HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression

Nilay Shah*, Kideok Jin*, Leigh-Ann Cruz, Sunju Park, Helen Sadik, Soonweng Cho, Chirayu Pankaj Goswami, Harikrishna Nakshatri, Rajnish Gupta, Howard Y. Chang, Zhe Zhang, Ashley Cimino-Mathews, Leslie Cope, Christopher Umbricht and Saraswati Sukumar*

1Department of Oncology, 4Surgery, and 5Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
2Center for Computational Biology and Bioinformatics, Indiana University, 410 W 10th Street, Suite 5000, Indianapolis IN 46202
3Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, California 94305, USA
@Present address: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007
* These researchers contributed equally to the work described in this manuscript.
Co-corresponding authors.

Running title: Mechanism of HOXB13-mediated tamoxifen resistance

Keywords: Breast cancer, Tamoxifen resistance, HOXB13, interleukin-6, mTOR

Contact information for corresponding authors:

Saraswati Sukumar, PhD
Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
1650 Orleans Street, CRB 1, Rm 143
Baltimore, MD 21231-1000
Ph: 410-614-2479
FAX: 410-614-4073
Email: saras@jhmi.edu

Nilay Shah, MD
Georgetown University, Lombardi Comprehensive Cancer Center
Washington, DC 20007
Email: nshahnb@gmail.com

Conflict of Interest Statement: The authors have no financial conflicts of interest.

Word count: 4013. Figures: 5 Tables: 0. Supplementary Figures: 3 Supplementary Tables: 6

Grant Support:
This work was supported by grants from the National Institutes of Health (SPORE Program in Breast Cancer, P50 CA 88843), and the Department of Defense COE: W81XWH-04-1-0595 to SS, Susan G Komen Foundation Postdoctoral fellowship to KJ, and the Hartwell Foundation Biomedical Research Fellowship No.105408 to NS.
Abstract
Most breast cancers expressing the estrogen receptor α (ERα) are treated successfully with the receptor antagonist tamoxifen (TAM), but many of these tumors recur. Elevated expression of the homeodomain transcription factor HOXB13 correlates with TAM-resistance in ERα-positive (ER+) breast cancer, but little is known regarding the underlying mechanism. Our comprehensive evaluation of HOX gene expression using tiling microarrays, with validation, demonstrated that distant metastases from TAM-resistant patients also displayed high HOXB13 expression, suggesting a role for HOXB13 in tumor dissemination and survival. Here we show that HOXB13 confers TAM resistance by directly downregulating ERα transcription and protein expression. HOXB13 elevation promoted cell proliferation in vitro and growth of tumor xenografts in vivo. Mechanistic investigations showed that HOXB13 transcriptionally upregulated IL-6, activating the mTOR pathway via STAT3 phosphorylation to promote cell proliferation and fibroblast recruitment. Accordingly, mTOR inhibition suppressed fibroblast recruitment and proliferation of HOXB13-expressing ER+ breast cancer cells and tumor xenografts, alone or in combination with TAM. Taken together, our results establish a function for HOXB13 in TAM resistance through direct suppression of ERα and they identify the IL-6 pathways as mediator of disease progression and recurrence.
Introduction

Approximately 60-70% of breast cancers express estrogen receptor α (ERα) and/or progesterone receptor (PR) and merit the use of hormone therapies, such as the estrogen receptor antagonist tamoxifen (TAM) (1). Use of TAM has improved outcomes for patients with these tumors, but in 30-40% of these patients the cancers recur, usually as distant metastasis, and the majority of these patients will die of their cancer. High expression of the gene HOXB13 and concomitant low expression of IL17RB have been found in multiple studies to predict TAM-R and disease recurrence in patients with ER-positive (ER+) breast cancer (2-5).

The HOX genes encode a family of highly conserved transcription factors that normally regulate temporo-spatial development of the extremities and organs. Aberrant expression of these genes in different tissues have been associated with tumorigenesis (6). In breast cancer, low expression of HOXA5 and HOXA10 is associated with decreased p53 expression (7, 8), whereas high expression of HOXB7 or HOXB13 has been associated with aggressive disease (3, 9). However, the mechanism by which HOXB13 promotes aggressive disease and TAM-R in ER+ breast cancer has not been defined. Without understanding these mechanisms, therapeutic alternatives for patients with TAM-R, HOXB13-expressing ER+ breast cancer cannot be rationally devised for greatest efficacy and minimal toxicity.

A comprehensive HOX cluster expression tiling array analysis of primary ER+ breast tumors and distant metastases (10) supported the involvement of HOXB13 in dissemination of disease following resistance to hormonal therapy. Here, we validate these findings and provide insights into the mechanism whereby HOXB13 mediates TAM-R and metastasis. HOXB13 promotes TAM-R by transcriptionally down regulating ERα expression. HOXB13 drives cell and tumor proliferation by inducing expression of interleukin-6 (IL6) in the cancer cells, leading to activation of the AKT and mTOR pathways and also stimulating stromal recruitment. We also demonstrate
that targeting these pathways with the mTOR inhibitor, rapamycin, suppresses the growth of TAM-R, HOXB13-expressing tumors.

