Regulation of CD4+NKG2D+ Th1 cells in patients with metastatic melanoma treated with Sorafenib: role of IL-15Rα and NKG2D triggering.

Ana I Romero1,2*, Nathalie Chaput1,2,3*, Vichnou Poirier-Colame1,2,3, Sylvie Rusakiewicz1,2,3, Nicolas Jacquelot1,2,3, Kariman Chaba1,2, Erwan Mortier4, Yannick Jacques4, Sophie Caillat-Zucman5, Caroline Flament1,2, Anne Caignard6, Meriem Messaoudene6, Anne Aupérin7, Philippe Vielh8, Philippe Dessen1,9, Camillo Porta10, Christine Mateus11, Maha Ayyoub12, Danila Valmori12, Alexander Eggermont1, Caroline Robert13* and Laurence Zitvogel1,2,3,14 *.

1 Cancer Institute Gustave Roussy, Villejuif, France
2 INSERM, U1015, Villejuif, France
3 Center of Clinical Investigations CBT507, Biotherapy, Villejuif, France
4 INSERM, U892, Institut de Recherche Thérapeutique, Nantes, France
5 INSERM, U1016, Saint Vincent de Paul Hospital, Paris, France
6 INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
7 Department of Epidemiology and Statistics, Cancer Institute Gustave Roussy, Villejuif, France
8 Department of BioPathology, Translational Research Laboratory and Biobank, Institut Gustave Roussy, Villejuif, France
9 Stabilité génétique et oncogénèse UMR 8200, Cancer Institute Gustave Roussy, Villejuif, France
10 IRCCS San Matteo University Hospital Foundation, Pavia, Italy
11 Clinical Oncology, Melanoma Branch, Cancer Institute Gustave Roussy, Villejuif, France
12 INSERM U1102, Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
13 Department of Dermatology, Cancer Institute Gustave Roussy, Villejuif, France
14 Faculté Paris Sud-Université Paris XI, France

* AIR, and NC as well as CR and LZ contributed equally to this work.
Correspondance to: Prof. Laurence ZITVOGEL
Institut Gustave Roussy
114 rue Edouard Vaillant
F-94805 Villejuif, France
Tel. 33-1-42 11 50 41
Fax 33-1-42 11 60 94
e-mail: zitvogel@igr.fr

Running title: Sorafenib regulates IL-15Rα and NKG2D ligands

Keywords: MICA, NKG2D, CD4⁺NKG2D⁺T cells, cancer, melanoma

Abbreviations: Ab: antibody, FACS: fluorescence-activated cell sorting, IFN: interferon, IL: interleukin; NK cells: natural killer cells, Treg: regulatory T cells, MICA: MHC class I-related chain A ligand; NKG2D: natural killer group 2D.

Financial support: This work was supported by Schering-Plough legacy, Bayer Schering Pharma, Institut National du Cancer INCa, ANR, Ligue contre le cancer (équipe labellisée de LZ) and INFLACARE EU grant, ISREC Foundation, SIRIC SOCRATES, LABEX OncoImmunology, PACRI network. SR and VPC were supported by the Fondation pour la Recherche Medicale (FRM) and the Fondation de France respectively. AIR was supported by the Swedish Research Council. We thank Bayer for providing temozolomide.

Disclosures: The authors have no financial conflict of interest.

Word count: 5000
Abstract

Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on cancer patients and influences the effects of conventional chemotherapies. Metastatic melanoma (MM) is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates IL-15Rα in vitro and in vivo in melanoma patients, and in conjunction with NKG2D ligands, contributes to the Th1 polarization and accumulation of peripheral CD4+NKG2D+T cells. Hence, the increase of blood CD4+NKG2D+T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase 1/2 trial enrolling 63 MM patients who did not receive vemurafenib nor immune checkpoint blocking antibodies. In contrast, in MM treated with classical treatment modalities, this CD4+NKG2D+ subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an “adjuvant” molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MICA/B and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D+ Th1 cells.
Introduction

Therapy of metastatic melanoma (MM) remained unsatisfactory for many decades. A range of various treatment modalities based on chemotherapy has had little impact on survival (1). As a single agent, dacarbazine (DTIC) has been commonly used (2). Some investigators substitute DTIC with temozolomide (related oral alkylating agent) for its convenience of administration and its central nervous system penetration. A phase 3 trial comparing an extended schedule of temozolomide with a standard dose single agent DTIC failed however to show any statistical differences in terms of response rates, progression-free and overall survivals (3, 4). Temozolomide produces response rates of 4.13% and a median progression free survival of 1.9 months in patients without brain metastases. More recently, advances in understanding the genetic changes associated with melanoma development identified activating mutations in the serine/threonine kinases BRAF (5), establishing mitogen-activated protein kinase signaling pathways as new drug targets in melanoma. Sorafenib, a multikinase inhibitor of VEGFR, KIT, PDGFR, and RAF proteins as well as several pro-angiogenic tyrosine kinases, was tested in phase 2 trials alone or in combination with carboplatin and paclitaxel and appeared promising on response rates and median progression free survival, but was associated with toxicity (6). Unfortunately, subsequent phase 3 trials of the combination of sorafenib and paclitaxel/carboplatin only demonstrated benefit in patients with metastatic melanoma in first and second line of therapy (7, 8). Next, and before the era of more specific BRAF inhibitors, Flaherty and colleagues conducted a phase 2 trial combining temozolomide with sorafenib in advanced melanoma, showing relative safety and activity in patients without prior history of temozolomide (9).
In parallel, attempts to harness antitumor immunity have progressively led to therapeutic success in melanoma (10). Anti-CTLA-4 antibodies alone or together with peptide-based vaccination or with dacarbazine significantly prolonged survival of stage III/IV melanoma in two phase 3 trials (10, 11). One surmises that in patients responding to immunotherapy, tumor- and/or vaccine-specific T cells reset local tumor microenvironment and convert immune tolerance into immune-related tumor destruction (12).

Since vaccines showed some unexpected efficacy after tumor progression with cytotoxic compounds (13, 14), a new concept emerged whereby the host immune system could contribute to the beneficial effects of cytotoxic compounds (15). Indeed, the outcome of chemotherapy can be influenced by the host immune system at multiple levels. Chemotherapy can kill cancer cells in a way that they elicit an immune response (16) or, alternatively, increase their susceptibility to immune attack (17). In addition, chemotherapy can stimulate anticancer immune effectors either directly (by activating effector or dendritic cells) or indirectly by subverting immunosuppressive mechanisms (18, 19). Hence, a recent report pointed out that MM patients responding to dacarbazine exhibit a stromal and immune signature, defined by hallmarks of T-cell infiltration and MHC class II expression (20).

