (150 nM) shifted the GM-CSF hypersensitivity curve back to a more normal appearance (Fig. 5C). In primary peripheral blood mononuclear cells harbouring Cbl(Y371H), Cbl intron 8 deletion, PTPN11(E76V), N-Ras(G12D), or NF1 LOH, dasatinib treatment, which predictably attenuated phosphorylated (p)Src levels, dramatically reduced pERK levels in the presence of saturating doses of GM-CSF (Fig. 5D, E and Supplementary Fig. 4). In contrast, imatinib, an Abl-specific inhibitor that does not target Src, had no discernable effect on pSrc or pERK levels or on the hypersensitive colony growth.
(Fig. 5D and Supplementary Fig. 3B). These results suggest that pharmacologic inhibition of Src attenuates GM-CSF hypersensitivity of peripheral blood and bone marrow derived primary JMML cells in a dosage-dependent manner.

DISCUSSION

Recently, we and others identified sporadic and germline CBL mutations in JMML patients with Y371H mutation emerging as the most common CBL mutation. Although mutations in Cbl were predicted to result in the loss of E3 function, the molecular mechanism by which these mutations cause JMML and more precisely the observed GM-CSF hypersensitivity that underlies JMML remained unclear. Here, we show that Cbl binds to ligand-engaged GMR in a Src-dependent manner and targets Src for ubiquitin-mediated destruction. In comparison to wild-type Cbl, Cbl(Y371H) exhibited increased affinity for activated GMR complex and failed to ubiquitylate active Src, thereby causing accumulation of pSrc. Conformational change of Cbl structure due to gene mutation likely altered the binding affinity of Cbl(Y371H) to GMRβc. The interaction between Cbl and GMRβc is, however, also influenced by GMR activation in the presence of GM-CSF, which raises the possibility that the consequential phosphorylation of Cbl and/or GMRβc promotes their physical association. Notably, Cbl and GMRβc association and phosphorylation in the presence of GM-CSF are, at least in part, dependent on Src. These observations suggest that in addition to gene mutation-induced conformational changes, Src-dependent phosphorylation contributes to Cbl binding to GMRβc. Src has been shown to activate and phosphorylate Cbl on multiple tyrosine residues, including Y700, 731 and 774, which promote several signalling cascades. Src also phosphorylates Cbl on Y371 to activate the E3 ligase function of Cbl, which in turn trigger interdependent ubiquitylation and degradation of both proteins, a process necessary for terminating downstream signalling post-activation. Consistent with this notion, the pathological stabilization of pSrc resulted in Src-dependent hyper-phosphorylation and concomitant stabilization of Cbl(Y371H) upon GM-CSF stimulation to...
accentuate and prolong GMRβc phosphorylation and downstream signalling. These lines of evidence suggest that the critical loss of negative regulation of Src upon JMML-causing CBL mutations underlies GM-CSF hypersensitivity.

Despite the fact that IL-3α and IL-5α also associate with β common subunit (i.e., GMRβc)21, JMML cells do not display hypersensitivity to IL-3 or IL-5. Notably, Src binds to the ligand-specifying GMRα chain, which upon ligand binding associates with GMRβc to initiate GMRβc activation via JAK2 and Src22,31. However, it is unclear whether IL-3R or IL-5R directly interacts Src or Cbl and whether the interplay observed between Cbl and Src on GMR is recapitulated on IL-3/5R. For example, IL-3 treatment was previously shown to increase the amount of Grb2 associated with Cbl; however, it did not alter the level of Fyn (another member of Src kinase family) associated with Cbl32. Consistent with these uncertainties, IL-3 treatment did not differentially influence IL-3-mediated signalling in BaF3-Cbl(Y371H) cells in comparison to wild-type Cbl-expressing BaF3 cells (data not shown). These observations underscore the importance of Src interaction on GMRα in promoting GM-CSF hypersensitivity observed in cells harbouring Cbl(Y371H) mutation.