Materials and Methods

Human tissue specimens: Normal breast epithelial preparations (“organoids”), primary breast tumors, and distant metastases were accessed with approval from the JHU Institutional Review Board, and RNA extracted as previously described (10). Detailed methods are presented in the Supplementary Methods section.

Reverse transcription-quantitative PCR (RT-qPCR) validation of gene expression: 200 ng of RNA from primary tissue samples, or 1 µg of RNA from cell lines, were reverse-transcribed using Superscript III (Invitrogen), per manufacturer protocol; 1 µL of yield was used per PCR. Taqman® Gene Expression Assays for HOXB13 (Hs00197189_m1) and GAPDH (Hs99999905_m1) were used as primers and gene-specific fluorescent probes for PCR, using RampTaq polymerase (Denville Scientific) and supplied buffer. qPCR was performed per manufacturer protocol, using the Applied Biosystem 7500 Real-Time PCR system for 40 cycles. A detection threshold of 0.01 was set for determination of Ct for each reaction. For each sample, qPCR was performed to measure HOXB13 and GAPDH expression; each sample was tested in triplicate. The \(\Delta \Delta \text{Ct} \) method (GAPDH used for normalization) was used to determine the expression of HOXB13 in each reaction separately, using average lowest expression in organoid tissue as baseline. Relative expression was calculated as \(2^{\Delta \Delta \text{Ct}} \), and the three expression values averaged to determine HOXB13 expression in each sample. Primer compositions are presented in Table S1.

Cell culture, Plasmids, and Cell Line Constructs: The breast cell lines MCF10A, MCF7, T47D, and BT474 were provided by NCI (IBC-45 panel) through the American Type Culture Collection (ATCC); the fibroblast cell line NIH3T3 was obtained from lab stocks. MCF10A cells were grown in DMEM/F12 media (Mediatech) supplemented with 5% Horse Serum, 20 ng/ml EGF, 0.5
mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 µg/ml insulin, 50 IU/ml penicillin and 50 µg/ml streptomycin sulfate. MCF7 cells were grown in DMEM supplemented with 10% FBS (Gemini Bio-Products), and T47D and BT474 cells were grown in RPMI media with 10% FBS. NIH3T3 cell lines were grown in DMEM with 10% normal calf serum.

Plasmids containing the full length cDNA of human HOXB13 in the pLPCX retroviral vector ("pHOXB13"), the empty pLPCX vector (Clontech), two shRNA lentiviral constructs targeting HOXB13 mRNA ("shHOXB13"), and scramble shRNA construct (PLKO.1/Thermo Scientific) were used to generate viral supernatant for overexpression or knockdown of HOXB13 in cell lines. Generation of HOXB13-modulated cell lines by retroviral infection is described in the Supplementary Methods.

Matrigel Invasion Assays: Invasion assays were performed in BD Biocoat™ Matrigel (24-well format) Invasion Chambers per manufacturer protocol. Experiments were performed in triplicate.

Promoter-Luciferase Reporter assay: MCF7 cells were transiently transfected with LipofectAMINE 2000/DNA complexes (Invitrogen) of p-HOXB13, promoter-luciferase construct (pGL2, Promega), and β-galactosidase (βGAL) plasmid, and incubated for 24 h. Luciferase and βGAL activity were measured per protocol (Promega). Assays were performed in triplicate in a single experiment, and then as three independent experiments.

Western Blots: Western blots were performed as previously described (7); full methods and antibodies used can be found in the Supplemental Experimental Methods.

Drug in vitro cell survival: 2.5X10^3 cells/well were plated in 96-well plates, in triplicate, with 4OH-TAM (Sigma Aldrich) or rapamycin (Selleck Chem) at stated concentrations, a combination, or vehicle in 200 µL media. Media was changed every two days. MTT assays were performed. Absorbance at 560 nm was measured, with background at 670 nm subtracted. Each sample was analyzed in triplicate, and percentage calculated of survival of drug-treated cells versus vehicle-treated cells. Experiments were performed in triplicate. Antibody information is provided in Table S2.
Chromatin Immunoprecipitation (ChIP): ChIP was performed with the EZChip kit (Millipore) according to protocol; full details can be found in the Supplementary Methods, including primers for PCR (Table S1).

Tumor xenograft studies: 6-8 week old female athymic nude mice were used, and study approved by Johns Hopkins Animal Use Committee. E2 pellets were implanted subcutaneously (SC) on day -3 in 6 mice. On day 0, 3x10^6 of the indicated tumor cells were injected SC into both flanks of each mouse. In a second experiment, mice were implanted with E2 pellets on day -3. On day 0, the indicated cancer cells were injected into the 4th mammary fat pads (mfp) (1.5x10^6 cells) or SC (3x10^6 cells) suspended in 0.1 mL of 1:1 PBS/Matrigel (BD Biosciences) in separate sets of mice. After 3 weeks, 6 mice each with mfp or SC tumors were treated with either 1) TAM implants SC; 2) Rapamycin intraperitoneally (IP) with a loading dose of 9 mg/kg on day 21, then 3 mg/kg every other day, 3) TAM implants plus rapamycin, or 4) no additional treatment. Tumor growth was measured weekly. Mice were euthanized after 6 weeks and tumors harvested. Tumor volume was estimated by the calculation V=(length x width x height x 0.5236)mm^-3. Details are presented in the Supplementary Methods section.

