Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine tunes the M2-like macrophage population.

Damya Laoui¹ ², Eva Van Overmeire¹ ², Giusy Di Conza³ ⁴, Chiara Aldeni³ ⁴, Jiri Keirsse¹ ², Yannick Morias¹ ², Kiavash Movahedi¹ ², Isabelle Houbracken⁵, Elio Schouppe¹ ², Yvon Elkrim¹ ², Oussama Karroum⁶, Bénédicte Jordan⁶, Peter Carmeliet⁷ ⁸, Conny Gysemans⁹, Patrick De Baetselier¹ ², Massimiliano Mazzone³ ⁴ and Jo A. Van Ginderachter¹ ²

¹Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
²Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
³Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium
⁴Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U. Leuven, Leuven, Belgium
⁵Cell Differentiation Unit, Diabetes Research Centre, Vrije Universiteit Brussel, Brussels, Belgium
⁶Biomedical Magnetic Resonance Unit, U.C. Louvain, Brussels, Belgium
⁷Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
⁸Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, K.U. Leuven, Leuven, Belgium
⁹Experimental Medicine and Endocrinology, Department of Experimental Medicine, K.U. Leuven, Leuven, Belgium
Running title:
Hypoxia fine-tunes the M2-like tumor macrophage subpopulation

Keywords:
Tumor-associated macrophage, Hypoxia, Macrophage polarization, PHD2, Angiogenesis

Financial support:
This work was supported by a doctoral grant from IWT-Vlaanderen to D.L. and Y.M., a scholarship from “Stichting Emmanuel van der Schueren” to D.L., J.K., K.M. and E.S., a doctoral grant from FWO-Vlaanderen to E.V.O., G.D.C, K.M. and E.S., a grant from “Stichting tegen Kanker” to P.D.B. and J.A.V.G. M.M. is supported by an ERC starting grant (OxyMo)

Corresponding author:
Dr. Jo A. Van Ginderachter, Lab of Cellular and Molecular Immunology, VIB-Vrije Universiteit Brussel, Building E8, Pleinlaan 2, B-1050 Brussels, Belgium.
E-mail: jvangind@vub.ac.be.

The authors have no conflicting financial interests.

Word count: 2447
Table count: 0
Figure count: 4
ABSTRACT

Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand due to a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b^hiF4/80^hiLy6C^lo^ TAM subsets, designated as MHC-II^lo^ and MHC-II^hi^ TAM, both of which were derived from tumor-infiltrating Ly6C^hi^ monocytes. MHC-II^lo^ TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II^lo^ TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II^hi^ counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in PHD2-haplodeficient mice, resulting in better oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowers hypoxia-sensitive gene expression and angiogenic activity in the MHC-II^lo^ TAM subset. The same observation in PHD2^+/+^ → PHD2^−/−^ bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II^lo^ TAM.
INTRODUCTION

Tumors are often highly infiltrated with inflammatory cells, such as tumor-associated macrophages (TAM). TAM are characterized by plasticity and versatility and may contribute to tumor progression via several mechanisms, including induction of angiogenesis, remodeling of the extracellular matrix, stimulation of cancer cell proliferation and metastasis and the inhibition of adaptive immunity (1, 2).

These different functions are exhibited by distinct TAM subpopulations, residing in distinct tumor microenvironments (3, 4). In this context, it has been observed in several tumor models that macrophages can infiltrate both oxygenized perivascular regions as well as hypoxic tumor areas (4-7). Importantly, strong tumor hypoxia and a high density of hypoxic TAM have been shown to correlate with a decreased survival rate (8). Though hypoxia can influence monocyte migration and macrophage proliferation and polarization (9-12), the precise role of tumor hypoxia in intratumoral monocyte differentiation and in shaping the molecular and functional TAM phenotype remains largely unexplored.