A number of immune effectors including dendritic cells, T and NK cells have been involved in natural or therapy-induced tumor immunosurveillance in mice (21, 22). The natural killer group 2D (NKG2D), a lectin-like activating receptor, markedly influences IFN-γ release and cytotoxic responses upon tumor recognition, exerting selective pressure on transformed cells (23). A large body of preclinical work highlighted the beneficial role of the activating receptor NKG2D in immunosurveillance against cancer (24, 25). In most instances, NKG2D-induced effects are mediated through NK or CD8+ effector T cells. Here we unveil the
immunomodulatory role of a multi-tyrosine kinase inhibitor, sorafenib, on a rare subset of circulating (and intratumoral) CD4+CD8dimNKG2D+ T cells prone to secrete Th1 cytokines upon co-triggering of CD122 (IL-2/IL-15Rβ chain) and NKG2D receptors. Indeed, sorafenib induced the upregulation of IL-15Rα expression on tumor cells in vitro and in vivo, and/or on circulating monocytes in MM (co-treated with temozolomide) in a phase 1/2 prospective trial. In all MM patients, melanoma expressed high intrinsic levels of MHC class I–related chain A/B (MICA/B) molecules. Patients developing enhanced frequencies of CD4+NKG2D+T cells after two cycles of sorafenib exhibited prolonged survival. Of note, such CD4+NKG2D+T cells failed to dictate the prognosis in another cohort of MM enrolled in a MAGE3 protein (26) underscoring the immunoregulatory role of sorafenib.
Materials and Methods

Patients and treatment plan. SORAFTEM. Sixty three patients over 18 years old, with histologically confirmed metastatic or unresectable melanoma, measurable disease, an Eastern Cooperative Oncology Group performance status <2, with adequate hematologic, renal, hepatic and coagulopathic functions were included in a phase 1/2 investigator-sponsored study SORAFTEM (European Union Drug Regulating Authorities clinical trial EudraCT 2007-000527-18). The number of prior therapies is summarized in Table 1. Patients had discontinued their earlier systemic therapy at least four weeks before entering the trial. Previous brain radiotherapy was allowed provided patients were not clinically symptomatic. The study protocol was approved by the institutional review boards at the University of Kremlin Bicêtre and Institut Gustave Roussy. All patients provided informed consent before enrollment. The treatment plan is outlined in Supplementary Fig. S1. Stage III-and IV melanoma bearing patients were enrolled from 2006-2009 in a dose-escalating phase 1 followed by a phase 2 extension cohort at the maximal tolerated dose trial testing the efficacy of the combinatorial regimen of temozolomide (Schering Plough, 100 to 150 mg/m² daily for seven days every two weeks), and sorafenib (Bayer, 400 to 800 mg twice daily without interruption). Therapy was continued until disease progression or intolerable toxicity. Response assessments consisted of physical examination every four weeks together with computed tomography scans of the chest, abdomen, and pelvis every eight weeks. Patients were investigator assessed using the Response Evaluation Criteria in Solid Tumors guidelines 1.1. Responses were confirmed by follow-up radiographic evaluation four weeks after the initial response criteria were met. **BRAF** mutations were determined according to technical methods previously described (9). The primary end point of the trial was the efficacy of the treatment at three months. Patients were classified as objective response or stabilization (OR/SD,
called “responders” henceforth) versus progressive disease or death (PD, called “non responders”). **MAGE3-protein based vaccines.** The details about patient characteristics, protocol description and survival have been previously reported in Kruit et al. (25). CD4⁺NKG2D⁺T cells were analyzed at start prior to vaccine inoculation (one month after relapse with conventional therapies) and correlated with overall survival. **NY-ESO-1 vaccine trial.** Pre-vaccine peripheral blood samples were collected from malignant melanoma, sarcoma, breast and ovarian cancer patients enrolled in a clinical trial of vaccination with recombinant NY-ESO-1, Montanide ISA 51, and CpG 7909 (27) upon informed consent and approval by the Institutional Review Board of Columbia University Medical Center.

Immunohistochemistry studies. Paraffin-embedded tumor tissues were first rehydrated, and then treated with hydrogen peroxide (DAKO) for neutralizing endogenous peroxidase and Serum Free Protein Block (DAKO) to prevent non-specific binding. After blocking, primary antibody, anti-MICA/B (SR99, kind gift from SCZ) was applied. Binding specificity was controlled by IgG1-isotype controls (RnD). For visualization, EnVision anti-mouse (DAKO) horseradish peroxidase-conjugated streptavidin was applied, followed by the chromogen diaminobenzidine/H2O2 (DAB, DAKO). Immunostained sections were counterstained very briefly with Mayer’s Hemalaun, dehydrated, and cleared with xylene, before covered with mounting medium (toluene-based) and coverslips (DAKO). For staining of anti-CD3 (polyclonal rabbit, 1:150, DAKO), anti-CD4 (1:20, Novocas tra) and anti-CD8 (1:25, Novocstra), the Benchmark system (Ventana, Strasbourg) was used. For detection of IL-15Rα, primary antibody (AF247, R&D Systems) was applied at 10 μg/mL after blocking, and anti-goat IgG Alexa568 was used at 5 μg/mL as secondary antibody. Isotype-matched antibody was used as negative
controls. Samples were mounted in ProLong Gold antifade with DAPI reagent (Molecular Probe). Fluorescent images were analyzed with an epifluorescent microscope (Zeiss Apotome Microscope).

PBMC preparations. Blood samples were drawn from 63 patients prior to and after each treatment cycle and from twelve healthy volunteers. Peripheral blood mononuclear cells (PBMC) were re-suspended in culture medium, i.e. RPMI1640 (GIBCO Invitrogen), 10% human AB+ serum (Jacquesboy), 1% Penicillin/Streptavidine (PEST, GIBCO Invitrogen), and 1% 2 mM Glutamine (GIBCO Invitrogen). Some cells were then stained for flow-cytometric analyses, and the rest were resuspended in CryoMaxx medium (PAA Laboratories) for storage in liquid nitrogen.

TIL preparations. Resected lymph node (LN) specimens and/or metastatic tissue from sixteen MM patients were analyzed for infiltrating lymphocytes. Tissue samples were placed in dissociation medium, i.e. RPMI1640, 1% PEST, Collagenase IV (8000 UI/mL), Hyaluronidase (112000 IU/mL), and DNAse (12700 IU/mL), and run on a gentleMACS Dissociator (Miltenyi Biotec). The cell samples were then diluted in RPMI1640 + 10% human AB+ serum, passed through a cell strainer and centrifuged for 10 minutes at 300g. Next, the cells were resuspended in PBS and stained for flow-cytometric analyses. Tumor-coupled specimens of non-invaded LN or blood samples was obtained from ten patients and were analyzed as above.

