Identification of Inherited Genetic Variations Influencing Prognosis in Early-Onset Breast Cancer

Sajjad Rafiq1, William Tapper1, Andrew Collins1, Sofia Khan5, Ioannis Politopoulos1, Sue Gerty2, Carl Blomqvist8, Fergus J. Couch6, Heli Nevanlinna5, Jianjun Liu7, and Diana Eccles2

Abstract

Genome-Wide Association Studies (GWAS) have begun to investigate associations between inherited genetic variations and breast cancer prognosis. Here, we report our findings from a GWAS conducted in 536 patients with early-onset breast cancer aged 40 or less at diagnosis and with a mean follow-up period of 4.1 years (SD = 1.96). Patients were selected from the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer. A Bonferroni correction for multiple testing determined that a P value of 1.0×10^{-7} was a statistically significant association signal. Following quality control, we identified 487,496 single nucleotide polymorphisms (SNP) for association tests in stage 1. In stage 2, 35 SNPs with the most significant associations were genotyped in 1,516 independent cases from the same early-onset cohort. In stage 2, 11 SNPs remained associated in the same direction ($P < 0.05$). Fixed effects meta-analysis models identified one SNP associated at close to genome wide level of significance 556 kb upstream of the ARRD3 locus [$HR = 1.61; 95\%$ confidence interval (CI), $1.33–1.96; P = 9.5 \times 10^{-7}$]. Four further associations at or close to the PBX1, ROXa, NTN1, and SIT6 loci also came close to genome-wide significance levels ($P = 10^{-6}$). In the first ever GWAS for the identification of SNPs associated with prognosis in patients with early-onset breast cancer, we report a SNP upstream of the ARRD3 locus as potentially associated with prognosis (median follow-up time for genotypes: CC = 4 years, CT = 3 years, and TT = 2.7 years; Wilcoxon rank-sum test CC vs. CT, $P = 4 \times 10^{-4}$ and CT vs. TT, $P = 0.76$). Four further loci may also be associated with prognosis. Cancer Res; 73(6); 1-9. ©2012 AACR.

Introduction

Breast cancer incidence increases with increasing age. Less than 5% of all breast cancer cases are diagnosed before 40 years of age and less than 20% before 50 years of age (1). Treatments vary according to tumor stage and biologic characteristics, age at diagnosis, menopausal status; comorbidities are also important considerations in deciding what treatment to offer. Early age at breast cancer diagnosis is associated with a worse prognosis, although the reasons for this are still imperfectly understood. Tumors in this age group are more likely to have ER-negative high-grade tumors (2). Despite accounting for these factors, outcomes remain worse for young onset patients, particularly those with ER-positive cancers, and this may reflect a poorer response to breast cancer treatments in younger patients (3–6). A Swedish familial study showed higher risk of mortality in affected first-degree relatives of patients with breast cancer, which suggests a genetic component to prognosis following disease onset (7). A smaller gap in age at diagnosis between sister–sister pairs compared with mother–daughter pairs in this familial study coupled with poorer prognosis in sister–sister pairs suggests that earlier disease onset in sister–sister pairs could be linked with a greater genetic component for prognosis. Rare high penetrance genetic predisposition genes like BRCA1 are more frequently found to explain young onset breast cancer cases even in the absence of a family history (8, 9). In addition, it is becoming clear that the growing number of common genetic variants, which contribute to polygenic breast cancer risk, are associated often more strongly with susceptibility to a particular subtype of breast cancer (10, 11).

Common genetic variants may influence prognosis either by influencing the type of tumor that develops, the host response to tumor or the handling or metabolism of breast cancer-directed therapies. Two recent studies developed from genome-wide association experiments have failed to identify SNPs that are irrefutably associated with breast cancer prognosis in individuals of Caucasian ancestry (12). The median age at diagnosis in the patients recruited for these Genome-Wide
Association Studies (GWAS) were 66 and 52 years; hence, these cohorts are largely composed of later onset patients with breast cancer. A more recent 2-stage GWAS in Chinese patients with breast cancer identified 2 potential associations with breast cancer, but the association effects in replication samples were much weaker than in the discovery set and would not satisfy stringent tests for multiple hypothesis correction (13). Studies exploring the association of known risk SNPs with prognosis have hinted at a possible role for genetic variation in clinical outcomes (14, 15).

Here, we report a 2-stage GWAS to identify common genetic variants that are associated with breast cancer prognosis by using a discovery set of young onset patients that were enriched for rapid disease progression and long-term breast cancer–specific survival. We attempt replication in a larger sample of patients with early-onset breast cancer from the same cohort who were unselected for survival extremes. We also seek replication of the main findings from analysis in early-onset patients in relatively later onset breast cancer cases from Helsinki.

