Adipocyte-Derived Fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer.

Ludivine Bochet1,2,3,\#, Camille Lehuédé1,2,3\#, Stéphanie Dauvillier1,2, Yuan Yuan Wang1,2,3, Béatrice Dirat1,2,3, Victor Laurent1,2, Cédric Dray1,3, Romain Guiet1,2, Isabelle Maridonneau-Parini1,2, Sophie Le Gonidec1,3, Bettina Couderc4, Ghislaine Escourrou5, Philippe Valet1,3 and Catherine Muller1,2 *

1 Université de Toulouse, UPS, F-31077 Toulouse, France.
2 CNRS ; Institut de Pharmacologie et de Biologie Structurale F-31077 Toulouse, France.
3 Institut National de la Santé et de la Recherche Médicale, INSERM U1048, F-31432 Toulouse, France.
4 Institut Claudius Regaud, EA3035, F-31052 Toulouse, France.
5 Service d’Anatomo-Pathologie, Hôpital de Rangueil, 31403 Toulouse, France.
\# The two first authors contributed equally to this work

Running title: ADFs, a novel tumor-promoting cell type

Key words: Adipocytes - Breast cancer – Fibroblasts – Invasion - Wnt/\(\beta\)-catenin

Financial Support: Studies performed in our laboratories were supported by the French National Cancer Institute (INCA PL 2006–035 and INCA PL 2010-214 to PV, GE and CM), the ‘Ligue Régionale Midi-Pyrénées contre le Cancer’ (Comité du Lot, de la Haute-Garonne et du Gers to CM), the Fondation de France (to PV and CM) and the University of Toulouse (AO CS 2009 to CM). In addition, the Fondation pour la Recherche Médicale, ANR Migre Flame 2010 and ARC #2010-120-1733 supported this work (RG and IMP). CL is a recipient of a PhD fellowship from the Ligue Nationale Contre le Cancer.

Corresponding author: Pr Catherine Muller, IPBS, 205 route de Narbonne, 31077 Toulouse Cedex – Tel: 33-561-17-59-32; Fax: 33-561-17-59-94; e-mail: muller@ipbs.fr

Conflict of Interest: The authors declare no conflict of interest
ADFs, a novel tumor-promoting cell type

Abstract

Cancer-associated fibroblasts (CAFs) comprise the majority of stromal cells in breast cancers, yet their precise origins and relative functional contributions to malignant progression remain uncertain. Local invasion leads to the proximity cancer cells and adipocytes, which respond by phenotypical changes to generate fibroblast-like cells termed here adipocyte-derived fibroblasts (ADFs). These cells exhibit enhanced secretion of fibronectin and collagen I, increased migratory/invasive abilities and increased expression of the CAF marker FSP-1 but not αSMA. Generation of the ADF phenotype depends on reactivation of the Wnt/β-catenin pathway in response to Wnt3a secreted by tumor cells. Tumor cells co-cultivated with ADFs in 2D or spheroid culture display increased invasive capabilities. In clinical specimens of breast cancer, we confirmed the presence of this new stromal sub-population. By defining a new stromal cell population, our results offer new opportunities for stroma-targeted therapies in breast cancer.
Introduction

One of the features of breast cancer is the presence of a dense collagenous stroma, the so-called desmoplastic response, comprising of fibroblast-like cells know as Cancer-Associated Fibroblasts (CAFs) (1). Accumulating experimental evidence has shown that CAFs play an active role in breast cancer progression through the release of growth factors and chemokines, and by contributing to the remodeling of the extracellular matrix ((2) for review see (3), (4). CAFs are “activated” fibroblasts and were first identified upon morphological criteria and α Smooth Muscle Actin (αSMA) expression, in the same manner as wound healing myofibroblasts (5). However, this marker is not ubiquitous highlighting that CAFs is a heterogeneous cell population (6). Indeed, CAFs are alternatively reported to stem from resident local fibroblasts, bone marrow derived progenitor cells, or trans-differentiating epithelial/endothelial cells (for review, see (4, 7)). At present, neither the origin of these cells, nor the extent to which their origin determines their contribution to tumor progression can be unanimously agreed upon.