Flow cytometry. Cells were stained with fluorochrome-coupled monoclonal antibodies (mAbs), incubated for 20 min at 4°C and washed. If adherent cells, trypsinization preceded the staining step. Cell samples were analysed using a CyAnADP 9-Color flow cytometer (Beckman Coulter),
or an LSRII flow cytometer (BD Biosciences). For proper compensation single-stained antibody-capturing beads were used (CompBeads, BD Biosciences). Data was analyzed using FlowJo (Tree Star, Inc.) or FACSDiva (BD Biosciences). For accurate determination of nondiscrete populations, fluorescence-minus-one (FMO) controls were used. For dead-cell discrimination, DAPI (Invitrogen) or the fixable amine-reactive LIVE/DEAD Cell-Stain Kit (Invitrogen) was used. For phenotypic analysis of CD4^+NKG2D^+T cells, PBMC samples from eleven patients were thawed, and resuspended in PBS for 9-color flow-cytometry staining. T cells of interest were identified by CD3, CD4, CD56, CD8, CD14, and NKG2D mAbs and co-stained with CD28 and CD45RA, or 2B4 and CD161, or IL-15Rα and CX3CR1, or CD25 and CD158 antibodies. The following fluorochrome-coupled anti-human mAbs were used: anti-CD3 (Miltenyi, BD, Beckman Coulter), anti-CD4 (BD), anti-CD8 (BD, eBioscience), anti-CD14 (BD, eBioscience), anti-CD56 (Beckman Coulter), anti-NKG2D (Miltenyi), anti-Foxp3 (eBioscience), anti-CD25 (BD), anti-CD28 (BD), anti-CD45RA (BD, eBioscience), anti-2B4 (BD), anti-CD161 (Beckman Coulter), CD158a (BD), anti-CX3CR1 (MBL), and anti-Ki67 (BD). Rabbit polyclonal anti-IL-15Rα IgG antibody was purchased from Santa Cruz Biotechnology. Purified anti-CD3 (OKT3) and anti-NKG2D (AF750), and goat anti-rabbit IgG-APC were purchased from Biolegend.

T-cell purification and functional assays. Frozen PBMC samples were quickly thawed, washed, and resuspended in recommended medium (RoboSep Buffer, Stemcell Technologies) for magnetic bead separation with EasySep Human CD4-Positive Selection kit (Stemcell Technologies). Positive-selection kit was chosen to avoid depleting CD8-positive CD4^+NKG2D^+T cells. For isolation of CD4^+NKG2D^+T cells and NKG2D^+NK cells, previously frozen PBMCs were stained with mAbs to CD3, CD4, CD56, CD14, and NKG2D and sorted by
flow cytometry on a three-laser MoFlo XDP cell sorter (Beckman Coulter), or a three-laser ARIA III cell sorter (BD). Over 98% pure populations of CD3+/CD4+/NKG2D+/CD56-/CD14- and CD56+/NKG2D+/CD3-/CD4-/CD14- cells were obtained. **Cytokine production.** PBMCs from MM patients were thawed and resuspended in culture medium, and kept at 37°C, overnight. The next day, cells were enriched for CD4+T cells and seeded at 10^6 cells/ml on a flat-bottomed NuncMaxiSorp 96-well plate, precoated with or without anti-CD3 antibody (0.5 μg/ml), anti-CD122 antibody (1, 10 μg/ml), and anti-NKG2D antibody (4 μg/ml) alone or in combination. After 20 hours of cell culture, the supernatant was collected, cleared by centrifugation, and analyzed by enzyme-linked immunosorbent assay (ELISA) for quantification of IFN-γ (BD), IL-2 (BD), TNF-α (BD), IL-17 (R&D), and IL-10 (BD) according to the instruction manuals. For cytokine-release from purified cells, FACS-sorted CD4+NKG2D+T cells and NK cells were cultured overnight in the presence or absence of soluble MIC (5 ng/ml, kind gift from Sophie Caillat-Zucman (SCZ)) and recombinant IL-15 (5 ng/ml, R&D) alone or in combination. Release of IFN-γ into the supernatant was then measured by ELISA according to the manufacturer’s instructions. **Proliferation.** After precoating UV-sterilized Maxisorp Nunc plates with or without anti-CD3 antibody (1 μg/ml), we plated CD4+T cells in the presence or absence of soluble MIC (5 ng/ml), and IL-15 (5 ng/ml) alone or in combination. Cells were then cultured for 5 days, and then harvested for staining with the PE-coupled Ki67, as well as other surface mAbs. **Cytotoxicity.** PBMCs were cultured in RPMI/10%SAB with or without 20 ng/mL IL-15 for four days. One day before co-culture, MEL10 target cells were stained with CMTMR (Invitrogen), seeded on a round-bottom plate (10,000 cells/well), and treated with or without sorafenib (10 μM). The next day, PBMCs were collected and enriched for CD4 cells prior to FACS-ARIA III-sorting of NKG2D positive/negative cells. Target cells were washed with PBS before adding
40,000 sorted T cells to each well and cultured for 20 hours. Floating cells were then transferred to FACS-tubes and adherent cells were trypsinized and collected into the same tubes. After centrifugation, the cells were resuspended in PBS and analyzed on a Canto II (BD). For cell death determination, To-Pro-3 (Invitrogen) was added to the tube just before running.

Exposure of melanoma cells to cytotoxic compounds. Eight human melanoma cell lines, M14, M96, MELP, MEL8, MEL397, MEL888, MT10, and MZ2 were plated and grown confluent in DMEM medium (GIBCO Invitrogen) supplemented with 10% fetal bovine serum (FBS, PAA Laboratories), and 1% PEST. Cells were then cultured in the presence or absence of sorafenib (5 μM, Nexavar, Bayer) and temozolomide (50 μM, Temodal, Schering Plough) alone or in combination (protocol without cell death, not shown). The next day, cells were collected and labeled with IL-15Rα polyclonal antibody (H107) followed by an APC-coupled secondary antibody and then stained with DAPI for dead-cell exclusion for flow cytometry analysis. FMO tube was added as negative control, and background staining was excluded with a goat anti-rabbit IgG-APC.

Quantitative reverse transcription-PCR (qRT-PCR) for IL15Rα Isoforms. Total cellular RNA was isolated from melanoma cells with the RNeasy kit (Qiagen). First strand cDNA was synthesized from 1 μg of total RNA using SuperScript™ III Reverse Transcriptase and random primers according to Life technologys’ instructions. The qRT-PCR for IL-15Rα (Hs00542604_m1, Hs01986843_m1, Hs00233692_m1) isoforms and for β2microglobuline was performed by real time fluorescence measurement using StepOnePlus System (Life Technology). The qRT-PCR data was adjusted to β 2M measurements using the 2-ΔCT method (28).
Microarray. Global gene expression analysis was performed on 20 cDNA samples from biopsies of melanoma patients prior and post 2 cycles of sorafenib/temozolomide, using the Human Gene Expression 8x60K Agilent Human Microarray Kit. Functional analysis was carried out through the Ingenuity Pathway Analysis (Ingenuity® System).