Perhaps most importantly, dasatinib dramatically attenuated spontaneous and GM-CSF-dependent hypersensitive growth phenotype of human primary leukaemic cells collected from peripheral blood or bone marrow of JMML children harbouring Cbl mutations. Notably, imatinib, an Abl-specific inhibitor that does not target Src, had no appreciable effect on pSrc or pERK levels or on the hypersensitive colony growth of JMML cells. Intriguingly, dasatinib also reduced the hypersensitive growth phenotype of JMML cells harbouring Ras pathway mutations (see Fig. 5A, E, Supplementary Fig. 2 and 4), which suggests potential involvement of Src in non-Cbl mutated JMML cells. While the connection between Ras pathway and Src in the context of GMR-mediated signalling has not been formally established, a biochemical link between Src and Ras has been speculated through the interaction via Raf-133. Recently, the expression of oncogenic Ras has been shown to induce c-Src activation, and elevated Src activity has been
observed in human cancer cell lines that harbour oncogenic Ras mutations34 as well as in pancreatic ductal adenocarcinoma that are characterized with a high incidence of oncogenic K-Ras mutations35. Interestingly, G proteins are GTPases that have also been shown to directly activate Src36. Thus, it remains to be determined whether oncogenic Ras, which is also a GTPase, drives Src activity via Raf-1 or yet-defined mediator protein(s) to influence Cbl-dependent GMR signalling. Undefined connection between Ras pathway and Src notwithstanding, these results suggest that the loss of negative regulation of Src in certain susceptible myeloid progenitor population is central to the GM-CSF hypersensitivity phenotype invariably observed in JMML patients, and that Src represents a potential druggable target for the amelioration of the hypersensitive growth phenotype of primary human JMML cells. Despite the promise of dasatinib, it is a multi-kinase inhibitor, and hence the future challenge would be to develop small molecule inhibitors that exclusively target Src ideally in leukaemic progenitors in JMML patients.

ACKNOWLEDGEMENTS

We thank Dr. Benjamin S. Braun for his helpful comments and discussions. We also thank Dr. Tim Hercus for his helpful suggestions and providing GMR reagents. S.B. is a recipient of the CIHR and Kidney Cancer Foundation fellowship award. M.L.L. is a Clinical Scholar of the Leukaemia Lymphoma Society.

GRANT SUPPORT

This work was supported by grants from the Canadian Institutes of Health Research (CIHR: MOP119356; M.O.), Cancer Research Society (M.O.), the Leukaemia Lymphoma Society Translational Research Program (M.L.L.), and the Frank A. Campini Foundation (M.L.L.).

REFERENCES

FIGURE LEGENDS

Figure 1. Cbl(Y371H) exhibits increased binding to GMRβc. (A) Serum/cytokine starved TF-1 cells for 18 h were treated with or without 1 ng/ml of GM-CSF for indicated times, then lysed and immunoprecipitated with anti-GMRβc or anti-Cbl antibody and immunoblotted with anti-pTyr antibody. (B) Serum/cytokine starved TF-1 and BaF3-GMR-HA-Cbl(WT) cells for 18 h were treated with 1 ng/ml of GM-CSF for 10 min. Equal amount of cell lysates were immunoprecipitated with anti-GMRβc antibody and immunoblotted with indicated antibodies. (C) BaF3-GMR-HA-Cbl(null, WT or Y371H) cells were lysed, immunoprecipitated and immunoblotted with the indicated antibodies. (D) HEK293 cells transfected with the indicated plasmids (right panel) were lysed, immunoprecipitated and immunoblotted with the indicated antibodies. WCE: whole cell extract; IP: immunoprecipitation.

Figure 2. Cbl(Y371H) and the associated GMRβc show hyper-phosphorylation profile
following GM-CSF stimulation. (A) BaF3-GMR-HA-Cbl(WT or Y371H) cells (left panel) or HEK293 cells transfected with the indicated plasmids (right panel) were serum/cytokine starved for 18 h and treated with (+) or without (-) 1 ng/ml of GM-CSF for 10 min. The cells were lysed, immunoprecipitated with anti-GMRβc or anti-HA antibody and immunoblotted with anti-pTyr antibody. (B) Serum/cytokine starved BaF3-GMR-HA-Cbl(WT or Y371H) cells treated for 10 min with indicated concentrations of GM-CSF were lysed and immunoblotted with the indicated antibodies. WCE: whole cell extract; IP: immunoprecipitation.