Materials and Methods

Breast cancer patients

Early-onset breast cancer cases were selected from the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study; participants were diagnosed with invasive breast cancer and were aged 40 or younger at diagnosis. Recruitments to the POSH cohort were made between January 2000 and January 2008 from oncology clinics across the United Kingdom. The vast majority (98%) of patients recruited to the study presented symptomatically. The recruitment, data collection, and follow-up procedures for the POSH study participants are described in detail elsewhere (16).

Stage I discovery dataset

In stage I, 574 participants from the POSH study were selected for the discovery phase of the analysis aimed at hypothesis generation (16). To enrich the discovery set, patients were selected from POSH in 2 different groups. The first group had ER-, progesterone receptor (PR), and HER-2–negative breast cancer (These triple-negative patients have worse prognosis and they relapse early after diagnosis). This triple-negative breast cancer group was also used to identify risk genes for breast cancer susceptibility in a previous study (11). In the second group, we specifically enriched the selection for patients with either very short duration of breast cancer–specific survival (<2 years, n = 48) or relatively long duration of breast cancer–specific survival (>4 years, n = 125) but no selection based on immunohistochemistry was made in this group. Breast cancer–specific survival was used as the definitive end point for the survival analysis. Enrichment of affected individuals in a genetic association design increases the efficiency of and power to detect genetic effects (17). As all the study participants for this GWAS were derived from a single randomly sampled cohort of early-onset patients, any overestimation of effect sizes in stage I was balanced out by meta-analysis with unenriched stage-II samples. This approach is in keeping with a recent GWAS that identified 5 new breast cancer susceptibility loci by enriching cases by recruiting individuals with family history of breast cancer (10). There were no screen detected breast cancers among the POSH cases included in the discovery analysis, all had presented symptomatically. Among young onset breast cancer cases, a higher than average proportion is likely to be BRCA1/2 gene carriers. Because BRCA1 and BRCA2 pathogenic germline mutations are not known to be independently associated with prognosis, BRCA status was not used in making the case selection for this study. The cohort has not yet been systematically tested for germline BRCA1/2 mutations but among the POSH study stage I participants, 27.4% (147 cases) had previously been analyzed for BRCA1 and BRCA2 mutations, either as part of other research studies or because testing had been clinically indicated (strong family history). Of those tested, 38 (25.8%) had been found to carry clearly pathogenic mutations in BRCA1 or BRCA2.

Stage II replication dataset 1

A total of 1,516 additional young onset cases from the POSH study that had not been selected in the discovery set were genotyped for replication in stage II. A total of 22.4% of the stage II participants were tested for BRCA status. A total of 21.7% of those tested for BRCA status were found to carry pathogenic BRCA1 and BRCA2 mutations.

Breast cancer patients from Helsinki

The Helsinki samples were collected in Helsinki, Finland and are representative of Breast cancer cases at the recruitment center during the collection period (1997–1998 and 2000). All the breast cancer cases included had histopathologic and survival data available. Detailed information on data collection and selection of participants has previously been published (18). The mean age at diagnosis was 56.8 years.

Genome-wide genotyping

Genotyping for the 574 phase I breast cancer cases was conducted using the Illumina 660-Quad SNP array. Genotyping for the samples was conducted in 2 separate batches at 2 locations. Two hundred and seventy four patients were genotyped at the Mayo Clinic (Rochester, MN) and were selected because they were diagnosed with triple-negative breast cancer (ER-, PR-, and HER-2 negative; ref. 11). Three hundred POSH patients were genotyped at the Genome Institute of Singapore, National University of Singapore (Singapore); this group was selected on the basis of either short duration of breast cancer–specific survival (<2 years) or for long duration of breast cancer–specific survival (>4 years). To ensure complete harmonization of the genotype calling, the intensity data available from both these locations in form of *.idat files were combined and used to generate genotypes based on the algorithm available in the genotyping module of Illumina’s Genome Studio software. A GenCall threshold of 0.15 was selected and the HumanHap660 annotation file was used. Genotyping for the replication samples from Helsinki was conducted using the Illumina 550 platform as previously described (19). The intensity data generated was loaded into Illumina’s Genome studio and genotypes were generated using...
a GenCall threshold of 0.15. HumanHap550-duo v3 annotation file was used.

SNPs were excluded from analysis based on a minor allele frequency (MAF) cut off of 0.01, genotyping call rate less than 95%, and Hardy–Weinberg equilibrium \(P < 0.0001 \). We used the pairwise identity-by-state and multidimensional scaling, implemented in Plink (20), to identify POSH and Helsinki participants whose genotypes did not concur with a European ancestry. 28 individuals were excluded on the basis of a non-European ancestry or missing phenotype information in the POSH discovery analysis (Supplementary Fig. S1). Three individuals from the 300 samples genotyped at the site in Singapore were excluded from analysis because of call rates lower than 95%. No individuals from the 274 triple-negative cohort genotyped at the Mayo clinic were excluded from analysis based on poor call rate. Genotyping accuracy for SNPs or SNP-specific call rates were more than 99% in samples genotyped at the Singapore and Mayo clinic sites. *.idat files available from the Helsinki participants were fed into Illumina’s Genome Studio software to call genotypes. No ethnic outliers were identified among the 805 Helsinki participants. Seven Helsinki participants were excluded because of SNP call rate (<95%).