Statistical analyses. Differences between groups of quantitative data were assessed by Mann Whitney U test or Wilcoxon signed rank test for all distributions, or Student’s paired or unpaired t-test if the criteria for Gaussian distribution was met. All reported p-values were two-sided, and a p-value of less than 0.05 was considered statistically significant.
Results

Effector memory CD4⁺NKG2D⁺T cells in metastatic melanoma (MM) patients.

In accordance with a previous report (9), the sorafenib and temozolomide combination therapy (schedule summarized in Supplementary Fig. S1) induced 1 complete response (CR), 4 partial responses (PR) and 21 disease stabilizations (SD) at 3 months (CR+PR+SD called hereafter “responders”) and 37 progressive disease (PD) being referred to as “non responders” according to RECIST criteria (Table 1). Severe lymphopenia was observed in both responders and non responders (Supplementary Fig. S2A-B).

We phenotyped circulating lymphocytes in a longitudinal study over two months in 63 patients included in this phase 1/2 trial. All MM patients showed a significant reduction of NKG2D expression in both CD8⁺T and NK cells at diagnosis compared with healthy volunteers (HV) (Fig. 1A). Conversely, there was a higher proportion of CD4⁺T cells expressing NKG2D in all MM patients compared to HV (Fig. 1A, right panel). These CD4⁺NKG2D⁺T cells differed from the CD4⁺NKG2D⁻Tcell subset in that they co-expressed low levels of CD8αβ (Fig. 1B) and exhibited an effector memory (CD45RA⁻CCR7⁻) phenotype (Fig. 1C). Extensive phenotyping showed that about 20% of CD4⁺NKG2D⁺T cells expressed the C-type lectin receptor NKR-P1A (CD161) as described by others (29), but failed to express other NK receptors (such as 2B4, KIR, NCR, CD94/NKG2A) in contrast to previously described CD4⁺NKG2D⁻T cells (30) (Fig. 1D). Finally, CD4⁺NKG2D⁺T cells did not express the fractalkine receptor CX3CR1 associated with T-cell trafficking into tumor beds (Fig. 1D).
Lymph-node resection in high-grade melanoma allowed us to examine the capacity of CD4+NKG2D+T cells to traffic to tumor beds. Indeed, this subset represented up to 2-25% of the CD4+ tumor-infiltrating LN T cells (Met LN), generally not enriched compared to blood or non-metastatic LN (non-Met LN) (when paired specimen were available, Fig. 2A), and expressed higher levels of PD-1 (but similar levels of TIM-3) molecules compared with NKG2D negative CD4+T cells (Fig. 2B-C). Of note is that these Met LN contained about 73±20% of CD45 negative cells.

Altogether, the regulation of NKG2D expression in CD4+ versus CD8+ or NK cells is uncoupled in MM patients. The accumulation of CD4+CD8dim or CD4+NKG2D+T cell subset in blood (and tumors) is frequently observed in melanoma but can also be found in other malignancies (Supplementary Fig. S3).

Th1 polarization of CD4+NKG2D+T cells upon engagement of NKG2D and CD122.

First, we analyzed the capacity of CD4+T cells to secrete cytokines after engagement of TCR and/or NKG2D prior to therapy. A strong synergistic effect on the production of IFN-γ, IL-2 and TNF-α was observed when both receptors were triggered (Fig. 3A) in responders as well as in non responders (not shown). Importantly, upon TCR and NKG2D triggering, this subset failed to produce IL-17 or IL-10 (not shown). Intracellular staining revealed that most CD4+NKG2D+T cells produce both IFN-γ and TNF-α (Fig. 3B). Since IL-15 has been shown to be a key factor in arming an NKG2D-dependent activation of TCRαβ CTLs in celiac disease (31), we addressed whether purified CD4+NKG2D+T cells could be activated by co-engagement of NKG2D and/or CD122 (IL-2Rβ common to both IL-2/IL-15 signaling) with a suboptimal cross-linking of CD3.
molecules. While CD4⁺NKG2D negative T cells failed to release IFNγ upon receptor engagement, cell-sorted CD4⁺NKG2D⁺T cells produced high levels of Th1 cytokines after a combined stimulation through TCR, CD122 and NKG2D (Fig. 3C). To further characterize the functions of these cells, we performed three additional assays (Supplementary Fig. S4). First, we incubated the NKG2D⁺ or NKG2D⁻ cell subset with soluble MICA (expected to trigger NKG2D) and rIL-15 (expected to stimulate IL-2Rβγ) in vitro in the presence or absence of a TCR engagement. Interestingly, sMICA+IL-15 could independently of TCR engagement synergistically induce IFNγ secretion in the CD4⁺NKG2D⁺T cell subset (as in NK cells) but not in CD4⁺NKG2D⁻ T cells (Supplementary Fig. S4A). However, proliferation of either NKG2D⁺ or NKG2D⁻ CD4⁺T cells could only be induced after CD3 cross-linking (Supplementary Fig. S4B). In contrast to their NKG2D⁻ counterparts, the CD4⁺NKG2D⁺ effectors were also able to recognize and kill melanoma cells (MEL10 cell line) after IL-15 priming (Supplementary Fig. S4C). Sorafenib exposure did not enhance their cytotoxicity, which might be explained by the reported direct inhibitory activity of sorafenib on T-cell functions (32). Moreover, as shown in Figure 4, IL-15Rα expression was only weakly increased (Fig. 4D) on the cell surface of MEL10 cells by sorafenib treatment (Fig. 4E), which could explain why the addition of IL-15 to engage CD122 was mandatory for the MEL10 cell line. To follow up on this, we then switched to the melanoma cell line MEL888, of which sorafenib had shown greater impact on the expression of IL-15Rα both on mRNA levels and cell surface (fig. 4E and 4D), and tested the activation of CD4⁺NKG2D⁺ T cells without the addition of exogenous rhIL-15 in the presence of sorafenib-treated or untreated MEL888 cells. The result showed that CD4⁺NKG2D⁺ T cells could only secrete IFNγ in the presence of sorafenib-treated MEL888 cells (Supplementary Fig. S4D).
Thus, CD4⁺NKG2D⁺T lymphocytes constituted an effector memory Th1-polarized T cell subset capable of releasing cytokines upon TCR engagement with a strong co-stimulatory activity of the NKG2D receptor or upon co-engagement of CD122 and NKG2D receptors.

Regulation of IL-15Rα expression by sorafenib in tumor beds.