Statistical analyses: All statistical analyses, except the analysis of the tiling arrays and the NKI dataset, were performed using GraphPad Prism version 5.04 (GraphPad Software, Inc.). The NKI dataset (288 patients with ER+ breast cancer) uses a custom Rosetta oligonucleotide, on which HOXB13 and IL6 are each represented by 2 probes. Spearman rank-based correlation coefficients were used to measure association, assessing significance using a permutation test.

For all RT-qPCR analyses and the invasion assays, one-way ANOVA analysis using the Kruskal-Wallis test was performed to assess significant difference amongst groups, as well as two-tailed Student’s t-test to compare specific pairs. For survival analyses, the log-rank/Mantel-Cox test was performed to calculate significant difference in survival. For sensitivity of cell lines to rapamycin, two-way ANOVA testing (cell line and drug concentration) was performed, with
Bonferroni’s post test to compare cell lines. For tumor xenograft studies, tumor growth inhibition was analyzed using a mixed effects model by assuming an exchangeable covariance structure to account for correlation among measurements taken on the same animal. Tukey’s procedure was used to adjust for multiple comparisons. For all other assays, two-tailed Student’s t-tests with unpaired values were performed.

Results

HOXB13 is overexpressed in distant metastases and associated with disease recurrence and death

We evaluated HOX gene expression in ER+ breast cancer and distant metastatic disease through analysis of HOX tiling arrays (10) on normal breast organoids, primary tumors and distant metastases. HOXB13 was overexpressed in the majority of tumor samples, including 5/6 metastases, compared to normal organoids (10). This finding was validated by RT-qPCR using a panel of ER+ primary tumors from long-term breast cancer survivors and nonsurvivors, and 14 metastases from multiple sites from 11 breast cancer patients who had undergone rapid autopsy for tissue donation (Fig 1A). Compared to normal organoids, each group of tumors had significantly higher expression of HOXB13 (p<0.007), and tumors from nonsurvivors and metastases had significantly higher expression than those from survivors (p=0.009).

HOXB13 expression correlates with proliferation, resistance to TAM, and estrogen-independent growth

To study the mechanism by which HOXB13 mediates TAM-R, we examined HOXB13 expression in breast cell lines. We showed that the immortalized normal breast cell line MCF10A had HOXB13 expression comparable to levels seen in primary normal breast organoid preparations (p=0.9). Consistent with HOXB13 expression in primary tumors from survivors, expression in ER+, TAM-sensitive (TAM-S) cell lines, MCF7 and T47D, were 4-8 fold higher than MCF10A. In contrast, HOXB13 expression in an ER+, TAM-R cell line, BT474, was 400 to
500-fold higher than MCF10A, consistent with the level of expression in primary tumors from nonsurvivors (Fig S1A). In MCF7 and T47D, forced expression of HOXB13 raised levels of HOXB13 to within the range of expression seen in tumor samples from nonsurvivors (Fig. S1B). In BT474 cells, lentiviral infection of two short hairpin RNA constructs (shRNA) resulted in reduced HOXB13 expression to 10% (shHOXB13 #1) and 5% (shHOXB13 #2) of the vector control of BT474 (shScramble) and below the median HOXB13 expression seen in tumors from survivors (Fig S1B).

To determine if HOXB13 expression correlates with TAM-R, cells were treated with 1-5 µM 4-hydroxytamoxifen (4-OH TAM, the active metabolite of TAM) in vitro, for 48 hours. Both the MCF7-HOXB13 cell pools with high HOXB13 expression had significantly higher survival at 2 and 5 µM 4OH-TAM compared to vector control (Fig 1B). Conversely, BT474-shHOXB13 cell pools, with low HOXB13 expression, had lower survival (Fig1C). Growth phenotypes of these cells were also tested in vivo. ER+ cell lines require estradiol supplementation (E₂) to grow as xenografts and are TAM-S, which causes growth arrest and tumor regression. MCF7-HOXB13 cells injected subcutaneously (SC) into athymic nude mice formed tumors that proliferated without E₂, whereas the MCF7-vector control cells did not (Fig S1C), suggesting that HOXB13-expressing cells had lost dependence on E₂ for growth. To test response of the tumors to TAM, E₂ pellets were implanted into mice 3 days before xenograft implantation; after 3 weeks the pellets were replaced with TAM pellets. MCF7-HOXB13 xenografts grew faster and continued to grow despite TAM, whereas MCF-vector xenograft growth was suppressed by TAM (Fig 1D). Conversely, xenografts of TAM-R, BT474-vector control cells continued to grow while BT474-shHOXB13-2 xenografts regressed upon TAM treatment (Fig 1F). Thus, the phenotype of both the HOXB13-overexpressing and -depleted breast cancer cells reflect the TAM-R phenotype associated with HOXB13 overexpression in vitro and in clinical studies.
HOXB13 directly suppresses ERα transcription