Replication genotyping

Genotyping of the 35 best associated SNPs from stage I in the 1,516 additional young onset cases from the POSH study was conducted by KBioscience (21). SNPs were genotyped using the KASPar chemistry, which is a competitive allele-specific PCR SNP genotyping system using FRET quencher cassette oligo (21).

Statistical analysis

To generate estimates of pairwise identity by descent we conducted genome-wide linkage disequilibrium (LD)-based pruning using the indep-pairwise command in Plink. SNP data were pruned after choosing an \(r^2 \) cut off at 0.5. SNP pruning was initiated using a window of 50 SNPs. Pairwise LD was then calculated and one SNP within each SNP pair characterized by high LD (\(r^2 > 0.5 \)) was excluded. This process was repeated while choosing smaller SNP windows of 5 SNPs at a time. Multidimensional scaling plots were then generated after generating clusters of related individuals based on pairwise identity-by-state distances.

SNP quality control measures were implemented using Plink. After quality control, transposed ped (tped) and tfam files were generated for further analysis. We used GenABEL (22) in R2.14.0 environment to conduct survival analysis using Post-QC genome-wide SNP data. Cox-proportional hazard models were implemented using the mireg command in GenABEL. The mireg command uses the survival package that is routinely used for survival analysis in R. ER status was the only covariate used in Cox models. Follow-up time was calculated as the difference between the date of diagnosis of breast cancer and the date of death due to breast cancer or the date of last follow-up if still alive or deceased from a non-breast cancer cause (breast cancer–specific survival). The mean difference in time between age at diagnosis and age at registration was 0.78 years (SD = 1.16 years). Kaplan–Meier plots were generated using STATA v11.0 and IBM SPSS statistics 19.

Mantel–Haenszel fixed effects meta-analysis was conducted using the metan module in STATA v11.0 (23). Genome-wide meta-analysis was conducted using MetABEL (22).

Imputation of the POSH GWAS data set was conducted using MACH 1.0 (24) based on SNP genotype and haplotype phase data specific for CEU (Utah residents with ancestry from Northern and Western Europe) population available from HapMap phase 2 project. Imputed genotypes were analyzed using ProABEL (22). A posterior probability of 0.9 was used to output imputed genotypes. Quality control measures for imputation data included excluding SNPs based on a MAF cut off of 0.01, genotyping call rate less than 95%, and Hardy–Weinberg equilibrium \(P < 0.0001 \).

Manhattan and regional plots

Manhattan and quantile–quantile (QQ) plots were generated in R using the plot command. Regional plots were generated using LocusZoom (25).

Sample size calculations

Sample size calculations were conducted in R2.14.2 using survSNP package.

Gene expression variation by SNP

We used Genevar 3.2.0 to study variation in expression levels by SNP genotypes available from the MuTHER pilot project while using NCBI Build 36/Ensembl 54 as reference (26). Twin pairs were divided into 2 groups of unrelated individuals. Expression data from lymphoblastoid cell lines are reported here.

Prediction of transcription factor binding site changes

The putative changes on transcription factor binding sites caused by the variants were predicted in silico with SNPInspector within Genomatix software suite v2.5 (Genomatix Software GmbH). SNPInspector analysis is based on MatInspector (27).

Results

Clinical characteristics of stage I and stage II participants are summarized in Table 1. Following quality control, we had SNP genotype data available for 487,496 SNPs in stage I. We had 79% power to detect a HR \(\geq 1.50 \) when studying a SNP with MAF \(\geq 0.10 \). In survival analysis models, no associations were observed to survive a Bonferroni correction and reach a \(P \leq 10^{-7} \). Eight SNPs among the top 50 SNPs achieved \(P < 7.0 \times 10^{-6} \).