We analyzed how sorafenib or temozolomide could modulate the expression of the ligands for these receptors *in vitro* and *in vivo*. Lymph-node residing melanoma was reported to express low levels of NKGD ligands (33). We analyzed sixteen “paired” but independent tumors (mostly from subcutaneous lesions), before and after 3 cycles of therapy by immunohistochemistry of paraffin-embedded melanoma. First, anti-CD3, -CD4 and -CD8 antibody stainings revealed abundant infiltrates that were not significantly altered by therapy (Table 2, Supplementary Fig. S5). The SR99 Ab recognizing MICA/B revealed that the intensity of the staining appeared moderate to strong on plasma membrane and in the cytosol in all specimen regardless of the location (Supplementary Fig. S5, Table 2). Of note, no staining was observed in the epidermal or mesenchymal cells of normal skin adjacent to the melanoma (not shown). The expression of MICA/B proteins was maintained by the therapy in tissue sections (Table 2) although sorafenib could, with increasing concentrations, downregulate MICA expression on melanoma cell lines *in vitro*, especially on MEL888 cells (Fig. 4A). Note that treating the MEL888 cells with 10 µM sorafenib for 24h led to the release of sMICA/B in the supernatant (not shown).

We also monitored the IL-15Rα expression on tumor cells. Immunofluorescence analyses of paired melanoma pre- and post-therapy using anti-IL-15Rα specific antibodies revealed that in
most cases (7/8 patients), therapy increased cell-surface expression of IL-15Rα on tumor cells (Fig. 4B). RT-PCR analyses of 20 tumor biopsies compared the relative expression of the IL-15Rα gene pre- versus post-therapy and confirmed, in 4 cases, the upregulation of transcription or a strong and stable basal expression in 2 cases (Fig. 4C). Corroborating these data, sorafenib induced cell-surface expression of IL-15Rα and enhanced transcription of IL-15Rα in melanoma lines in vitro (Fig. 4D). Note that temozolomide was not able to induce IL-15Rα expression in vitro and did not inhibit IL-15Rα expression induced by sorafenib (not shown). Interestingly, B-RAF or c-KIT inhibitors (vemurafenib or imatinib) failed to modulate IL-15Rα in melanoma cell lines in vitro (Fig. 4E). Monitoring of IL-15Rα on peripheral blood CD14+ cells at baseline and after 2 cycles of treatment revealed an up-regulation preferentially in responding patients (Fig. 4F), and in patients with longer overall survival (OS over the median time of survival, 224 days, p = 0.03 with Wilcoxon signed rank test, data not shown).

Microarray analysis was performed on 20 paired biopsies before (D0) and after treatment (D21) from 20 patients by establishing the LogRatio (D21/D0) to identify genes that could be modified by the treatment regardless of the clinical response. This analysis revealed a cluster of genes among which IL-15, STAT5 and STAT1 appeared first as upregulated after treatment (Supplementary Fig. S6). Due to the limited number of samples and the absence of a validation set, it was impossible to perform relevant analysis in order to distinguish responders from non-responding patients.

To conclude, sorafenib alone or combined with temozolomide may induce membrane expression of IL-15Rα in vitro and in vivo in patients with melanoma.

Increase of CD4+NKG2D+T cells associated with overall survival
Given the sorafenib-induced accumulation of CD4^+NKG2D^+ Th1 cells and IL-15R\(\alpha\) expression in melanoma lesions, we hypothesized that this subset could influence therapeutic outcome. We analyzed potential correlations between the frequencies of CD4^+NKG2D^+T, CD8^+NKG2D^+ T cells and CD56^+NKG2D^+ NK cells at various time points with the clinical response evaluated at 2 months and overall survival (OS). None of these parameters was associated with clinical response at any time points (Supplementary Fig. S2C and not shown). However, lymphopenia at baseline influenced overall survival. Considering that median survival of the whole cohort is 227 days, patients with prolonged survival (>227 days) exhibited higher lymphocyte counts at baseline compared with rapidly progressive patients (Fig. 5A). Importantly, the increase of circulating CD4^+NKG2D^+T cells at two cycles of therapy was associated with prolonged survival while the parallel decrease of CD8^+NKG2D^+ or CD56^+NKG2D^+ NK cells was not (Fig. 5B-C, Supplementary Fig. S2D). The elevation of CD4^+NKG2D^+T-cell subset observed post-sorafenib (combined with temozolomide) was not apparent after miscellaneous lines of conventional therapies (including DTIC, fotemustine, isolated limb perfusion, vaccines) where long term or short term survivors had no more than 2.5-3% of CD4^+NKG2D^+T cells (Fig. 5D). Altogether, it is tempting to speculate that the accumulation of CD4^+NKG2D^+ Th1 cells may be regulated by a therapy facilitating the exposure of IL-15R\(\alpha\) on tumor cells and/or circulating monocytes.
Discussion

Here we report the first demonstration that sorafenib (combined with temozolomide) could 1/ increase the proportion of a rare subset of effector memory CD4+NKG2D+Th1 cells, and 2/ induce the upregulation of IL-15Rα on monocytes and/or in tumor sections. NKG2D ligands along with the therapeutic induction of IL-15Rα expression on the plasma membrane of tumor cells (and/or monocytes) could restore/favor the activation of tumor-infiltrating effector lymphocytes. We show that these molecules are either detectable at baseline (MICA expression) or induced by sorafenib (IL-15Rα) in MM where a subpopulation of rare CD4+T cells expressing NKG2D is abnormally represented (compared with healthy volunteers). This subset can be induced to proliferate after engaging TCR and NKG2D receptors and to release Th1 cytokines after engaging CD122 and NKG2D receptors.