We have recently demonstrated that invasive cancer cells have a dramatic impact on surrounding adipocytes. Both in vitro and in vivo, these adipocytes exhibit a decrease in lipid content, a decreased expression of adipocyte markers and an activated state indicated predominantly by the overexpression of proinflammatory cytokines (8). These cells are present in vivo at the tumor invasive front and retain an adipocyte-like rounded morphology. We named them Cancer-Associated Adipocytes (CAAs) (8, 9), reviewed in (10). CAAs also display over-expression of ECM (such as collagen VI) and ECM related molecules (11), (12), (13), events contributing to breast cancer progression. As the origin of CAFs is unclear, one attractive hypothesis is that during tumor evolution, peritumoral adipocytes undergo “de-differentiation” first into CAAs then into fibroblast-like cells that may account for a part of the CAFs population present in the desmoplastic reaction of breast cancers. Although suggested in several reviews (14) (15), this hypothesis has never been directly demonstrated experimentally using combined in vitro and in vivo approaches. Independent of the effect of cancer cells, several recent studies have shown that mature adipocytes are in fact plastic cells capable of “dedifferentiation” towards fibroblast-like cells (16). Although limited data exists on the mechanisms that could potentially be involved in this effect, the role of soluble factors such as TNF-α, Wnt3a (17), or specific mitochondrial uncoupling (18) has been described. In vitro, recombinant MMP-11 is also able to “dedifferentiate” mature adipocytes (11). However, the existence of this phenomenon in human pathology remains elusive. In the present study, we use both in vitro and in vivo (including human tumors) approaches to demonstrate that breast cancer cells are able to force mature adipocytes towards fibroblast-like cells, named Adipocyte-Derived Fibroblasts (ADFs), in a Wnt-dependent manner. We also extensively describe the distinctive phenotype of these new stromal cells, expressing some CAFs markers like Fibroblast-Specific Protein 1/S100A4, but not αSMA, and underline their ability to promote the spread of breast cancer cells.
Materials and Methods.

Antibodies, probes and drugs. All the primary antibodies used in this study are presented in Supplementary Table S1. The Wnt/β-catenin inhibitor, ICG-001 (19) was from Enzo Life Sciences and was used at 2.5 and 5 μM final concentrations. The bodipy lipid probe (used at 1μg/mL) and TO-PRO-3 (used at 1 μM final concentration) were obtained from Invitrogen.

Cell Culture, cell lines and isolation of primary adipocytes. The murine 3T3-F442A pre-adipocytes cell line was differentiated as previously described (20). To estimate the adipocyte phenotype, triglyceride content was quantified using a colorimetric kit (Wako Chemicals), and Red Oil staining was performed as previously described (20). The murine 4T1 breast cancer cell line (provided by Dr S. Vagner, INSERM U563, Toulouse, France) was cultured in DMEM medium supplemented with 5 % Fetal Calf Serum (FCS). The human breast cancer cell line SUM159PT (provided by Dr J Piette, IGMM, Montpellier, France) was grown in Ham F12 (50:50) medium complemented with 5 % FCS, 1 μg/ml hydrocortisone (Sigma, Saint-Quentin les Ulysses, France) and 0. 2 UI / mL insulin. All the cell lines were used within 2 months after resuscitation of frozen aliquots. Cell lines were authenticated based on viability, recovery, growth and morphology. The expression status of E-Cadherin, N-cadherin and vimentin using immunofluorescence approaches, as well as their invasive behavior, was confirmed before they were used in the experiments (8). Coculture of tumor cells and adipocyte was performed using a Transwell culture system (0.4 μm pore size, Millipore) as previously described (8). In certain experiments, cells genetically modified by lentiviral vectors encoding either eGFP (Genethon, Evry) (3T3-F442A) or Hc-Red (vector core ICR, Toulouse) (SUM159PT) were used. The isolation of mammary adipocytes either from tumorectomy (TU) or reduction mammoplasty (RM) was performed as previously described by our group (8).

In vivo GFP-Subcutaneous Fat Pad Formation and tumor injection. 1x10^7 confluent GFP-3T3-F442A preadipocytes were injected into the flank of athymic nude mice, as described (21). Fat pad formation was allowed to proceed for 5 weeks, after which fat pads were injected with 4x10^4 4T1 breast cancer cells. Mice with fat pad alone or tumor cells alone were used as controls. Five mice were used in each group. After 10 days, mice were sacrificed and fat pad, tumors and fat pads containing tumors were embedded in paraffin after 48 h of fixation in buffered formalin. The local Institutional Animal Care and Use Committee approved the experimental protocol used in our study.

Immunofluorescence, immunohistochemistry. Adipocytes differentiated on coverslips grown alone, or cocultivated for the indicated times with breast cancer cells were processed for immunofluorescence as previously described (8). Fluorescence images were acquired with a confocal laser microscopy system (Leica SP2). The image resolution was 512 x 512 pixels and scan rate was 400 Hz. For each sample, over 100 cells were examined in at least three independent experiments. Immunohistochemistry was performed as previously described (11). Adjacent sections were stained with Haematoxylin & Eosin or Masson’s trichrome to visualize collagen fibers (murine fat pad experiments). Images were captured on a Leica DMRA2.
Western blot analysis. Whole cell extracts and immunoblots were prepared as previously described (22). All the antibodies used in this study are presented in Supplementary Table S1.

RNA extraction and quantitative PCR (qPCR). RNA extraction and qPCR were performed as previously described (23). All the primers used in this study are presented in the Supplementary Table S2.