Figure 3. Cbl mediates the ubiquitylation of Src following GM-CSF stimulation. (A) Serum/cytokine starved TF-1 cells treated with (+) or without (-) 1 ng/ml of GM-CSF were lysed, immunoprecipitated with anti-Cbl antibody or anti-Lyn antibody and immunoblotted with the indicated antibodies. (B) Serum/cytokine starved TF-1 cells pre-treated with 100 nM of dasatinib (+) or DMSO (-) for 1 h were treated with (+) or without (-) 1 ng/ml of GM-CSF. The cells were lysed, immunoprecipitated with anti-Cbl or anti-GMRβc antibody and immunoblotted with anti-pTyr antibody. (C) Serum/cytokine starved TF-1 cells pre-treated with 10 mM of PP2 (+) or DMSO (-) for 1 h were treated with (+) or without (-) 1 ng/ml of GM-CSF. The cells were lysed, immunoprecipitated with anti-Cbl or anti-GMRβc antibody and immunoblotted with anti-pTyr antibody. (D) Serum/cytokine starved TF-1-(shScr or shCbl) cells for 18 h treated with (+) or without (-) 1 ng/ml GM-CSF were lysed, immunoprecipitated with anti-GMRβc antibody and immunoblotted with anti-pTyr antibody. Equal amounts of corresponding cell lysate were immunoblotted with indicated antibodies. (E) Serum/cytokine starved TF-1-(shScr or shCbl) cells for 18 h treated with 1 ng/ml of GM-CSF for indicated time points were lysed and immunoblotted with the indicated antibodies. (F) BaF3-GMR-HA-Cbl(WT or Y371H) cells pre-treated for 3 h with 10 mM of MG132 (+) or DMSO (-) were treated with (+) or without (-) 1 ng/ml of GM-CSF. The cells were lysed, immunoprecipitated with anti-Src antibody and immunoblotted with anti-ubiquitin antibody. (F) BaF3-GMR-HA-Cbl(WT or Y371H) cell treated
with 100 mg/ml cyclohexamide (CHX) for indicated time points were lysed and immunoblotted with the indicated antibodies. The graph depicts results obtained by normalizing total Src level to the β-actin loading control and plotting the obtained densitometry values. IP: immunoprecipitation.

Figure 4. Cbl(Y371H) hyper-phosphorylation is Src-dependent. HEK293 cells transfected with the indicated plasmids pre-treated with 100 nM of dasatinib (+) or DMSO (-) for 1 h and treated with (+) or without (-) 1 ng/ml of GM-CSF for 10 min were lysed, immunoprecipitated with anti-HA antibody (A) or anti-GMRβc antibody (B) and immunoblotted with indicated antibodies. (C) Serum/cytokine starved BaF3-GMR-HA-Cbl(WT or Y371H) cells for 18 h pre-treated with 5 mM of AG490, 100 nM of dasatinib (+) or DMSO (-) for 1 h and treated for 10 min with (+) or without (-) 1 ng/ml of GM-CSF were lysed, immunoprecipitated with anti-HA antibody and immunoblotted with the indicated antibodies. (D) Serum/cytokine starved BaF3-GMR-HA-Cbl(WT or Y371H) cells for 18 h pre-treated with 10 mM of PP2 (+) or DMSO (-) for 1 h and treated for 10 min with (+) or without (-) 1 ng/ml of GM-CSF were lysed, immunoprecipitated with anti-HA antibody and immunoblotted with anti-pTyr antibody. (E) BaF3-GMR+Cbl(Y371H) cells transduced with lenti-shScrambled (shScr) or -shLyn (shLyn) were serum/cytokine starved for 18 h treated with (+) or without (-) 1 ng/ml GM-CSF were lysed, immunoprecipitated with anti-HA-Cbl antibody and immunoblotted with anti-pTyr antibody. Equal amounts of corresponding cell lysate were immunoblotted with indicated antibodies. (F) HEK293 cells transfected with c-Src-specific siRNA (si-c-Src) or a non-targeting scrambled siRNA (si-Con) in combination with the indicated plasmids were treated with (+) or without (-) 1 ng/ml of GM-CSF for 10 min. Cells were then lysed, immunoprecipitated with anti-HA antibody and immunoblotted with indicated antibodies. (G) HEK293 cells transfected with c-Src-specific siRNA (si-c-Src) or a non-targeting scrambled siRNA (si-Con) in combination with the indicated plasmids were lysed, immunoprecipitated with anti-GMRβc antibody and immunoblotted with indicated antibodies.
WCE: whole cell extract; IP: immunoprecipitation.