Several subsets of CD4+NKG2D+T cells have been described. First, in cancer patients, tumor expression and shedding of sMICA/B ligand of NKG2D drove the proliferation of a CD4+NKG2D+T cell population that produced IL-10, TGF-β and FasL (34, 35). The expansion of these cells inhibited bystander CD8+ and CD4+ T-cell proliferation \textit{ex vivo}. The same autoreactive T-cell subset was inversely correlated with disease activity in autoimmune diseases (such as juvenile-onset systemic lupus erythematosus). In this report, sMIC serum levels were also inversely correlated with disease activity (36). Second, in contrast to this «regulatory» phenotype, a «proinflammatory» and cytolytic CD4+NKG2D+T-cell subtype has been described in autoinflammatory diseases such as Wegener’s granulomatosis (37, 38), rheumatoid arthritis (39) and Crohn’s disease (40). In most of these reports, CD4+NKG2D+T cells harbor an effector-memory phenotype and express many other NK-cell activating receptors (such as 2B4, DNAM-1,
CRACC) likely contributing to pathogenesis. Indeed, co-ligation of 2B4 in combination with DNAM-1 or NKG2D enhanced CD4^+CD28^−T cell degranulation and IFN-γ secretion engaged through suboptimal TCR triggering (30). Those effector memory (T_EM) CD4^+NKG2D^+T cells were found in Wegener granulomata in close association with MIC^+ and IL-15^+ cells and CD208 dendritic cells (37). It is known that IL-15 upregulates NKG2D expression on T cells and MIC expression on inflamed tissues and drives T_EM differentiation and proliferation, culminating in exacerbation of autoimmune diseases (39, 41). Meresse et al. elegantly demonstrated in CD8^+T cells that dysregulated IL-15 expression promotes the NKG2D/DAP10 signaling pathway leading to CTL cytotoxic activity independently of the engagement of the TCR, transforming CTL into «LAK-like» cells (31). As for CD8^+T cells, lamina propria CD4^+T cells from Crohn’s disease expressing NKG2D, Th1 cytokines and perforin were functionally active through MICA/NKG2D interactions (40). Third, an increased frequency of double positive CD4^+CD8^αβ T cells (DP cells) was reported in Hodgkin lymphoma, human breast cancer pleural effusions (29) and in melanoma (42). However, these DP cells express high levels of CD8αβ, low levels of CD4 and produce Th2 cytokines upon HLA class I-restricted recognition of tumor cells and normal cells, suggesting that they are «regulatory» CD8^+T cells specific for self antigens. Fourth, Maccalli et al. characterized CD4^- and CD8 T cell clones from melanoma lesions for their dependency on TCR versus NKG2D in the recognition patterns of melanoma cells. Very few T-cell clones were CD4^+NKG2D^+ and they recognized tumor cells mainly in a MHC class II-dependent fashion. Moreover, MICA/B expression was rather low in LN melanoma while ULBP-2 was more prominent and functionally relevant (33). In our report, CD4^+NKG2D^+T cells shared biological and functional features with proinflammatory CD4^+NKG2D^+T cells. Indeed, the CD4^+NKG2D^+ T-cell subset that we observed in these MM patients were enriched with effector memory cells,
expressed low levels of CD8αβ and high levels of CD4, secreted Th1 cytokines and could proliferate upon suboptimal TCR triggering along with NKG2D and/or CD122 engagement. The major difference is the lack of NK-cell receptor expression. Only NKG2D and CD161 (29, 41-44) were expressed in this cohort CD4+NKG2D+T cells.

The proof of principle that CD4+T cells can be therapeutically harnessed against MM has been brought up by Yee C and colleagues, where they used IL-2 and IL-7 to differentiate tumor-specific CD4+T cells (43). Others have found that naive CD4+T cells after adoptive T-cell transfer can be cytotoxic and highly contribute to tumor rejection (45). Such efficient T-cell response strongly relied upon lymphopenia and common γ-chain (such as IL-15). Furthermore, an appropriate DC or monocyte/CD4+T-cell crosstalk will lead to both IL-15 driven IL-12 production by DC, and enhanced proliferation and polarization of Th1 cells (46). Cytokine/antibody immune complexes to IL-15 or IL-2 or IL-7 may mimic the effects of lymphopenia required for such an efficient triggering of naive CD4+T cells. Therefore, it is likely that the combination of temozolomide and sorafenib, through prolonged lymphopenia, may foster an environment for the proper polarization and expansion of effector CD4+T cells in a tumor milieu providing the right co-stimulatory molecules (IL-15Rα, MICA/B). Supporting this premise, our transcriptional profiling indicates that the IL-15/IL-15Rα signaling pathway and Th1 signatures are induced in lesions post-therapy (Supplementary Fig. S6).

In the absence of IL-15Rα induction, however, many strategies could be envisaged to compensate these patients. Cis- or trans-stimulating IL-2Rβγ through stabilized IL-15–based approaches have been tested in preclinical models (47). Indeed, IL-15/IL-15Rα-Fc, IL-15/IL-15Rα fusion proteins, IL-15 fused to the human antibody fragment (scFv) specific of a tumor antigen or the tumor stromal fibroblast activation protein, IL-15 gene therapy (such as the
hydrodynamic injection of plasmids encoding IL-15 or IL-15 engineered oncolytic viruses) have all been reported to be efficient against mouse tumors.

Our data suggest that a subset of CD4+T cells (expressing NKG2D) becomes biologically significant in that they may be engaged by IL-15Rα and MICA/B expressed on tumor cells and/or monocytes (either through sorafenib or spontaneously respectively) to secrete high levels of Th1 cytokines. We cannot exclude that other NKG2D+ expressing effectors could be implicated since we could also monitor CD8+T cells infiltrating tumors. However, it appears that only CD4+NKG2D+T cells could be augmented after two cycles of therapy, which turned out to be clinically relevant and associated with longer overall survival.

In conclusion, our data suggest that CD4+NKG2D+T cells could be tuned functionally by induction of IL-15Rα. This observation could have some clinical impact since compounds inducing or mimicking IL-15 trans-presentation are currently under development for the treatment of cancer.
References

Figure Legends

Figure 1. Increase of CD4⁺NKG2D⁺T cells exhibiting an effector memory phenotype.
A. Flow cytometry analyses of NKG2D expression on freshly isolated subsets of circulating lymphocytes (CD3⁺CD8⁺ (left panel), CD3⁻CD56⁺ (middle panel) CD3⁺CD4⁺ (right panel)), in MM before (0) and after 1-2 cycles (1, 2) of therapy as well as in sex and age matched-healthy volunteers (HV). Each dot represents one patient or HV. Intraindividual variations between pre- and post-therapy are analyzed by paired Student’s t-test (*: p<0.05, **: p<0.01). B. Flow cytometry analyses of NKG2D expression according to CD4 and CD8 expression. NKG2D expression on CD4⁺T cells proportional to the staining with anti-CD8 mAb shown in a representative histogram (right panel). C-D. Phenotyping of CD4⁺NKG2D⁺T cells recovered from MM at diagnosis according to CD45RA and CCR7 expression (C) or from eleven MM patients in a kinetic study according to various NK cell receptors (D). Student’s t-test to compare CD4⁺NKG2D⁺ or NKG2D⁻ T cells: ***p<0.001. Intraindividual variations between pre-and post-therapy are analyzed by Wilcoxon signed rank test (ns: not significant).