Despite extensive evidence for a strong correlation between HOXB13 and TAM-R, few studies have addressed the mechanisms linking the two. ERα activation with E₂ in cultured breast cancer cells decreased HOXB13 mRNA levels (11). Conversely, ERα suppression with TAM in breast cells resulted in increased levels of HOXB13 mRNA (11). In ovarian cancer cells, a reverse phenomenon was reported—HOXB13 expression enhanced expression of ERα protein and ERE-linked luciferase activity (12). We investigated the correlation between HOXB13 and ERα in our cell line models. By Western blot analysis, we observed that both T47D-HOXB13 and MCF7-HOXB13 pools showed reduced expression of ERα (Fig 2A). Conversely, two pools of BT474-shHOXB13 cells showed increased expression of ERα (Fig 2A). In MCF7-TMR1 and MCF7-TMR2 cells (grown for more than 6 months in 0.1 µM or 1 µM 4-OH TAM respectively), ERα mRNA expression (Fig S2A) and protein expression (Fig 2B) was significantly lower compared to parental MCF7 cells. HOXB13 caused this downregulation, as shRNA-mediated depletion of HOXB13 expression in MCF7-TMR1 cells resulted in increased ERα protein (Fig 2B) and mRNA (Fig S2B) expression. These changes are reflected in the sensitivity of these cells to TAM. Treatment of MCF7-TMR1 cells with 1 to 5 µM 4-OH TAM for 48 hours had little effect on cell viability (Fig S2C). However, the MCF7-TMR1 shHOXB13#1 and #2 cells regained sensitivity to 4-OH TAM (Fig S2C). Thus, HOXB13 overexpression and TAM-R are closely linked; reducing HOXB13 levels in the cells confers TAM sensitivity.

The negative correlation between HOXB13 and ERα expression led us to investigate if HOXB13 acts directly upon the ERα promoter to repress expression. ERα promoter-luciferase constructs were made, from -4100 bp to -245 bp of the transcriptional start site (TSS) of ERα (Fig 2C). Co-transfection experiments showed that HOXB13 significantly suppressed ERα promoter-luciferase activity in all constructs as compared to empty vector, and identified a consensus HOX binding sequence (TAAT) within -245 bp of the TSS. Deletion of 10 base pairs inclusive of
the putative HOX-binding site resulted in loss of the suppressive effect of HOXB13 on ERα promoter (Fig 3C). To show direct interaction between HOXB13 and the ERα promoter, we performed chromatin immunoprecipitation (ChIP) for HOXB13 in the MCF7-HOXB13 cell line. Three regions of the ERα promoter with putative HOX binding sequences (Fig 2D) were tested; HOXB13 specifically bound to a region extending from -288 bp to +46 bp. Compared to MCF7-vector cells, ChIP using an anti-HOXB13 antibody in MCF7-HOXB13 cells showed specific enrichment for binding to this region, in contrast to other regions of the promoter (Fig 2D). Consistent with the presence of a repressive complex, ChIP for the corepressor, NCoR, showed enriched binding to this region of the ERα promoter in the MCF7-HOXB13 cells (Fig 2F).

HOXB13 expression is associated with increased stroma in MCF7 xenografts and increased fibroblast recruitment in vitro, and acts by directly promoting IL6 expression

Since the cell lines with higher HOXB13 expression grow faster as xenografts, and display TAM-R and E2-independent proliferation, HOXB13 is likely utilizing ER-independent pathways to potentiate these phenotypes. We also noted a striking difference in the histology of the tumor xenografts- MCF7-vector control xenografts grow with little stroma, while tumors of MCF7-HOXB13 cells had significantly larger stromal component interspersed among the cancer cells (Fig 3A). Based on the vast literature of stromal recruitment and participation in breast cancer aggressiveness (13-15), we entertained the notion that the factors that drive proliferation in HOXB13-expressing tumors may include those that affect their microenvironment.

Genes implicated in different aspects of lymphocyte, macrophage, and stromal recruitment and cellular invasion include *IL6, IL8, CXCL12, CXCR4*, and *MMP1* (16-18). RT-qPCR was performed on RNA from the MCF7-HOXB13 and BT474-HOXB13 shRNA cells and their vector controls, to analyze mRNA expression levels of these genes (Fig S3A and S3B). Of those tested, *IL6* showed consistent patterns of direct correlation of expression with HOXB13 across both sets of cell lines (Fig 3B, S3C, D), and MCF7-TMR cell lines (Fig S3E, F).
To evaluate the ability of HOXB13-expressing cancer cells to attract fibroblasts and to define the role of IL-6 in this function, we performed cell invasion/chemotaxis assays. NIH3T3 mouse fibroblasts respond to chemotactic stimuli in a manner similar to human tumor stroma-derived fibroblasts (19, 20). Media conditioned by MCF7-HOXB13 cells was used as the chemoattractant in Matrigel invasion assays, using NIH3T3 fibroblasts (Fig 3C) or primary human fibroblasts (Fig 3D, 3E) as invading cells. In both cases, conditioned medium from MCF7-HOXB13 cells attracted significantly more fibroblasts than MCF-7-vector (Fig 3D, 3E, Fig S3G). Further, pretreatment of the fibroblasts with an anti-IL-6R antibody abrogated this effect (Fig 3D), suggesting that the major stromal attractant was IL-6.