Forty-one of the remaining 42 SNPs achieved \(P \) values at \(10^{-6} \). At the loci on which multiple SNPs were found to be strongly associated with survival, we selected the lead SNP for follow-up in stage II along with any other SNP(s) from the same locus that were not in high LD with the lead SNP (\(r^2 < 0.6 \)). Using this strategy, we selected 35 of the best 50 associated SNPs (Supplementary Table S1) for genotyping in the stage II validation samples. The QQ plot showed deviation of observed log-transformed values from the expected log-transformed \(P \) values for SNPs associated with \(P \) values ranging from \(10^{-1} \) to \(10^{-7} \) (Fig. 1).
Stage II results

Twenty-seven of the 35 SNPs included in the stage-II genotyping were successfully genotyped and were available for analysis. One SNP had more than 10% duplicate error rate and was excluded from replication analysis. We had 70% power to detect a HR ≥ 1.50 in stage II analysis. While testing for replication effects of the 27 SNPs, we found 11 SNPs at distinct loci, which were associated with prognosis in the same direction as in the stage I analysis (Table 2). Replication P values for these 11 SNPs ranged from 0.05 to 0.005.

Stage I and stage II meta-analysis

We included the 11 SNPs, which remained associated in stage II based on consistent direction of effect, in Mantel-Haenszel fixed-effects meta-analysis models (Table 2). The strongest meta-analysis HR was observed at the rs421379 SNP, which lies upstream of the ARRD3 gene (Figs. 2 and 3) on the long arm of chromosome 5 (HR = 1.61; 95% confidence interval (CI), 1.33–1.96; \(P = 9.5 \times 10^{-7} \)). Adjusting for ER status, N-stage (metastasis to lymph node), and M-stage (metastasis) slightly reduced the strength of the overall association at this SNP in combined analysis across stage I and stage II (HR = 1.55; 95% CI, 1.27–1.90; \(P = 1.5 \times 10^{-5} \)). The next best replication signal was observed in an intronic region of the PBX1 (Pre-B-Cell Leukaemia transcription factor-1) gene. The replication P value for this intronic SNP was second most significant after rs421379 in the 2-stage meta-analysis, and the overall association at this variant was close to being genome-wide significant (HR = 1.28; 95% CI, 1.16–1.43; \(P = 3.8 \times 10^{-6} \)). Adjusting for ER status, N-stage, and M-stage did not affect the strength of the association at this variant (HR = 1.26; 95% CI, 1.13–1.41, \(P = 3.9 \times 10^{-6} \)). The above 2 variants displayed the lowest levels of heterogeneity in meta-analysis. The association observed with a 5′ untranslated region (UTR) SNP at the RORα locus (rs38846558) was also close to the threshold for genome-wide significance (HR = 1.46; 95% CI, 1.24–1.72; \(P = 3.9 \times 10^{-6} \)), although there was modest evidence of heterogeneity in HRs between stage I and stage II models (Table 2). Two further associations rs3785982 in the NTN1 gene (HR = 1.40; 95% CI, 1.21–1.62; \(P = 7.9 \times 10^{-6} \)) and rs2774307 in the SYT6 gene (HR = 1.30; 95% CI, 1.16–1.47; \(P = 7.9 \times 10^{-6} \)) also came close to genome-wide significance. For the 5 SNPs associated at \(P \leq 10^{-6} \), we did not observe any evidence of heterogeneity of effects on survival based on triple-negative status of the POSH patients. The heterogeneity I²-statistic for these 5 SNPs ranged from 0% to 20.6%.

Replication attempt in nonage-specific survival analysis

We had 87% power to detect a HR ≥ 1.50 when analyzing SNPs with MAF ≥ 0.10 in 874 patients available from the Helsinki study. We extracted genotypes from the GWAS

Table 1. Characteristics of the study participants

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of breast cancer deaths</th>
<th>Total number of patients with breast cancer</th>
<th>ER Status-negative (%)</th>
<th>Average age at diagnosis (± SD)</th>
<th>Follow-up time in years (± SD)</th>
<th>N-Stage</th>
<th>M-Stage</th>
<th>HER-2 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSH Stage-I</td>
<td>236</td>
<td>536</td>
<td>370 (69.2%)</td>
<td>35.7 (3.8)</td>
<td>4.1 (2.0)</td>
<td>NA-248</td>
<td>MO-481</td>
<td>Negative-369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N1-262</td>
<td>M1-50</td>
<td>Positive-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA-25</td>
<td>NA-4</td>
<td>NA-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>535</td>
<td>535</td>
<td>535</td>
</tr>
<tr>
<td>POSH Stage-II</td>
<td>468</td>
<td>1518</td>
<td>423 (27.4%)</td>
<td>35.7 (3.7)</td>
<td>4.8 (1.4)</td>
<td>N0-645</td>
<td>MO-1470</td>
<td>Negative-756</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N1-838</td>
<td>M1-42</td>
<td>Positive-399</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA-35</td>
<td>NA-6</td>
<td>NA-363</td>
</tr>
<tr>
<td>Helsinki nonearly-onset-specific participants</td>
<td>301</td>
<td>805</td>
<td>230 (30.0%)</td>
<td>56.8 (12.4)</td>
<td>7.2 (2.9)</td>
<td>N0-338</td>
<td>MO-740</td>
<td>Negative-402</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N1-446</td>
<td>M1-57</td>
<td>Positive-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA-21</td>
<td>NA-8</td>
<td>NA-317</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not available.