Migration and invasion assays (2D). After 3 or 8 days of coculture in the presence of SUM159PT cells, adipocytes were trypsinized and used to perform migration or Matrigel invasion assays as previously described (23). Similar Matrigel invasion assays were performed with tumor cells grown alone or cocultivated with ADFs or with mature adipocytes during 3 days (8). In these assays, FCS (10%) was used as a chemoattractant, whether similar experiments were run in parallel in the absence of serum (no chemoattractant, negative control).

Spheroids formation and invasion in a 3D collagen matrix. The hanging-drop method has been adapted to produce spheroids of similar diameter (24). Drops (20 μl) containing 1000 tumor cells alone or mixed with 1000 ADFs or preadipocytes were suspended on the lid of 2% agar coated 24-well dishes containing culture media. After the 7 days required for cell aggregation, the spheroids were transferred to the bottom of a well containing culture medium. Multicellular spheroids were then allowed to grow for 14 days and the spheroids used in the invasion experiments have an average diameter of 500 μm. The spheroid invasion in collagen I matrix was performed as previously described (25).

Glucose uptake experiments. Differentiated adipocytes cocultivated or not during 3 and 8 days with SUM159PT cells were used to measure the uptake of 2-deoxy[3H]glucose in the presence or not of insulin as previously described (26).

Statistical analysis. The statistical significance of differences (at least three independent experiments) was evaluated using Student's t test or ANOVA using Prism (GraphPad Inc.). P values below 0.05 (*), <0.01 (**) and <0.001 (***) were deemed as significant while “NS” stands for not significant.
Results and Discussion

Breast tumor cells are able to cause mature adipocytes to revert to fibroblast-like cells in vitro and in vivo.

To test our main hypothesis in vitro, we took advantage of the coculture model recently set-up in our laboratory. As previously described, mature 3T3-F442A adipocytes cocultivated in the presence of breast cancer cells exhibited a decrease in the number and size of lipid droplets (8). We show here that this decrease is time-dependent and, after 8 days of coculture, these cells were almost devoid of lipid droplets (fig. 1A, upper panel). By contrast to CAAs (typically obtained after 3 days of coculture) which retain their rounded morphology (8), adipocytes that have been cocultivated for longer times in the presence of tumor cells took on a highly elongated, fibroblastic shape (fig. 1A, middle panel). Preadipocyte factor 1 (Pref-1) expression, a preadipocyte transmembrane protein that inhibits adipogenesis (27), is progressively detected in cocultivated adipocytes (fig. 1A, lower panel). After 8 days of coculture, we also observed that mature adipocytes exhibit a loss in adipose markers expression that was more accentuated than in CAAs (8). An overall dramatic reduction of all the tested adipogenic markers including Adipisin, Adiponectin (APN), Ap2, HSL, as well as C/EBPα and PPARγ2 mRNA was observed by qPCR analysis (reduced by more than 70% for all tested genes, p<0.001, fig 1B). These results were confirmed by Western blots for HSL, Adiponectin, PPARγ2 and C/EBPα expression, whose expression was no longer detected in cocultivated adipocytes (fig. S1A). Similar results were obtained by cocultivating adipocytes with the human ZR 75.1, HMT3522-T4.2 or mouse 4T1 breast cancer cell lines (fig. S1B) as well as when human mammary adipocytes derived from ex vivo differentiation of progenitors purified from mammary adipose tissue of healthy donors undergoing reduction mammoplasty were used (fig. S1C). At 8 days, cocultivated adipocytes exhibited a marked decrease in GLUT4 expression and a concomitant increase in GLUT1 expression (fig. 1C), and became resistant to insulin (fig. 1D). No gain of proliferative ability was observed in these cocultivated adipocytes exhibiting insulin resistance and a fibroblast-like shape. Indeed, the cell number, as well as the cell cycle distribution, remained unchanged during the coculture period (see fig. S2).

We next investigated whether this process might be observed in vivo. To address this critical issue, we used GFP-tagged confluent 3T3-F442A preadipocytes implanted subcutaneously into athymic BALB/c nude mice, where they developed into typical fat pads after 5 weeks (21). Murine breast cancer cells 4T1 were then either injected into the newly formed fat pads or used alone as a control, whilst untreated fat pads also provided a separate control. Immunohistochemical staining for GFP was performed in fat pads removed 10 days after the injection (fig. 2A). Tagged-mature adipocytes were used to ensure that the cells with a fibroblast-like shape present in the tumors did in fact arise from local adipocytes and not from other sources. The fat pads derived from 3T3-F442A confluent preadipocytes exhibited histological features of adipose tissue. Adipocytes were positive for GFP whereas tumor cells were not (fig. 2B, lower panel). In the case of tumors injected into the fat pads, adipose tissue at the tumor periphery was composed of adipocytes of small size and elongated cells containing many small lipid droplets – all cells that are GFP positive (fig. 2B, lower panels, indicated by arrows). Within the tumor, GFP-positive cells with fibroblast-like shape appear to interdigitate with tumor cells (fig. 2B, lower panels, indicated by asterisks). Staining of the tissue sections with Masson’s trichrome revealed a significant amount of collagen fibrils in the tumor grown within the fat pad whereas few collagen fibrils were seen in tumor grown alone (fig. 2B, upper panel). Taken together, these results are consistent with the fact that breast tumor cells induce phenotypical changes in mature adipocytes leading to cells exhibiting low (if any) lipid content and profound morphological changes associated with a marked increase in the expression of matrix...
proteins in the tumors. Therefore, our results compellingly suggest that cells with a fibroblast-like shape could be derived from mature adipocytes in a tumor-context both in vitro and in vivo.