To evaluate if HOXB13 was directly driving IL6 expression, deletion constructs of IL6 promoter-luciferase plasmids (-248 bp to -1787 bp of the TSS) were constructed. Significantly increased luciferase activity was observed with constructs -439 bp or less (Fig 3F) in MCF7 cells transiently cotransfected with pHOXB13, compared to empty vector. Deletion of 10 base pairs that included either of two distinct putative HOX binding sites from the -439 or -248 bp promoter-luciferase constructs resulted in loss of the HOXB13 effect (Fig 3F). These results suggested that HOXB13 binds directly to the IL6 promoter and upregulates its expression. ChIP analysis for HOXB13 identified a region -225 bp to +15 bp of the TSS that was enriched for binding in MCF7-HOXB13 cells (Fig 3G) as compared to vector control cells (Fig 3H). Also, ChIP analysis showed enrichment at the IL6 promoter of two HOX cofactors, PBX1 and MEIS1, but not of the corepressor NCoR (Fig 3I). These findings support the hypothesis that HOXB13 binds the IL6 promoter directly and promotes IL6 transcription.

HOXB13-driven IL-6 expression activates AKT and mTOR, and this activation can be blocked by rapamycin

IL-6 promotes tumorigenesis through multiple mechanisms, including cell proliferation and stromal recruitment (21-23), and causes these effects, in part, through phosphorylation of AKT and activation of mTOR-mediated pathways (21, 24). Consistent with high IL-6 activity, Western
blot analysis of the MCF7 and BT474 cell line sets showed that, in MCF7-HOXB13 and BT474 cells, STAT3, AKT, and downstream targets of mTOR were phosphorylated (Fig 4A, left panel). Conversely, knockdown of HOXB13 in BT474 cells resulted in slight decrease in p-STAT-3 but a marked decrease in p-AKT, p-p70S6K and p-4EBP1, the downstream effectors of the mTOR pathway (Fig 4A, right panel). To determine if the stromal recruitment effects are largely mediated by IL-6, human fibroblasts were grown in conditioned media from MCF7-Vector or MCF7-HOXB13 cells after treatment with either anti-IL-6 or IL-6R blocking antibody, followed by immunoblot analysis of p-STAT3 (Y705) and p-AKT (S473). We found phosphorylation of STAT3 and AKT was blocked despite treatment with medium from MCF7-HOXB13 cells (Fig 4B).

Rapamycin, an inhibitor of mTOR, has been shown to suppress IL-6-driven pathways (21, 25). If so, rapamycin would suppress phenotypes that are associated with high expression of HOXB13. Indeed, both MCF7-HOXB13 and T47D-HOXB13 cells were sensitive to rapamycin, with significantly decreased viability compared to vector-control cells with low HOXB13 expression (Fig 4C and D). Next, we tested if rapamycin could block fibroblast recruitment by the cancer cells in culture. Cancer cell lines were grown in complete medium with and without 50 nM rapamycin for 24 hours; this media was then used as the chemoattractant for NIH3T3 cells in the matrigel invasion assay. While MCF7-HOXB13 and BT474-conditioned media successfully increased fibroblast invasion, rapamycin-treated conditioned media failed to attract fibroblasts more than media from control cells (Fig 4E and F), suggesting that blockade of mTOR-mediated pathways successfully suppressed that phenotype.

Rapamycin can inhibit proliferation of HOXB13-expressing ER+ breast cancer cells in vivo

Given the suppressive effect of rapamycin on HOXB13-expressing ER+ cells in vitro, we tested its effect in vivo. Since HOXB13-expressing cells still expressed low levels of ERα, we also
evaluated if there would be a combinatorial effect of using rapamycin with TAM. MCF7-HOXB13 xenografts were grown for 3 weeks. Then mice were treated with either rapamycin, TAM, or rapamycin and TAM for 3 additional weeks. In MCF7-HOXB13 xenografts grown in the mammary fat pad (Fig 4G) or SC (Fig S4A), treatment with rapamycin alone, or with TAM together caused significant tumor regression, and was significantly more effective than TAM alone (weeks 5 and 6, p<0.003; Table S3-S6).