Figure 2. Phenotype of CD4⁺NKG2D⁺ TILs in MM.
A. Flow cytometry analyses of CD45⁺CD3⁺CD4⁺ infiltrating lymphocytes in blood, non-invaded lymph node (Non-met LN), lymph node metastasis (Met LN), or other metastatic tissue (Met). A representative dot plot is shown with the percentages of NKG2D⁺ cells among the CD4⁺ T cell population (left two panels). In nine cases, paired specimen (coupling blood or non-invaded LN to tumor beds (Met LN or Met)) were examined (connected lines, right panel). Wilcoxon’s signed rank test showed no statistical significance (ns). B-C. Expression of PD-1 and Tim-3 on CD45⁺CD3⁺CD4⁺ TILs (Met LN) versus PBMCs (Blood) based on NKG2D expression. A
representative dot plot is shown (B) and the results from 9 Met LN are depicted in the graph (C). Student’s t-test was used to compare CD4^+NKG2D^+ and NKG2D^- T cells: *p<0.05. ns: not significant.

Figure 3. Synergistic effects of TCR, CD122 and NKG2D engagement for Th1 polarization in CD4^+NKG2D^+T cells.

A. TCR and NKG2D-dependent Th1 cytokine release by CD4^+NKG2D^+T cells. Cytokine release was measured using ELISA for human IFN-γ, IL-2, and TNF-α in the supernatants of circulating CD4^+T cells recovered before therapy in four MM patients. Cells were stimulated overnight with a combination of suboptimal amounts of anti-CD3 (aCD3, 0.5 μg/ml) and anti-NKG2D (aNKG2D, 4 μg/ml) antibodies. IL-17 and IL-10 were not detectable in these conditions (not shown). The graph depicts the means + SEM of cytokine release from four MM (each one being tested in triplicate wells). B. Cytokine production, gating on CD4^+NKG2D^+ (upper panel) and CD4^+NKG2D^- (lower panel) at 48 hours of stimulation using flow cytometry and intracellular stainings. A representative dot plot is depicted. C. The synergistic effect of CD122 triggering (dose response of cross-linked anti-CD122 agonistic antibody) together with TCR/NKG2D engagement on cell-sorted CD4^+NKG2D^+ or NKG2D^- T cells from three MM patients. Data from one representative patient shows the percentage of IFNγ^+ cells assessed by flow cytometry and intracellular staining.
Figure 4. Sorafenib induced cell surface expression of IL-15Rα, and downregulation of MICA/B.

A. Downregulation of MICA/B expression on melanoma cell lines *in vitro*. Flow cytometry analysis of MICA/B expression at 48 hours post-exposure to sorafenib at increasing concentrations gating on live MEL10 and MEL888 cells. FMO-control is indicated in thin black line. Representative overlays are shown. B. Hematoxylin/eosine (H&E) staining of MM lesions and immunofluorescence using anti-IL-15Rα antibodies. Nuclei are visualized with a DAPI (blue) staining, while melanoma plasma membrane appears in red (staining with secondary anti-goat IgG Alexa 568 recognizing the anti-IL-15Rα Ab). Two representative patients’ paired lesions (pre- and post- therapy) are shown. A graph representative of 8 independent tumor lesions examined before and after therapy depicting the % of positivity is shown in the right panel. C. RT-PCR determinations of the relative expression of the IL-15Rα gene in 20 paired MM lesions before and after 3 cycles of therapy. D. Flow cytometry analyses of IL-15Rα expression on three melanoma cell lines after *in vitro* exposure to increasing dosing of sorafenib. Ratio of mean fluorescence intensity (MFI) between FMO-control and specific stainings is shown after an overnight culture in control medium with DMSO, sorafenib (with a dose response) and/or temozolomide (at 50 μM, not shown, but no upregulation). Each determination has been performed twice with similar results. E. Fold change RT-PCR of IL-15Rα gene expression after an 18-hour incubation of three cell lines with imatinib (1 μM), vemurafenib (10 μM) or sorafenib (10 μM) at doses triggering significant cell death or proliferation arrest. DMSO was used as control. F. IL-15Rα protein expression, monitored on CD14+ peripheral blood mononuclear cells, in non-responding (NR, n=11, left panel) and responding (R, n=12, right panel) patients. For each patient specific IL-15Rα staining and FMO control were performed at baseline (C0) and after 2
cycles (C2) of Sorafenib/Temozolomide. The dots represent the ratio of the MFI of the specific IL-15Rα signal to the MFI of the FMO control for each patient at C0 and C2. *p<0.05 and ns: not significant using Wilcoxon signed rank test.

Figure 5. CD4⁺NKG2D⁺T cells are increased post-therapy in patients experiencing prolonged overall survival.

Total lymphocyte counts (A), proportions of CD4⁺NKG2D⁺ (B) or CD8⁺NKG2D⁺ (C) T cells at C0, C1 and C2 were analyzed according to a stratification of patients based on their overall survival (< 227 or >227 days, the median survival of the whole cohort). D. Proportions of CD4⁺NKG2D⁺T cells after several treatment cycles in 18 MM patients treated with conventional therapies (including DTIC, fotemustine, isolated limb perfusion, and vaccines) stratified by their OS (< 385 or > 385 days, the median survival of this cohort). The frequency variations during treatment were analyzed using the paired Student’s t-test and subgroup comparisons were analyzed by the Student’s t-test. (*: p<0.05, **: p<0.01, ***: p<0.001, ns: not significant).
Table 1. Characteristics of patients (n=63)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>35/28</td>
</tr>
<tr>
<td>Age (mean ± SD) [range]</td>
<td>48.5 ± 13.8 [22-75]</td>
</tr>
<tr>
<td>Type</td>
<td>SSM (a) 20</td>
</tr>
<tr>
<td></td>
<td>Nodular 12</td>
</tr>
<tr>
<td></td>
<td>Lentigo maligna 1</td>
</tr>
<tr>
<td></td>
<td>Acral lentiginous 2</td>
</tr>
<tr>
<td></td>
<td>Mucosal 7</td>
</tr>
<tr>
<td></td>
<td>Ocular 4</td>
</tr>
<tr>
<td></td>
<td>Other 17</td>
</tr>
<tr>
<td>Metastasis (56 patients have metastases)</td>
<td>Number of metastasis lesions per patient (mean ± SD) 5.1 ± 2.0 [1-10]</td>
</tr>
<tr>
<td>Metastatic sites</td>
<td>Nodes 40</td>
</tr>
<tr>
<td></td>
<td>Liver 11</td>
</tr>
<tr>
<td></td>
<td>Lung 22</td>
</tr>
<tr>
<td></td>
<td>Peritoneum 8</td>
</tr>
<tr>
<td></td>
<td>Skin 19</td>
</tr>
<tr>
<td></td>
<td>Bone 7</td>
</tr>
<tr>
<td></td>
<td>Muscle 4</td>
</tr>
<tr>
<td>LDH level U/L (mean ± SD) [range]</td>
<td>341 ± 478 [90-3500]</td>
</tr>
<tr>
<td>LDH ≤ 250 U/L</td>
<td>34</td>
</tr>
<tr>
<td>LDH > 250 U/L</td>
<td>23</td>
</tr>
<tr>
<td>ND (b)</td>
<td>6</td>
</tr>
<tr>
<td>Treatment schedule</td>
<td>sorafenib 400 mg/d, temozolomide 100 mg/m² 3</td>
</tr>
<tr>
<td></td>
<td>sorafenib 400 mg/d, temozolomide 150 mg/m² 6</td>
</tr>
<tr>
<td></td>
<td>sorafenib 800 mg/d, temozolomide 150 mg/m² 54</td>
</tr>
<tr>
<td>Previous chemotherapy</td>
<td>No 9</td>
</tr>
<tr>
<td></td>
<td>One line 22</td>
</tr>
<tr>
<td></td>
<td>Two lines 19</td>
</tr>
<tr>
<td></td>
<td>Three lines 10</td>
</tr>
<tr>
<td></td>
<td>Four lines 3</td>
</tr>
<tr>
<td>3-month evaluation</td>
<td>Objective response or stabilization 26</td>
</tr>
<tr>
<td></td>
<td>Progressive disease or death 37</td>
</tr>
</tbody>
</table>