Adipose-Derived Fibroblasts (ADFs) overexpress FSP-1, but not αSMA, and exhibit an activated phenotype. We then investigated the expression of major markers, previously used to identify CAFs, in these cells (6). As shown in fig. 3A, adipocytes cocultivated with tumor cells exhibit a gradual increase in FSP-1 expression, as opposed to αSMA or FAP (Fibroblast Activated Protein) expression that remains very low. We confirmed that mature adipocytes cocultivated for 8 days with tumor cells overexpressed FSP-1 mRNA by 3-fold, compared to mature adipocytes grown alone (p<0.01) whereas the difference in mRNA levels of αSMA between these two conditions was not statistically significant (fig. 3B). These results were confirmed with human mammary adipocytes (fig. S3). Functionally activated fibroblasts surrounding tumors are highly contractile and motile and also display increased extracellular matrix (ECM) expression (3). As shown in fig. 3C, increased expression of the ECM proteins type I collagen and fibronectin was also observed during adipocyte conversion. The fibrotic network produced by these cells in vitro is in accordance with the results obtained with Masson’s trichrome staining in vivo (see fig. 2). As shown in fig. 3D (upper panel), coculture of adipocytes with tumor cells was associated with a profound reorganization of actin cytoskeleton, marked by the occurrence of stress fibers and the formation of punctuate spots of vinculin at the ends of actin bundles. Accordingly, cocultivated adipocytes, as they acquire a fibroblast-like phenotype, progressively exhibit increased migratory (fig. 3D, left bottom panel) and invasive (fig. 3D, right bottom panel) abilities. Therefore, our compelling results demonstrate that tumor cells can cause mature 3T3-F442A adipocytes, as well as human mammary adipocytes, to revert to an activated FSP-1 fibroblastic cell population. Due to the common characteristics of CAFs and these cells, highlighting that they represent a subpopulation of CAFs, we named them Adipocyte-Derived Fibroblast (ADFs). In vitro, the CAAs to ADFs transition is time dependent (fig. 1 and 3) and intermediate forms of adipocyte phenotypical changes (from small adipocytes to fibroblast-like cells that may or may not still contain small lipid droplets) could be observed in vitro and in vivo (fig. 1 and 2). Once modified at the tumor invasive front, where the cross-talk between breast tumor and adipocytes is established (8), our data strongly suggests that ADFs are able to join the center of the tumor and participate to the desmoplastic reaction by exhibiting increased migratory and invasive abilities (fig. 3), as shown in the murine fat pad experiments (fig. 2).

The Wnt/β-catenin pathway is reactivated in ADFs and contributes to the occurrence of the ADFs phenotype. Among the many signaling networks involved in relaying information from extracellular signals during adipogenesis, the Wnt/β-catenin pathway plays a prominent role (28). This pathway negatively regulates precursors commitment and differentiation along the adipocyte lineage (28) and its activation has recently been shown to also induce a “dedifferentiated” state in mature adipocytes (17). As shown in fig. 4A (upper panel), adipocytes cocultivated with tumor cells exhibit a gradual increase in β-catenin expression associated with its redistribution from the cell membrane to the cytoplasm. During activation of this pathway by Wnt ligands (the so-called canonical pathway), the β-catenin is hypo-phosphorylated and translocated into the nucleus where it contributes to the activation of Wnt target genes (28). A progressive increase in active β-catenin in the nucleus of cocultivated adipocytes was detected (fig. 4A, lower panel). In accordance, cocultivated adipocytes exhibit an upregulation of all Wnt target gene mRNAs analyzed as described for Dishevelled-1 (Dv11), Wnt10b,
ADFs, a novel tumor-promoting cell type