In this study, we employed PHD2-haplodeficient mice to evaluate the impact of tumor hypoxia on M2-like MHC-IIlo and M1-like MHC-IIhi TAM subpopulations, which both differentiate from Ly6Chi monocytes but reside in strongly hypoxic and less hypoxic regions, respectively. The oxygen-sensing prolyl hydroxylase domain 2 (PHD2) protein targets hypoxia-inducible transcription factors (HIFs) for degradation. Hence, its haplodeficiency creates a “genetic” type of hypoxia, resulting in tumor vessel normalization and tumor
oxygenation (13). Using PHD2+/- tumors, we demonstrated that hypoxia does not govern TAM subset differentiation and polarization, but regulates hypoxia-sensitive genes and angiogenic activity specifically in MHC-IIlo TAM. Moreover, the diminished hypoxic signature of MHC-IIlo TAM is recapitulated in PHD2+/+ → PHD2+/− bone marrow chimeras, illustrating that a better-oxygenized microenvironment drives this phenomenon.
MATERIALS AND METHODS

More detailed Materials and Methods can be found in the Supplementary Material

Mice, cell line and tumor models
Female C57BL/6 mice were from Janvier. PHD2+/− and Cx3cr1gfpl/+ mice were provided by Peter Carmeliet (VIB-KULeuven) and Frank Tacke (Aachen University), respectively. Procedures followed the guidelines of the Belgian Council for Laboratory Animal Science. Mice were injected subcutaneously with 3x10⁶, or orthotopically with 5x10⁵, 3LL-R Lewis lung carcinoma cells.

Tumor preparation, flow cytometry and cell sorting
Tumor single-cell suspensions from subcutaneous and orthotopic 3LL-R tumors and sorted TAM were prepared as described (4). Commercial antibodies for cell surface stainings are listed in Supplementary Table 1. To prevent aspecific binding, TAM were pre-incubated with rat anti-mouse CD16/CD32 (clone 2.4G2, BD Biosciences).
To purify TAM or TADC, cells were sorted using a BD FACSARia™ II (BD Biosciences) from 6-8 pooled tumors. To purify splenic conventional DC, spleens were flushed with 200 U/ml collagenase III (Worthington) and squashed. Subsequently, CD11c+ cells were enriched via MACS, using anti-CD11c microbeads (Miltenyi Biotec), after which CD11c+MHC-IIhiB220'Ly6C-
DCs were sorted using a BD FACS Aria™ II. Normalized delta-Median Fluorescence Intensity (ΔMFI) was calculated as: \[\frac{\text{MFI iNOS staining} - \text{MFI isotype staining}}{\text{MFI iNOS staining}} \]. FACS data were acquired using a BD FACSCanto II (BD Biosciences).

RNA extraction, cDNA preparation and quantitative real-time PCR
These experiments were performed as described (4). RNA was extracted using TRIzol (Invitrogen) and was reverse-transcribed with oligo(dT) and SuperScript II RT (Invitrogen). Quantitative real-time PCR was performed in an iCycler, with iQ SYBR Green Supermix (Bio-Rad). Primer sequences are listed in Supplementary Table 2. PCR cycles consisted of 1’ 94°C, 45’ 55°C, 1’ 72°C. Gene expression was normalized using ribosomal protein S12 (Mrps12) as a housekeeping gene.

Measurement of arginase activity, NO and IL-10 production
The arginase activity in the lysate of 5x10^5 sorted TAM or TADC was measured as described (4) and NO_2^- was quantified by a Griess reaction (4). IL-10 concentrations were measured by Bio-Plex (Bio-Rad), according to the supplier’s protocols.

Statistics
Significance was determined by the Student’s t test, using GraphPad Prism 4.0 software.
RESULTS

1. Lung carcinomas are highly infiltrated with a heterogeneous myeloid cell compartment

To study the impact of hypoxia on tumor-associated macrophages, we investigated established subcutaneous 3LL-R tumors with an average tumor volume of 869 ± 75 mm³. These tumors possessed hypoxic areas, as demonstrated by pimonidazole staining (Fig 1A), and are highly infiltrated by CD11bhi myeloid cells (51,7 ± 10,8 % of the tumor single cell suspension) (Fig 1B). The myeloid infiltrate encompassed Ly6Ghi neutrophils (12,0 ± 3,5 % within CD11bhi cells) and different mononuclear phagocyte subsets in various stages of differentiation: Ly6C^hiCCR2^hiCX3CR1^intMHC-II^neg monocytes (gate 1, Fig 1B), Ly6C^intCCR2^loCX3CR1^intMHC-II^lo immature macrophages (gate 2), Ly6C^hiintCCR2^loCX3CR1^intMHC-II^hi immature macrophages (gate 3), Ly6C^loCCR2^negCX3CR1^loMHC-II^lo tumor-associated macrophages (MHC-II^lo TAM, gate 4), Ly6C^loCCR2^loCX3CR1^hiMHC-II^hi tumor-associated macrophages (MHC-II^hi TAM, gate 5) and Ly6C^loCCR2^negCX3CR1^hiMHC-II^hi tumor-associated DC (TADC, gate 6). All macrophage subsets showed a high expression of F4/80 and a typical macrophage scatter profile, while the TADC expressed higher levels of MHC-II, CD11c, costimulatory and antigen-presenting molecules, but lower F4/80, CD64 and MerTK (Fig 1C, Fig S1A), in combination with a characteristic DC morphology (Fig 1B). In a mixed leukocyte reaction, both TAM subsets were poor stimulators of naive CD4^+ and CD8^+ T cells compared to TADC, which are equally potent antigen-
presenting cells as splenic conventional DC (Fig S1B,C). Moreover, at higher cell densities both TAM subsets suppress T-cell proliferation (Fig S1B,C).