HOXB13 expression correlates directly with IL6 expression and inversely with ERα (ESR1) expression in primary tumor samples and is associated with poor prognosis

To study the correlation between *HOXB13* and *IL6* expression and whether a combination of these markers might provide better predictive and prognostic significance compared to either one alone, we analyzed an independent dataset of tumors from 288 patients with ER+ breast cancer (26). As supported by multiple publications (3-5), *HOXB13* expression was significantly prognostic of 5-year overall survival (OS) (Fig 5A; Hazard ratio (HR)=1.29, p=4x10⁻⁴). Patients whose primary tumors had high *HOXB13* expression had a significantly higher risk of disease recurrence (HR=3.55, 95%CI 1.068-11.84) and death from disease (HR=3.438, 95%CI 1.036-11.41) compared to those with low *HOXB13* expression. Next, we evaluated the role of *IL6* expression, in relation to *HOXB13* expression, as a clinical biomarker. High *IL6* expression was prognostic of 5-year OS (Fig 5B, HR=1.175, p=0.0041). Furthermore, a combination of *IL6* and *HOXB13* expression was significantly prognostic of overall survival and more powerful than either gene alone (Fig 5C; HR=1.228, p=1.75x10⁻⁵). These findings all support the roles of upregulation of *HOXB13* and *IL6* in disease aggression and TAM-R, ER+ breast cancer.

Discussion

Numerous studies have demonstrated the predictive value of *HOXB13* expression in ER+ breast cancer (2, 3, 11), establishing it as a potentially useful clinical biomarker. Prior work had found *HOXB13* mRNA expression correlates inversely with *ESR1* expression in breast cancer
and, in ER+ TAM-S cell lines, E₂ suppresses HOXB13 expression (11). However, no studies have examined the mechanisms by which HOXB13 contributes to disease aggression, specifically in TAM-R and metastatic recurrence. An evaluation of HOXB13 function in TAM-R breast cancer is critical to identifying new therapeutic targets. We performed the first such examination of HOXB13 in breast cancer and demonstrated its role in aggressive disease, consistent with clinical studies.

For the first time, we have assessed HOXB13 in distant metastatic tumors. We confirmed tumors from nonsurvivors had significantly higher mRNA levels of HOXB13 compared to those from survivors, and HOXB13 expression significantly predicts disease recurrence and death from disease. The metastatic samples used were from a variety of body sites, including liver, lung, lymph nodes, and ovaries. Subset analysis using only one body site was not possible while maintaining statistical power, but we are now evaluating the role of HOXB13 in metastasis to specific anatomic sites.

We demonstrated that HOXB13 suppressed but did not fully abrogate ERα expression, and it also promoted proliferation and TAM-R in vivo, consistent with the association of HOXB13 expression with metastatic disease recurrence in patients despite treatment with TAM. The experimental evidence and the increased stromal component in HOXB13 tumor xenografts suggested HOXB13 promoted tumor formation and disease recurrence also by promoting other pathways, including proliferation and stromal recruitment.

An extensive body of literature is emerging that supports cross-talk and cooperation between stromal cells and tumor cells at multiple levels such as- the soluble factors elicited by tumor cells and those in response by the stromal cells, changes in the extracellular matrix, and alterations in cell adhesion, which collectively lead to a microenvironment conducive to tumor progression (27, 28). A major cell type that alters the tumor milieu is the stromal fibroblast. To study the notable stromal recruitment visible in HOXB13 overexpressing tumors, and to decipher the role of IL-6 mediated pathways in this function, we modeled the in vivo conditions...
in tissue culture. We demonstrated the ability of normal murine and human fibroblasts to migrate toward conditioned medium from HOXB13 overexpressing tumor cells, but not from vector control cells; and that the action was blunted by pretreating the fibroblasts with anti-IL-6 antibodies (Fig 3). While this approach replicated the recruitment of naïve fibroblasts to the tumor site by IL-6 secreted by tumor cells, it would also be important to study, in the future, the molecular and biological differences between cancer-associated-fibroblasts (CAF) existing in the tumors and in normal fibroblasts in the breast, and how CAF action relates to hormone resistance mediated by HOXB13.

In this study, we confirmed HOXB13 directed transcriptional activation of IL6, a common mediator of stromal recruitment. IL6 is an activator of the AKT pathway, and this activation is suppressed by mTOR inhibitors (21, 24, 25). We specifically demonstrated that the mTOR inhibitor rapamycin can suppress the proliferation of ER+, HOXB13-expressing cells in vitro and in vivo, alone or in combination with TAM. This work led us to conclude that HOXB13 expression in ER+ breast cancer cells not only allows for estrogen-independent proliferation and tumorigenesis but makes the cells dependent on mTOR-mediated pathways for this proliferation. These pathways need to be more fully defined to identify potential mechanisms of multidrug resistance. Nonetheless, we demonstrate that the use of rapamycin with TAM suppresses ER+, HOXB13-expressing breast cancer growth better than either drug alone and can even cause tumor regression in vivo.