Endothelin-1 (EDT1) and metalloprotease-7 (MMP7) (fig. 4B). Taken together, our results show that the canonical Wnt/β-catenin pathway is reactivated during coculture and is likely to contribute to the occurrence of the ADFs. Given our results, we reasoned that targeted inhibition of this signaling using ICG-001, a unique small molecule that selectively inhibits TCF/β-catenin transcription in a CBP-dependent fashion (19) might be able to mitigate the tumor-induced changes in adipocytes. As shown in fig. 4C, exposure to ICG-001 during 3 days significantly inhibits the increase in Wnt10b expression induced by coculture (about 3-fold decrease in 5μM ICG-001 treated cells compared to untreated cells, p<0.05) and partially restores lipid accumulation in cocultivated adipocytes in a dose-dependent manner. We next investigated the signal emanating from tumor cells that could be able to reactivate the canonical Wnt/β-catenin pathway. Soluble Wnt3a or TNF-α has been recently demonstrated to induce the “dedifferentiation” of murine and human adipocytes through activation of the Wnt/β-catenin pathway (17). TNF-α was undetectable in the supernatant of all breast cancer cell lines that were cultivated with or without adipocytes. By contrast, Wnt3a was expressed and secreted by the breast cancer cells, as demonstrated in fig. 4D for the SUM159PT cells. The levels of Wnt3a expression and secretion were not regulated by coculture. Similar results were obtained with the human breast cancer cell lines ZR 75.1 and MDA-MB231 (fig. S4). As shown in fig. 4E (left panel), in the presence of Wnt3a blocking antibody (Ab), we observe a clear inhibition of β-catenin up-regulation and redistribution induced by coculture, suggesting that Wnt3a is indeed upstream of the β-catenin stabilization. Of note, cells that have been treated with Wnt3a blocking Ab exhibit a significant decrease of Wnt10b mRNA expression (1.6-fold decrease in Ab treated cells compared to untreated cells, p<0.05) and conversely an increase in lipid content as compared to untreated cells (fig. 4E, right panel). Therefore, the occurrence of ADFs is associated with activation of the Wnt/β-catenin pathway and blocking this pathway partially reversed the ADFs phenotype (fig. 4C and 4E). Elevated levels of cytoplasmic and/or nuclear β-catenin are detectable by immunohistochemistry in the majority of breast tissue samples and high β-catenin activity significantly correlated with poor prognosis of the patients (29). This activation might rely on Wnt ligands since several studies have described overexpression of Wnt protein themselves, including Wnt3a, in breast cancer cells lines as well as breast tumors relative to normal tissue (30). Expression of these ligands is generally thought to activate the canonical Wnt/β-catenin pathway in tumor cells by an autocrine mechanism (31) to favor tumor growth, migration, inhibition of apoptosis and potentially stem cell renewal in certain tissues (32). We propose here a new and paracrine effect of Wnt ligands in promoting the occurrence of a sub-population of CAFs.

ADFs stimulate tumor cells invasive phenotype in 2D and 3D coculture systems. Mature adipocytes were cocultivated with breast cancer cells for 5 days to obtain ADFs, which were then used to perform 2D coculture experiments or to produce mixed spheroids with “naïve or unprimed” tumor cells. In 2D coculture experiments, ADFs strongly stimulated the invasive properties of SUM159PT cells (increase of 2.4-fold compared to tumor cells grown alone, p<0.01) (fig. 5A), this effect being more pronounced in the presence of ADFs than in the presence of mature adipocytes (1.5-fold increase as compared to tumor cells grown alone, p< 0.05; 1.6-fold increase in cells cocultivated with ADFs as compared to mature adipocytes, p<0.05). In addition to the increased cell invasive abilities, we have previously demonstrated that cocultivated SUM159PT exhibit morphological changes along with the reorganization and polarization of vimentin (8). As shown in fig. 5B, after 3 days of coculture, ADFs induce similar but more pronounced effects on vimentin expression that was associated with
profound actin reorganization leading to the occurrence of stress fibers. As 3D invasion models more closely
follow the cell behavior observed in vivo (33), we confirmed our results using a spheroid invasion model within
a collagen matrix (25) (see fig. 5C, left panel, for a representative experiment). We found that mixed
ADFs/tumor cells spheroids exhibit higher invasive capacities compared to spheroids of tumor cell alone
(p<0.01), yet the presence of preadipocytes had no effect on 3D tumor cells invasion (fig. 5C, right panel) in
accordance with the results previously obtained in 2D (8). HcRed-SUM159PT cells, GFP-preadipocytes and
GFP-ADFs were used to investigate the invasive behavior of each cell sub-population. Interestingly, ADFs (and
preadipocytes) remained in the center of the spheroids in contrast to tumor cells that invaded the collagen matrix
(fig. 5D). These combined results indicate that ADFs stimulate the invasive behavior of tumor cells.