Figure 5. Dasatinib inhibits CFU-GM growth in primary JMML cells harbouring *CBL* or Ras pathway mutations. **(A)** Individual JMML patient-derived leukaemic cells with the indicated mutations (see **Supplementary Table 1**) were exposed to dasatinib (150 nM) in the absence or presence of GM-CSF (10 ng/mL). Percent maximum colony growth is graphed in relation to 0 nM dasatinib at 10 ng/mL of GM-CSF. The indicated n represents the number of patients analyzed for each mutation group. The lighter shaded bars represent vehicle treated groups and the darker shaded bars represent dasatinib treated groups. Error bars indicate S.E.M. **(B)** Cell number per colony and cell size plated from a patient harbouring a Cbl(Y371H) mutation significantly decreased in the presence of dasatinib with and without GM-CSF. Colonies were visualized at a total magnification of 40X on a 2 mm gridded dish. **(C)** JMML patient-derived leukaemia cells (n=3, all with *CBL* mutations) were plated in a CFU-GM hypersensitivity assay without and with dasatinib (150 nM). Percentage of maximum growth at 10 uM GM-CSF is displayed without and with dasatinib. Error bars represent S.E.M. for these three samples. A paired t-test comparing percent maximum growth without and with dasatinib at all concentrations was statistically significant (two-tailed P-value=<0.0001). **(D)** Primary peripheral mononuclear cells collected from a patient with a Cbl(Y371H) mutation were stimulated with or without GM-CSF in the presence or absence of dasatinib or imatinib. Cell lysates were then prepared and immunoblotted with the indicated antibodies. **(E)** Primary peripheral mononuclear cells collected from a JMML patient with a PTPN11(E76V) mutation or with a N-Ras(G12D) mutation were stimulated with or without GM-CSF in the presence or absence of dasatinib. Cell lysates were then prepared and immunoblotted with the indicated antibodies.
Figure 1

A

TF-1

0 5 10 15 30 60 :GM-CSF (min)

anti-pTyr

anti-GMRβc

anti-GMRβc:IP

anti-Cbl

anti-Cbl:IP

B

BaF3-GMR +

HA-Cbl(WT)

TF-1

- +

anti-GMRα

anti-Cbl

anti-GMRβc

anti-GMRβc:IP anti-GMRβc:IP

anti-GMRα

anti-Cbl

anti-GMRβc

anti-β-actin

anti-β-actin

C

BaF3-GMR

HA-Cbl(+)

HA-Cbl(WT)

HA-Cbl(Y371H)

anti-HA

anti-GMRβc

anti-GMRβc:IP anti-HA:IP

WCE

anti-HA

anti-β-actin

D

HEK293

GMα/βc

GMα/βc + HA-Cbl(WT)

GMα/βc + HA-Cbl(Y371H)

anti-HA

anti-GMRα

anti-GMRβc

anti-GMRβc:IP

WCE

anti-HA

anti-GMRα

anti-β-actin
Figure 5

A

Percentage Max growth with 150 nM of Dasatinib

B

GM-CSF

C

Percent maximum growth

D

JMML-Cbl(Y371H)

E

JMML-PTPN11(E76V)

N-Ras(G12D)

- - - + +

- - + + +

- + + + +

- + + + +

anti-pSrc

anti-Src

anti-pERK

anti-ERK

anti-β-actin

anti-GAPDH
INHIBITION OF SRC CORRECTS GM-CSF HYPERSENSITIVITY THAT UNDERLIES JUVENILE MYELOMONOCYTIC LEUKAEMIA

Severa Bunda, Michelle W Kang, Stephanie S Sybingco, et al.

Cancer Res Published OnlineFirst February 11, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-3425

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2013/02/11/0008-5472.CAN-12-3425.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.