In the past year, two major clinical trials demonstrated the efficacy of everolimus, a 2nd generation mTOR inhibitor, in combination with anti-estrogen therapy in recurrent ER+, antiendocrine-resistant breast cancer (29, 30). Our findings provide a mechanistic explanation for this benefit. There are currently three clinically available tests, including the HOXB13/IL17RB RT-qPCR/MGI test known as the Breast Cancer Index (Biotheranostics), that have been well-validated as predictive of TAM-resistance in ER+ tumors. However, no treatment option has been previously suggested for those patients for whom TAM alone would be an unsuccessful
treatment. Our work provides a novel and logical mechanistic basis for the use of everolimus with TAM for treatment of ER+ breast tumors with high HOXB13 expression at initial diagnosis. This combination is particularly attractive as everolimus is well-studied and well-tolerated in humans. Our work provides a rationale for clinical studies to evaluate the use of the Breast Cancer Index to recommend combined use of an mTOR inhibitor and TAM at diagnosis to prevent disease recurrence. These studies should also inform the rapid development of new therapies for TAM-R, HOXB13-expressing ER+ breast cancers.

Acknowledgements

The NCI IB45 kits are gratefully acknowledged. We thank Alan Rein for critically reviewing the manuscript.
References

Figure Legends

Fig 1. HOXB13 is overexpressed in primary ER+ breast cancers and distant metastases and promotes TAM resistance. (A) RT-qPCR validation of HOXB13 expression in normal breast organoids (org), ER+ primary breast tumors from long-term survivors or nonsurvivors of disease, and metastases (mets). Median expression is marked. (B) RT-PCR analysis of HOXB13 expression in MCF7-HOXB13 cells (Pools 1 and 2) compared to vector control; cell viability after treatment with 1, 2, or 5 uM 4-OH TAM. (C) RT-PCR analysis of BT474-HOXB13 shRNA cells (Pools: 1 and 2) compared to vector control; cell viability after treatment with 1, 2, or 5 uM 4-OH TAM. (D) Tumor growth of MCF7-Vector (black) and MCF7-HOXB13 cell SC xenografts in athymic mice with E2 supplementation, then treated with SC TAM implant (arrow) (*p<0.01). (E) Tumor growth of BT474-scrambled shRNA (closed square) and BT474-HOXB13 shRNA (open square) cell SC xenografts in athymic mice with E2 supplementation, then treated with SC TAM implant (**p<0.005).

Fig 2. Direct transcriptional downregulation of ERα by HOXB13. (A) Immunoblot analysis of ERα and HOXB13 expression in MCF7-HOXB13, T47D-HOXB13, and BT474shHOXB13 cells compared to vector control cells. (B) Immunoblot analysis of ERα in MCF7-TMR1 and TMR2 cells compared to parental MCF7 cells (left panel). shRNA-mediated HOXB13 knockdown in MCF7-TMR1 cells results in increased ERα expression (right panel). (C) ERα promoter-luciferase construct maps (left) and luciferase activity of each, co-transfected with vector (blue) or HOXB13 plasmid (red). A region 245 bp upstream of the TSS, including a HOX binding sequence, is critical to HOXB13-directed suppression. (*p<0.01) (D) Diagram of regions in the ERα promoter with HOXB13 binding sites (double arrow, top). ChIP on MCF7-HOXB13 cells with anti-HOXB13 antibody or control IgG demonstrates Site 3 is enriched with HOXB13 expression (bottom). (E) qPCR analysis of putative HOXB13 binding sites in the ERα promoter.
after HOXB13 ChIP assay. (*p<0.01) (F) qPCR analysis of the putative HOXB13 binding sites after NCOR ChIP assay. (*p<0.01)

Fig 3. HOXB13 promotes stromal recruitment through upregulation of IL6. (A) H&E stained sections of MCF7 xenografts. MCF7-vector tumors (left panels) grow as uniform sheets of cancer cells, with little stromal component. In contrast, MCF7-HOXB13 tumors (right panel) have significantly more stromal infiltration. (B) RT-qPCR analysis of *IL6* expression in MCF7-HOXB13 (left) and BT474-shHOXB13 (right) cells compared to the control cells. (C) and (D) Cell invasion/chemotaxis analysis using MCF7-HOXB13 conditioned media as the chemoattractant for (C) untreated NIH3T3 fibroblasts or (D) primary human fibroblasts pretreated with IgG or anti-IL-6R antibody. (E) Representative photomicrographs (10X) of crystal violet-stained invading fibroblasts on the bottom of the insert membrane, attracted to conditioned media from MCF7-Vector or MCF7-HOXB13 cells. (F) IL6 promoter-luciferase construct maps (left) and luciferase activity of each construct, co-transfected with vector (red) or pHOXB13 (blue), identifying a region 248 bp upstream of the TSS, including two HOX binding sequences, as critical to HOXB13-directed enhancement (*p<0.01). (G) Diagram of regions in the *IL6* promoter with HOXB13 binding sites (double arrow). ChIP on MCF7-HOXB13 cells with either anti-HOXB13 antibody or control IgG demonstrates Site 3 is enriched with HOXB13 expression (bottom). (H) qPCR analysis of the three putative HOXB13 binding sites in *IL6* promoter after HOXB13 ChIP assay. (I) qPCR analysis of HOXB13 Binding Site 3 after PBX1, NCOR, or MEIS1 ChIP assay (*p<0.01)