Reorientation of mature adipocytes into ADFs is observed in human tumors
We next investigated whether ADFs are present in primary human tumors. To address this critical issue, we first
conducted a histological analysis of human breast tumors to investigate the presence of cells exhibiting ADF
traits. As defined in vitro and in vivo in murine fat pads, ADFs originate from progressive changes of the
morphology of adipocytes giving rise to small adipocytes and of elongated cells containing many small lipid
droplets. As shown in figure 6A, we observed a profound reorganization of the adipose tissue (AT) at the tumor
invasive front (see left panel for the AT aspect at distance of the tumors) with numerous cells exhibiting the
features of intermediate forms of ADFs. Of note, elongated cells with lipid droplets could be observed within
the dense desmoplastic reaction surrounding the tumors (fig. 6A, lower panel, indicated by arrows).
To further characterize these cells, we investigated FSP-1 expression in the breast cancer surrounding adipocytes
at variable distances from the tumor center. As shown in fig. 6B, the mature adipocytes further from the tumor
are negative for FSP-1 expression whereas as closer to the tumor exhibit FSP-1 expression. FSP-1 positive
fibroblasts were present in the center of the tumors as previously described (6). Therefore, as observed in vitro,
we consistently observed a gradient of FSP-1 expression in mature adipocytes exhibiting first CAA then ADF
phenotype (fig. 6B). Finally, we investigated the differential expression of both αSMA and FSP-1 in tumor-
surrounding adipocytes by immunohistochemistry. In fact, one of the key findings of our study is that ADFs, at
least in vitro, express FSP-1 but not αSMA (see fig. 3A and B). Interestingly, using experimentally generated
tumors in mice, the group of R. Kalluri found unique FSP-1-expressing CAFs, which are clearly distinct from
the αSMA positive myofibroblasts (6). This subpopulation of CAFs is very important functionally, since FSP-1
positive fibroblasts promote tumor metastasis (34). Mammary carcinoma cells injected into FSP1−/− mice
showed significant delay in tumor uptake and decreased tumor incidence (34). Co-injection of carcinoma cells
with FSP1+/+ mouse embryonic fibroblasts partially restored the kinetics of tumor development and the ability
to metastasize, underlying the role of this specific subset of stromal population in invasive processes (34). As
shown in fig. 6C (left panel), we found that αSMA expression was not up-regulated in adipocytes close to
tumors (TU) when compared to normal breast adipose tissue (reduction mammaplasty, RM) whereas in the same
sample an up-regulation of FSP-1 expression was found. To further assess the expression of these markers by a
quantitative approach, adipocytes were isolated from fat samples associated with TU or RM. A series of 16
samples, with 8 samples in each group (Supplementary Table S3 for the clinical characteristics of the patients),
was used, matched with respect to age (mean: 54.5 ± 10.4 vs 51.1 ± 8.3 years) and Body Mass Index (BMI)
(mean: 26.1 ± 3.5 vs 24.9 ± 2.3 kg/m²). Adipocytes isolated from tumor samples overexpressed FSP-1 mRNA
ADFs, a novel tumor-promoting cell type

when compared with adipocytes isolated from normal mammary glands, whereas the mRNA levels of αSMA were not statistically different between the two groups (fig. 6C, right panel). Therefore, the phenotype described here both in vitro and in vivo for ADFs is clearly reminiscent of the one of FSP-1 positive CAFs including the absence of αSMA expression and the invasion-promoting effect. Because mature adipocytes represent the most abundant cellular type in breast cancer stroma, the process of adipose “dedifferentiation” is likely to provide a large part of this CAFs subpopulation. Interestingly, the impact of tumor cells on various component of adipose tissue might also participate to the heterogeneity of CAFs phenotype. In fact, it has been demonstrated both in vitro and in vivo that breast cancer cells activate adipose stem cells towards a CAFs-like phenotype associated with αSMA overexpression (35), (for review see, (10). Therefore, mature and precursor adipose cells could contribute to divergent CAFs subpopulation, whose relative contributions in cancer progression remain to be determined in lean and obese conditions.

To conclude, the proposed mechanism to explain the occurrence and the role of ADFs in breast cancer is summarized in fig. 7. In our model, early local tumor invasion in breast cancer results in immediate proximity of tumor cells and adipocytes. Cancer cells secrete soluble factors, including Wnt3a, that are able to activate Wnt/β-catenin pathway in mature adipocytes leading to adipocytes “dedifferentiation”. Adipocytes will undergo morphological changes, first marked by a decrease in adipocytes size and lipid content (CAAs), then by acquiring a fibroblast-like morphology (ADFs), yet still containing small lipid droplets. At the start of this process, tumor-primed adipocytes express FSP-1. ADFs exhibit increased migratory and invasive abilities and will be able to join the center of the tumor, where they significantly promote tumor invasion. In the center of the tumor, these cells no longer express adipose markers nor exhibit lipid droplets, which render them indistinguishable from other CAFs cell population. Studying the process of occurrence of ADFs in breast cancer is of major clinical importance. In fact, the occurrence of specific stromal cells, such as ADFs, is critical to the aggressiveness of nearby tumor cells and they need to be identified in order to develop targeted therapeutic strategies inhibiting their development and/or tumor-promoting activity. Implicating adipose tissue in this crosstalk is also of major interest since several studies pointed out that obese women exhibit higher propensity for local invasion and distant metastasis (10). Obesity condition is also associated with an increase in adipose tissue fibrosis (15). Therefore, further studies should address whether ADFs are overrepresented in the breast tumor stroma of obese patients in which they would provide an invasion-promoting population. Such studies will provide unique opportunities to set up specific strategies for the treatment of the subsets of patients exhibiting aggressive diseases.