Figure 1. A QQ plot of log-transformed observed and expected P values from the stage I analysis.
genotype data of the Helsinki samples for 11 of the 35 SNPs, which were associated in the same direction in stage II as in stage I analysis. Helsinki patients belonged to a relatively higher age group at diagnosis when compared with POSH stage I analysis. Helsinki patients belonged to a relatively high-risk group when compared with POSH stage I analysis. Helsinki patients belonged to a relatively high-risk group when compared with POSH stage I analysis.

Association scan with imputed SNP data

We imputed SNP genotypes for 2.5 million SNPs based on HapMap phase 2 data. Imputation analysis did not identify any additional variants that were more strongly associated than the ones we found as most strongly associated using real genotype data 250 kb either side of rs421379, rs3884558 (5′UTR-ROX), rs3785982 (NTNI), rs2774307 (SYY6), and rs1387389 (PBX1) (Fig. 2 and Supplementary Figs. S2–S5).

Table 2. Stage-wise association statistics for the 11 SNPs that were associated in stage-II following discovery in stage-I analysis

<table>
<thead>
<tr>
<th>SNP (MAF)</th>
<th>POSH Stage 1 HR (95% CI); P</th>
<th>POSH stage-2 replications HR (95% CI); P</th>
<th>Stage-I and stage-II meta-analysis results</th>
<th>i^2 derived from Cochran Q-statistic, P for Q-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs421379 (0.05)</td>
<td>1.98 (1.46–2.70); $P = 1.2 \times 10^{-5}$</td>
<td>1.42 (1.11–1.8); $P = 0.005$</td>
<td>1.61 (1.33–1.96); $P = 9.5 \times 10^{-7}$</td>
<td>63.7%, $P = 0.10$</td>
</tr>
<tr>
<td>rs3884558 (0.07)</td>
<td>1.84 (1.40–2.41); $P = 1.3 \times 10^{-5}$</td>
<td>1.29 (1.05–1.57); $P = 0.01$</td>
<td>1.46 (1.24–1.72); $P = 3.9 \times 10^{-6}$</td>
<td>76.4%, $P = 0.04$</td>
</tr>
<tr>
<td>rs971398 (0.17)</td>
<td>1.52 (1.23–1.86; $P = 1.2 \times 10^{-5}$)</td>
<td>1.24 (1.05–1.47; $P = 0.01$)</td>
<td>1.34 (1.16–1.53; $P = 1.2 \times 10^{-5}$)</td>
<td>46.3%, $P = 0.17$</td>
</tr>
<tr>
<td>rs7910841 (0.28)</td>
<td>0.64 (0.51–0.80; $P = 8.2 \times 10^{-5}$)</td>
<td>0.83 (0.72–0.96; $P = 0.01$)</td>
<td>0.77 (0.68–0.87; $P = 2.3 \times 10^{-5}$)</td>
<td>72.5%, $P = 0.06$</td>
</tr>
<tr>
<td>rs12523819 (0.28)</td>
<td>0.64 (0.51–0.80; $P = 1.1 \times 10^{-5}$)</td>
<td>0.86 (0.74–0.99; $P = 0.04$)</td>
<td>0.77 (0.68–0.87; $P = 2.3 \times 10^{-5}$)</td>
<td>78.6%, $P = 0.03$</td>
</tr>
<tr>
<td>rs3785982 (0.12)</td>
<td>1.75 (1.36–2.24; $P = 1.3 \times 10^{-5}$)</td>
<td>1.24 (1.03–1.48; $p = 0.02$)</td>
<td>1.40 (1.21–1.62; $P = 7.9 \times 10^{-6}$)</td>
<td>79.1%, $P = 0.03$</td>
</tr>
<tr>
<td>rs2774307 (0.26)</td>
<td>1.51 (1.24–1.85; $P = 4.3 \times 10^{-5}$)</td>
<td>1.21 (1.05–1.40; $P = 0.01$)</td>
<td>1.30 (1.16–1.47; $P = 7.9 \times 10^{-6}$)</td>
<td>67.8%, $P = 0.08$</td>
</tr>
<tr>
<td>rs10220397 (0.25)</td>
<td>0.63 (0.50–0.79; $P = 8.6 \times 10^{-5}$)</td>
<td>0.85 (0.73–0.99; $P = 0.04$)</td>
<td>0.77 (0.68–0.88; $P = 8.3 \times 10^{-5}$)</td>
<td>78.1%, $P = 0.03$</td>
</tr>
<tr>
<td>rs3083850 (0.42)</td>
<td>1.48 (1.22–1.79; $P = 5.2 \times 10^{-5}$)</td>
<td>1.13 (1.00–1.29; $P = 0.05$)</td>
<td>1.23 (1.10–1.36; $P = 1.5 \times 10^{-4}$)</td>
<td>81.1%, $P = 0.02$</td>
</tr>
<tr>
<td>rs1387389 (0.36)</td>
<td>1.47 (1.22–1.77; $P = 5.0 \times 10^{-5}$)</td>
<td>1.20 (1.05–1.37; $P = 0.0007$)</td>
<td>1.28 (1.16–1.43; $P = 3.8 \times 10^{-6}$)</td>
<td>66.6%, $P = 0.08$</td>
</tr>
<tr>
<td>rs1513848 (0.07)</td>
<td>1.87 (1.41–2.46; $P = 1.0 \times 10^{-5}$)</td>
<td>1.25 (1.01–1.55; $P = 0.04$)</td>
<td>1.45 (1.22–1.72; $P = 1.6 \times 10^{-5}$)</td>
<td>80.2%, $P = 0.02$</td>
</tr>
</tbody>
</table>