(a) Spreading Superficial Melanoma; (b) Not determined
Table 2. Semi-quantitative assessment of CD3, CD4, CD8, and MICA infiltrates by IHC.

<table>
<thead>
<tr>
<th>Patients<sup>(a)</sup></th>
<th>Clinical response<sup>(b)</sup></th>
<th>Before therapy<sup>(c)</sup></th>
<th>After therapy<sup>(c)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CD3</td>
<td>CD4</td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>++</td>
<td>+/-</td>
</tr>
<tr>
<td>26</td>
<td>R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>NR</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>NR</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>R</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>41</td>
<td>R</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>47</td>
<td>NR</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>NR</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>NR</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

^(a) inclusion number; ^(b) R = responder, NR = non responder; ^(c) staining estimations assessed by two independent pathologists: - = no staining, +/- = weak, + = intermediate, ++ = strong
Figure 1

A

Gate CD3⁺CD8⁺ Gate CD3⁺CD56⁺ Gate CD3⁺CD4⁺

% NKG2D⁺ cells

% NKG2D⁺ cells

% NKG2D⁺ cells

HV 0 1 2

HV 0 1 2

HV 0 1 2

Months after treatment

Months after treatment

Months after treatment

B

CD8⁺, CD4⁺, CD4^{dim} CD8⁺, CD4⁺ CD8⁺, CD4⁺ CD8⁺

% of Max

% of Max

% of Max

NKG2D

NKG2D

NKG2D

C

CD3

NKG2D

NKG2D

CD45RA

CD45RA

CD45RA

HV 1 20

HV 1 20

HV 1 20

% NKG2D⁺ cells

% NKG2D⁺ cells

% NKG2D⁺ cells

CD3⁺CD8⁺

CD3⁺CD56⁺

CD3⁺CD4⁺

Month after treatment

Month after treatment

Month after treatment

D

CD8⁺, CD4⁺, CD4^{dim} CD8⁺, CD4⁺ CD8⁺, CD4⁺ CD8⁺

% of Max

% of Max

% of Max

NKG2D⁺ CD4 cells

NKG2D⁺ CD4 cells

NKG2D⁺ CD4 cells

% NKG2D⁺ CD4 cells

% NKG2D⁺ CD4 cells

% NKG2D⁺ CD4 cells

CD3⁺CD8⁺

CD3⁺CD56⁺

CD3⁺CD4⁺

Month after treatment

Month after treatment

Month after treatment

% Positive NKG2D⁺ CD4 cells

% Positive NKG2D⁺ CD4 cells

% Positive NKG2D⁺ CD4 cells

CD28

CD45RA

CXCR1

CXCR5

CD25

IL-15R_α

CD158

CD158

CD161

CD161

NKG2D⁺ CD4 cells

NKG2D⁺ CD4 cells

NKG2D⁺ CD4 cells

Month after treatment

Month after treatment

Month after treatment

% Positive NKG2D⁺ CD4 cells

% Positive NKG2D⁺ CD4 cells

% Positive NKG2D⁺ CD4 cells

p = ns

p = ns

p = ns

Before treatment

After treatment
Figure 2

A

Met LN

NKG2D

CD4

12%

Blood

NKG2D

CD4

9%

B

CD4NKG2D−

CD4NKG2D+

Met LN

PD-1

CD4NKG2D−

CD4NKG2D+

Blood

TIM-3

C

% of CD4 T cells

NKG2D− cells

NKG2D+ cells

* ns

Downloaded from cancerres.aacrjournals.org
Figure 3

(A) IFN-γ, IL-2, and TNF-α levels in pg/ml for control, aCD3, aNKG2D, and aCD3 + aNKG2D groups.

(B) CD4 T cells with NKG2D+ and NKG2D- subpopulations. IFN-γ and TNF-α levels for NKG2D+ and NKG2D- cells.

(C) NKG2D+ and NKG2D- CD4 T cells showing % IFN-γ positive cells for different treatments.
Figure 4

A

MEL10

% of Max

MICA/B

MICA/B

Control

Sorafenib 5 \(\mu \text{M} \)

Sorafenib 10 \(\mu \text{M} \)

B

Patient #25

Patient #49

H & E

IL-15R\(\alpha \)

H & E

IL-15R\(\alpha \)

% Strong IHC staining of IL-15R\(\alpha \)

0

25

50

75

100

Before T

After T

C

Relative expression of IL-15-R\(\alpha \)

D

% of Max

MICA/B

DMSO

Imatinib

Vemurafenib

Sorafenib

MEL 888

MEL 10

MEL 14

Ratio of IL-15R\(\alpha \) MFI

0

1

2

3

Before T

After T

E

Fold change of IL-15R\(\alpha \) expression

F

Ratio of IL-15R\(\alpha \) MFI

ns

*
Figure 5

A. Lymphocyte counts (cells/mm³) over treatment cycles (C0 to C3), showing a trend of decreasing lymphocyte counts over time. Circles represent patients with OS > 227 days, and open circles represent patients with OS < 227 days.

B. % NKG2D⁺ CD4 cells over treatment cycles (C0 to C2), with no significant differences between OS < 227 days and OS > 227 days.

C. % NKG2D⁺ CD8 cells over treatment cycles (C0 to C2), with a significant difference for OS < 227 days and no significant difference for OS > 227 days.

D. % NKG2D⁺ CD4 cells over OS, with no significant difference for OS < 385 days and OS > 385 days.
Regulation of CD4+NKG2D+ Th1 cells in patients with metastatic melanoma treated with Sorafenib: role of IL-15Rα and NKG2D triggering

Cancer Res Published OnlineFirst November 6, 2013.