Acknowledgements
The authors would like to acknowledge Pr Laurence Nieto for helpful technical advices for qPCR, Guillaume Andrieu, Emilie Mirey and Nathalie Ortega for critical reading of the manuscript. The authors would like to thank Jamie Brown for the English editing of the manuscript and Françoise Viala for iconographic assistance.

References
ADFs, a novel tumor-promoting cell type

Figures legends.

Figure 1. Breast cancer cells revert mature adipocytes into fibroblast-like cells in vitro. A, mature adipocyte cultivated in the presence (C) or in the absence (NC) of tumor cells during the indicated times were stained with Bodipy (top), Pref-1 antibody (bottom) (scale bars 20μm) or observed through phase contrast microscopy (middle, scale bar 50μm). Nuclei were labeled with TO-PRO-3. Similar experiments were performed with 3T3-F442A preadipocytes used as a control. B, expression of the indicated genes analyzed by qPCR in mature adipocytes cocultivated for 8 days in the presence (C) or in the absence (NC) of SUM159PT tumor cells. C, Left: GLUT4 and GLUT1 gene expression in mature adipocytes cultivated in the presence (C) or in the absence (NC) of SUM159PT cells during the indicated times. Right: analysis of Glut1 and Glut4 protein expression done by Western blot with extracts from mature adipocytes cultivated in the presence (+) or in the absence (-) of SUM159PT cells for the indicated times. D, glucose uptake assay in the presence of the increasing concentrations of insulin performed in adipocytes cocultivated in the presence (C) or in the absence (NC) of tumor cells during 3 and 8 days. For the fig. 1, bars and errors flags represent the means ± SD of at least three independent experiments; statistically significant by Student’s t-test, ** p<0.01, *** p<0.001 relative to NC cells or to untreated cells for glucose uptake experiments.

Figure 2. The phenotypic changes of mature adipocytes towards fibroblast-like cells are observed in vivo. A, GFP-tagged confluent 3T3-F442A preadipocytes were implanted subcutaneously into athymic BALB/c nude mice, where they develop into fat pads after 5 weeks. Murine breast cancer cells 4T1 were then injected into the newly formed fat pads or assayed separately. Immunohistochemical staining for GFP was performed in fat pads removed 10 days after the injection, tumor cells alone being also used as a control. B, Upper panel: Representative Masson’s Trichrome stained sections from fat pads alone, tumors grown alone or tumors grown into the fat pads with collagen stained in blue, and nucleus in red. Middle panel: Representative images of the expression of GFP (in brown) visualized in fat pads alone, tumors grown alone or tumors grown into the fat pads.
ADFs, a novel tumor-promoting cell type

Figure 3. Adipose-Derived Fibroblasts (ADFs) overexpress FSP-1, but not αSMA, and exhibit an activated phenotype. A, 3T3-F442A mature adipocytes were grown on coverslips and cultivated in the presence (C) or in the absence (NC) of tumor cells during 3, 5 and 8 days (D3, D5 and D8). After this period, cells were fixed and stained with the indicated antibodies. 3T3-F442A preadipocytes served as a control. Nuclei were labeled with TO-PRO-3, scale bars 20μm. B, αSMA and FSP-1 gene expression was evaluated by qPCR in adipocytes cultivated in the presence (C) or in the absence (NC) of tumor cells during 8 days with tumor cells. Bars and errors flags represent the means ± SEM of at least three independent experiments; statistically significant by Student’s t-test, ** p < 0.01 relative to NC cells. NS, non significant. C, fibronectin and collagen 1 expression were assessed by immunofluorescence in adipocytes cultivated in the presence (C) or in the absence (NC) of tumor cells during 3, 5 and 8 days (D3, D5 and D8). 3T3-F442A preadipocytes served as a control. Nuclei were labeled with TO-PRO-3, scale bars 20μm. D, Upper panel, 3T3-F442A mature adipocytes were grown on coverslips and cultivated in the presence (C) or in the absence (NC) of tumor cells during 3, 5 and 8 days (D3, D5 and D8). After this period, cells were fixed and stained with the indicated antibodies. 3T3-F442A preadipocytes served as a control. Nuclei were labeled with TO-PRO-3, scale bars 20μm. Lower panel, adipocytes grown alone (NC) or in the presence of tumor cells (C) for 3 (D3) and 8 (D8) days. Adipocytes were then trypsinised and used for migration (left panel) or Matrigel invasion (right panel) assays towards a medium containing either 0% (white bars) or 10% FCS (black bars). Bars and errors flags represent the means ± SEM of three independent experiments; statistically significant by Student’s t-test, * p < 0.05, ** p<0.01, *** p<0.001 relative to NC cells.