Figure 2. Regional plot of P values arising from Cox-proportional hazard models, 250 kb either side of the rs421379 variant in stage I. P values are from the imputed and the genotyped SNPs.
collected from 78 twin pairs available via the Java-based Genevar interface, we did not observe an association of rs421379 with expression of ARRDC3 gene (Fig. 4). In scandb, we observed that rs421379 had trans eQTL effects on expression of RAB34 ($P = 1 \times 10^{-5}$) and ABCD1 ($P = 9 \times 10^{-3}$), but neither of these associations were genome-wide significant, which could be a result of low sample size available with 30 HapMap-CEU trios available from scandb.

Discussion

In this article, we have reported findings from the first genome-wide association study of breast cancer prognosis in patients with early-onset breast cancer and enriched for poor survival and ER-, PR-, and HER2–negative cases in discovery stage. Recently, 2 GWAS aimed at identifying risk alleles for patients with early-onset breast cancer and enriched for poor prognosis were conducted in unselected breast cancer patients of Chinese and European ancestries. Azzato and colleagues (12) in their GWAS conducted in 4,335 Caucasian breast cancer patients with mean age at diagnosis of 66 years (95% CI: 44–83) did not replicate any of their main findings in a large relatively younger cohort of patients with breast cancer (mean age = 51; 95% CI: 23–69). Azzato and colleagues (12) had taken forward 10 of their most significant findings forward for replication in the SEARCH study. On the contrary, Shu and colleagues (13), attempted replication of their top 50 associations in their 2-stage GWAS in Chinese patients and identified 2 associations with P values equal to 1.17×10^{-7} (rs3784099, RAD15L) and 5.75×10^{-5} (rs9934948). We did not find either of these 2 SNPs (rs3784099, $P = 0.61$ and rs9934948, $P = 0.25$) as associated with prognosis in the stage I data used for discovery in this GWAS nor in the Helsinki GWAS data.

In our study, we attempted replication of 50 of the strongest association signals from stage-I by selecting the strongest associated SNPs at each of the new discovered loci while excluding any other SNPs that were in relative LD with the best associated SNP at the same locus ($r^2 \geq 0.6$). Of the 35 SNPs that were selected from stage I for validation in stage-II, 27 SNPs were successfully genotyped in stage II and we found 11 of these SNPs to show nominal to strong replication signals (P range: $0.05–5 \times 10^{-3}$). Such a high replication rate (40.7%) suggests low phenotypic heterogeneity in samples collected between stage I and stage II. Large cohorts of young onset patients with comprehensive treatment and outcome data are uncommon given that less than 5% of all breast cancers are diagnosed before 40 years of age. We were able to enrich our stage I samples further with young onset triple-negative patients and patients with very short duration of breast cancer–specific survival. This allowed us increased statistical power to identify common genetic variants with modest effect sizes (OR ≥ 1.50) in stage I data. Despite having a more enriched stage I dataset, we did not have sufficient power (<80%) to detect association signals associated with HRs in range of 1.10 to 1.45 in our discovery samples. Future studies in larger early-onset cohorts are therefore needed to identify true associations with lower effect sizes than HR ≥ 1.50.