Fig 4. mTOR pathway is activated in HOXB13-expressing cells via IL-6. (A) Immunoblot analysis of p-STAT3 (Y705), p-AKT (S473), p-p70S6K and p-4EBP1 in MCF7-HOXB13 and BT474-shHOXB13 cells compared to control cells. (B) Immunoblot analysis of p-STAT3 (Y705) and p-AKT (S473) in human fibroblasts after treatment with conditioned media from MCF7-Vector or MC7-HOXB13, with and without treatment of either anti-IL-6 (left) or IL-6R blocking
(right) antibody. (C) and (D) Cell viability analysis following treatment with 25, 50, and 100 ng/ml Rapamycin in MCF7-HOXB13 (C) and T47D-HOXB13 (D) cells compared to vector control cells (*p<0.005) (E) and (F) Cell invasion/chemotaxis analysis of NIH3T3 cells pretreated with vehicle or 50ng/ml rapamycin, using conditioned medium from (E) MCF7-HOXB13 or control, or (F) BT474-HOXB13shRNA or control as the chemoattractant. (G) Growth of MCF7-HOXB13 xenografts implanted in athymic mouse mammary fat pad (mfp). Xenografts grew in the presence of E2 for three weeks; mice were then treated with TAM (square), rapamycin (circle) or rapamycin and TAM (triangle) for three weeks. Tumor volume was significantly smaller in Rapamycin and Rapamycin + TAM treated groups compared with either vehicle or Tamoxifen alone (*p<0.005).

Fig 5. High HOXB13 and IL6 expression in primary tumors from the NKI dataset [288 patients with ER+ breast cancer (26)] are associated with poor overall survival. (A) Kaplan-Meier plot displaying overall survival probability of ER+ breast cancer patients with tumors expressing high (red) or low (green) levels of HOXB13. (B) Kaplan-Meier plot displaying overall survival probability of ER+ breast cancer patients with tumors expressing high (red) or low (green) levels of IL6. (C) Kaplan-Meier plot displaying overall survival probability of ER+ breast cancer patients stratified by high (red) or low (green) sum expression of HOXB13 and IL6.
Figure 2

A

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Vec</th>
<th>B13</th>
<th>Cont</th>
<th>B13 sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T47D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT474</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- ERα
- HOXB13
- Actin

C

-4,100
-2,500
-1,000
-785
-245
-245

Luciferase

pGL3-4.1
pGL3-2.5
pGL3-1
pGL3-785
pGL3-245
pGL3-del

Percent of RLU

0 50 100

D

-1600
-1200
-800
0
+200

Site 1
Site 2
Site 3

Site 1
Site 2
Site 3

E

HOXB13 ChIP

Vector
HOXB13

Site 1
Site 2
Site 3

F

NCOR ChIP

Vector
HOXB13

Site 1
Site 2
Site 3

Downloaded from cancerres.aacrjournals.org on July 22, 2017. © 2013 American Association for Cancer Research.
Figure 4

Panel A: Western blot analysis showing the expression levels of various proteins in MCF-7 and BT474 cell lines. The blots are stained with antibodies against P-STAT3 (Y705), Total STAT3, P-AKT (S473), Total AKT, P-p70S6K, Total p70S6K, P-4EBP1, Total 4EBP1, and Actin. The blots are shown for both B13 and Scrambled RNA (Scr.) shRNA.

Panel B: Immunoblot analysis for the expression of α-IL-6 and α-IL-6R in B13 and Scr. shRNA. The blots are stained with antibodies against p-STAT3 (Y705), Total STAT3, p-AKT (S473), Total AKT, and Actin.

Panel C: Cellular viability of MCF-7 cells treated with different concentrations of Rapamycin (0, 25, 50, 100 ng/ml) in the presence of Vector and HOXB13 shRNA. The viability is measured as a percentage of control and is represented graphically.

Panel D: Cellular viability of T47D cells treated with different concentrations of Rapamycin (0, 25, 50, 100 ng/ml) in the presence of Vector and HOXB13 shRNA. The viability is measured as a percentage of control and is represented graphically.

Panel E: No. of migrating cells in MCF-7 cells treated with Veh and Rapa in the presence of Vector and HOXB13 shRNA. The number of migrating cells is represented graphically.

Panel F: No. of migrating cells in BT474 cells treated with Veh and Rapa in the presence of Scr. shRNA and B13 shRNA. The number of migrating cells is represented graphically.

Panel G: Tumor volume of MCF-7-B13 cells treated with E2, TAM, RAPA, RAPA+TAM, and Veh Rapa over 6 weeks. The tumor volume is measured in mm³ and is represented graphically.
Figure 5

A
HOXB13

HR: 1.29 (1.119-1.487);
PVAL: 0.0004

B
IL6

HR: 1.175 (1.052-1.312);
PVAL: 0.004

C
HOXB13+IL6

HR: 1.228 (1.118-1.349);
PVAL: 1.756e-05
HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ER α and inducing IL-6 expression

Cancer Res Published OnlineFirst July 5, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-1178

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/07/09/0008-5472.CAN-13-1178.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.