Figure 4. The Wnt/β-catenin pathway is reactivated in ADFs and contributes to the occurrence of this new stromal cell population. A, adipocytes cultivated in the presence (C) or in the absence (NC) of tumor cells during 3, 5 and 8 days (D3, D5, D8) and 3T3-F442A preadipocytes were fixed and stained with the indicated antibodies. Nuclei were labeled with TO-PRO-3, scale bars 20μm. B, mRNA expression (qPCR) of the indicated Wnt/β-catenin targets was evaluated in adipocytes cultivated in the presence (C) or in the absence (NC) of tumor cells during 3, 5 and 8 days (D3, D5, D8). C, Wnt10b mRNA expression (right panel) and Bodipy accumulation or morphology observed through phase contrast microscopy (left panel, scale bars 20μm) were evaluated in adipocytes cultivated in the presence (C) or in the absence (NC) of tumor cells for 3 days with tumor cells in the presence of increasing concentrations of ICG-001. D, Wnt3a expression and secretion was measured in the SUM159PT cells cultivated in the presence (C) or in the absence (NC) of adipocytes. E, Adipocytes were cultivated in the presence (C) or in the absence (NC) of breast tumor cells in the presence (+) or absence (-) of a Wnt3a blocking Ab. In these adipocytes, the expression of Wnt10b mRNA was measured by qPCR, (right panel) and the β-catenin expression and lipid accumulation was evaluated by immunofluorescence. Nuclei were labeled with TO-PRO-3, scale bars 20μm (left panel). Bars and errors flags represent the means ± SEM of three independent experiments; statistically significant by Student’s t-test or ANOVA, * p < 0.05, ** p<0.01, *** p<0.001 relative to NC cells.
Figure 5. ADFs enhance tumor cells invasion in 2D and 3D coculture models. A, tumor cells cultivated in the presence (C) or in the absence (NC) of mature adipocytes or ADFs for 3 days were used for Matrigel invasion assay toward a medium containing either 0 (white bars) or 10 (black bars) % FCS. Representative images of Matrigel invasion assay performed towards a medium containing 10% FCS are shown below each graph, scale bar 50 μm. Bars and errors flags represent the means ± SD of three independent experiments; statistically significant by Student’s t-test, * p < 0.05, ** p<0.01 relative to NC cells. B, immunofluorescence experiments using mAb against vimentin or rhodamin phalloidin were performed on tumor cells cultivated in the presence (C) or in the absence (NC) of mature adipocytes or ADFs for 3 days. Nuclei were labeled with TO-PRO-3, scale bar 20μm. C, A representative picture of spheroid invasion in a collagen matrix (left, scale bar 250μm and measurement of the invasion distance (in μm) 48h after collagen embedding (right panel). Bars and errors flags represent the means ± SEM of three independent experiments, statistically significant by Student’s t-test, ** p<0.01 relative to spheroids composed by tumor cells alone (SUM), NS, non significant. D, Confocal microscopy analysis of spheroids invasion 48h after collagen inclusion, spheroids being composed by HcRed-SUM, by mixed HcRed-SUM + GFP-3T3-F442A or by HcRed-SUM159PT + GFP-ADF, scale bar 100μm.

Figure 6. ADFs are found in human tumors. A, Histological examination of human breast cancers showing distant adipose tissue (left panel) and tumor tissue containing reorientated adipocytes (middle panel) after H&E staining (original magnification x200, scale bar 50μm.). The right panels show a 2-fold magnification of the framed area. Results of representative experiments were obtained using tumors issued from 2 independent donors. B, Histological examination of adipose tissue (lipids in white, nucleus in blue) in a representative breast tumor after anti FSP-1 staining (in brown). The results obtained in different areas from the adipose tissue away from the tumor to the tumor center are shown (scale bar 50μm). C, Left panel, the expression of FSP-1 and αSMA was visualized (in brown) in adipocytes (lipids in white, nucleus in blue) located adjacent to invading cancer cells (TU) as compared with normal adipose tissue (RM). Right panel, the expression of the indicated genes was analyzed by qPCR in mature adipocytes obtained from RM or TU (8 independent samples per group), statistically significant by Student’s t-test, * p<0.05. NS, Non Significant.

Figure 7. Mechanism of ADFs occurrence and role in tumor progression. Schematic representation of the described bidirectional crosstalk established between breast cancer and adipose cells underlying the presence of ADFs in the desmoplastic reaction of breast cancers.
Figure 1

B

3T3-FF42A

D8

D5

D3

NC

D8

D5

D3

NC

Author Manuscript Published OnlineFirst on July 31, 2013; DOI: 10.1158/0008-5472.CAN-13-0530
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Downloaded from cancerres.aacrjournals.org on April 14, 2017 by © 2013 American Association for Cancer Research.
Figure 2
Figure 4
Figure 5
Figure 6.
Figure 7
Adipocyte-Derived Fibroblasts promote tumor progression and contribute to desmoplastic reaction in breast cancer.

Ludivine Bochet, Camille Lehuede, Stephanie Dauvillier, et al.

Cancer Res Published OnlineFirst July 31, 2013.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-0530

Supplementary Material Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/07/30/0008-5472.CAN-13-0530.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.