The strongest association signal in our study was observed 596 kb upstream of the ARRDC3 gene. In HapMap, we did not find any long range LD between rs421379 and any SNPs at or close to the ARRDC3 locus. The ARRDC3 gene is a member of the arrestin gene family and functions in a novel regulatory pathway that controls the cell surface adhesion molecule, b-4 integrin (ITGb4), a protein associated with aggressive tumor behaviour (28). Furthermore, deletion of the region of chromosome 5 containing the ARRDC3 gene is observed more frequently in basal-type breast cancer cancers (29). Differential expression levels have also been associated with prognosis in patients with prostate cancer (30). The associated SNP

Table 3. Associations of SNPs associated at $P \leq 10^{-6}$ in the 2-stage meta-analysis with secondary traits linked to breast cancer mortality in stage I and stage II combined dataset

<table>
<thead>
<tr>
<th>Secondary trait</th>
<th>rs421379</th>
<th>rs3884558</th>
<th>rs3785982</th>
<th>rs2774307</th>
<th>rs1387389</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER Status</td>
<td>OR = 1.13 (95% CI: 0.86–1.47, $P = 0.38$)</td>
<td>OR = 0.93 (95% CI: 0.75–1.16, $P = 0.52$)</td>
<td>OR = 1.14 (95% CI: 0.94–1.38, $P = 0.54$)</td>
<td>OR = 0.96 (95% CI: 0.83–1.11, $P = 0.59$)</td>
<td>OR = 0.97 (95% CI: 0.85–1.10, $P = 0.29$)</td>
</tr>
<tr>
<td>Nodal status</td>
<td>OR = 1.55 (95% CI: 0.99–2.49, $P = 0.07$)</td>
<td>OR = 1.70 (95% CI: 1.14–2.55, $P = 0.009$)</td>
<td>OR = 1.47 (95% CI: 1.06–2.05, $P = 0.02$)</td>
<td>OR = 1.16 (95% CI: 0.92–1.45, $P = 0.20$)</td>
<td>OR = 1.20 (95% CI: 0.98–1.46, $P = 0.05$)</td>
</tr>
<tr>
<td>M-Stage</td>
<td>OR = 1.22 (95% CI: 0.88–1.68, $P = 0.24$)</td>
<td>OR = 1.42 (95% CI: 1.07–1.87, $P = 0.01$)</td>
<td>OR = 1.23 (95% CI: 0.97–1.56, $P = 0.08$)</td>
<td>OR = 1.04 (95% CI: 0.88–1.23, $P = 0.62$)</td>
<td>OR = 1.07 (95% CI: 0.92–1.24, $P = 0.40$)</td>
</tr>
</tbody>
</table>

![Figure 3. Kaplan–Meier analysis plot depicting survival rates by rs421379 genotypes.](image-url)
rs421379 is located in the 5’ region of the ARRDC3 gene and might affect a transcription binding site and ARRDC3 gene expression, permitting development of a more aggressive, invasive tumor. The associated SNP rs421379 was predicted to disrupt a binding site for Myocyte-specific enhancer factor 2 (MEF2). This transcription factor family consists of 4 members (MEF2A-D) sharing the binding sequence and MEF2 could regulate ARRDC3 gene expression. Previously, MEF2B has been found to be highly expressed in basal breast cancer along with Notch (31). Later, a strong coexpression of Notch1 and MEF2 paralogs has been observed in breast cancer tumor samples from patients with metastatic disease (32).

We did not find a robust association signal between rs421379 and the probe representing variation in ARRDC3 expression (Fig. 4). In the SNP and CNV annotation database (scandb; ref. 33), rs421379 is identified to have trans-effects on expression of RAB34 (P = 1 × 10−5) and ABCD1 (P = 9 × 10−5) genes present on chromosomes 17 and X, respectively. It should be noted that the association analysis in Genevar 3.2.0 and scadnb analysis is based on 154 twins and the 30 HapMap CEU trios, respectively, as such the statistical power to detect modest effects on gene expression was not high and further given that the gene expression is quantified in lymphoblastoid cell lines, these results are not reflective of potential cis-effect of rs421379 in breast cancer–related cells.

The second strongest association we observed was at the PBX1 locus (HR = 1.28; 95% CI, 1.16–1.43; P = 3.8 × 10−6). The protein coded by this gene drives ERα signaling and breast cancer progression through transcriptional programming (34). There was no evidence of substantial heterogeneity in HRs across stage I and stage II for the SNP associated at the PBX1 locus (Table 2). Eleven SNPs according to HapMap phase 3 data are in high LD (r² > 0.8) with the PBX1 SNP we found as strongly associated, and all these SNPs were found to be intronic within the PBX1 locus. We also observed strong suggestive evidence for an association at the ROXα gene (HR = 1.46; 95% CI, 1.24–1.72; P = 5.9 × 10−6). It has recently been shown that ROXα protein expression is reduced in breast cancer cells and also this lower expression is related to poorer prognosis in patients with breast cancer (35). There was some evidence of heterogeneity in HRs between stage I and stage II patients for the rs3884558, which lies 78.3 kb upstream of the ROXα gene (P = 0.04). Although there were no SNPs in high LD (r² ≥ 0.8) 2.4 kb beyond rs3884558, SNPs in moderately LD (r² = 0.3) are located up to 95.7 kb away from rs3884558 and close to the ROXα gene.

The SNP rs3884558 was predicted to both disrupt and create multiple transcription factor–binding sites. The binding site was predicted to be lost for transcription factors POU2F1, TGIF1, HMGA1/2, and CDX2, and the new binding site was predicted to emerge for REV-ERBα, CREB1/2, HMGA1, VBP1, and E4F1. Interestingly, REV-ERBα belongs to the same nuclear hormone receptor family as does RORα. Moreover, these family members are known to crosstalk, and REV-ERBα has been shown to suppress the transcriptional activity of RORα (36).

The 2 other associations at NTNI and SYT6 could also be real, given NTNI expression is increased in breast cancer (37) and the replication signal at SYT6 remained strong in post-replication meta-analysis (HR = 1.30; 95% CI, 1.16–1.47; P = 7.9 × 10−6) with no strong evidence of heterogeneity in HRs with the associated variant.

Further studies at population level are needed to confirm the association of the 5 loci associated at P ≤ 10−6 that we have discovered from this 2-stage GWAS analysis. In future analyses, we will study the most strongly associated SNPs from the current study by interrogating additional well characterized and early-onset breast cancer cohorts. This will allow us to generate more accurate estimates of gene–survival associations and also allow the implementation of prediction statistics generated using gene score analysis. In addition, further studies are needed to establish beyond doubt the true validity of the remaining SNPs that replicated strongly but were not quite genome-wide significant. Published results from biochemical analyses do suggest PBX1, RORα, and NTNI are plausible candidate loci for an effect exerted by the host genotype in altering prognosis. Fine mapping and molecular studies are needed to establish the identity of the causal variant in the intragenic region, 596 kb upstream of ARRDC3 gene, and provide insight into the mechanism of action. Much emphasis currently is on genotyping of somatic mutations in tumors to help refine prognosis and identify treatment targets but this is only a part of the information that influences prognosis. Selecting a well-characterized poor prognosis group of patients with high breast cancer–specific mortality has been a useful strategy to identifying SNPs that influence prognosis. The ultimate validation of the clinical use for germline genetic variants that influence prognosis will come from genotyping in randomized adjuvant and neoadjuvant treatment trials. With a clear understanding of the magnitude and mechanism of prognostic SNPs, such genotyping may in future be routinely

Figure 4. Variation in ARRDC3 expression levels with rs421379 variant. Results are reported from twins from the same pair who were separated by id in 2 samples named Twin1-L and Twin2-L, which were analyzed independently. Rho is the Spearman rank correlation (SRC) coefficient, P value is for SRC, and Pemp is the empirical P value for SRC based on 10,000 permutations.
used in patients with cancer to help derive a more complete individualized risk assessment for early relapse and thereby guide treatment choices.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: W. Tapper, A. Collins, F.J. Couch, D. Eccles
Development of methodology: S. Rafiq, A. Collins, I. Poliopoulos, D. Eccles
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C. Blomqvist, F.J. Couch, H. Nevanlinna, J. Liu, D. Eccles
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Rafiq, A. Collins, S. Khan, I. Poliopoulos, C. Blomqvist, J. Liu
Writing, review, and/or revision of the manuscript: S. Rafiq, W. Tapper, A. Collins, S. Khan, I. Poliopoulos, F.J. Couch, H. Nevanlinna, J. Liu, D. Eccles
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Rafiq, S. Gerty, C. Blomqvist
Study supervision: W. Tapper, A. Collins, C. Blomqvist, F.J. Couch, D. Eccles

References

Acknowledgments
The authors thank Nikki Graham (DNA bank) and the staff of the Southampton CRUK Centre Tissue Bank. The authors also thank Drs. Kristiina Aittomaki, Kirsiniari Aaltonen and Karl von Smitten and KN Irja Erkkiä for their help with the Helsinki data and samples. Genotyping at the National Institute of Singapore was financially supported by the Agency for Science, Technology and Research (A*STAR), Singapore.

Grant Support
The POSH study is supported by Breast Cancer Campaign grant number 2010NovP602. Funding for the POSH study was also provided by The Wessex Cancer Trust and Cancer Research UK (grant refs. A7572, A11699, C22524). The Helsinki study was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union, and the Sigrid Juselius Foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 29, 2012; revised October 26, 2012; accepted November 21, 2012; published OnlineFirst January 14, 2013.

Identification of Inherited Genetic Variations Influencing Prognosis in Early-Onset Breast Cancer

Sajjad Rafiq, William Tapper, Andrew Collins, et al.

Cancer Res Published OnlineFirst January 14, 2013.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-3377</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2013/01/14/0008-5472.CAN-12-3377.DC1</td>
</tr>
</tbody>
</table>

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.