MHC-IIlo and MHC-IIhi TAM were morphologically distinct (Fig 1B), suggestive of a different activation state. In agreement with this notion, enhanced protein expression of prototypic M2-associated markers such as MMR, IL-4Rα, SR-A, stabilin-1, arginase-1, and IL-10 and reduced iNOS activity illustrate the more M2-like nature of MHC-IIlo TAM as compared to MHC-IIhi TAM (Fig 1C,D). To extrapolate these findings to orthotopically grown tumors, 3LL-R was injected intrathoracically. Orthotopic lung tumors contained similar myeloid cell subsets, except for TADC (Fig S2A), with similar M1- versus M2-like profiles for the MHC-IIhi and MHC-IIlo TAM, respectively (Fig S2B). Notably, the proportion of distinct lung monocyte and macrophage populations was largely comparable between peritumoral normal lung tissue and naive lungs (Fig S2C).

2. MHC-IIlo and MHC-IIhi TAM are derived from the same monocyte precursor but reside in differentially oxygenized tumor regions

TAM subsets could be different because they are derived from distinct monocyte precursors or because they are subject to distinct microenvironments. Ly6CloCX3CR1hi monocytes are nearly undetectable at the tumor site (data not shown). Moreover, selective labeling of Ly6Chi or Ly6Clo monocytes in the circulation and subsequent tracing of labeled monocyte progeny in the tumor illustrated that exclusively Ly6Chi monocytes give rise to both TAM populations (Fig 2A). Furthermore, continuous administration of BrdU to the drinking water demonstrated that tumor-
infiltrating Ly6Chi monocytes and both immature macrophage populations, all of which do not proliferate as illustrated by cell cycle analysis (data not shown), rapidly become >90% BrdU+, suggesting these cells are differentiation intermediates with a fast turnover rate (Fig 2B). Notably, immature macrophages show a lag phase of BrdU incorporation relative to the Ly6Chi monocytes (at 24h: 72.5% BrdU+Ly6C+ monocytes, 38% BrdU+MHC-IIhi immature TAM, 11% BrdU+MHC-IIlo immature TAM) and mature MHC-IIhi and MHC-IIlo TAM show a lag phase relative to immature macrophages (at 48h: 76% BrdU+ immature macrophages, 14% BrdU+MHC-IIhi TAM, 9% BrdU+MHC-IIlo TAM), proposing a Ly6Chi monocyte → MHC-IIlo and MHC-IIhi immature TAM → MHC-IIlo and MHC-IIhi TAM differentiation scheme. By day 7, 79% of MHC-IIhi TAM are BrdU+ compared to only 67% MHC-IIlo TAM, suggesting a somewhat faster turnover rate of the former population.

Since both TAM populations were derived from the same precursor, we next assessed their intratumoral localization. The hypoxia tracer pimonidazole was injected in tumor-bearing mice and 2 hours later intracellular hypoxyprobe staining was performed on tumor single-cell suspensions. Immature MHC-IIlo macrophages and especially MHC-IIlo TAM stained much brighter compared to their MHC-IIhi counterparts (Fig 2C). In line with these findings, F4/80*MHC-IIhi cells were located outside of hypoxyprobe (HP-1*) tumor regions in immunohistochemistry (Fig 2D) and were not contained within the HP-1hi cell fraction in flow cytometry (Fig S3A). Conversely, the hypoxic regions in immunohistochemistry and the HP-1hi fraction in flow cytometry contained F4/80* cells that were mainly MHC-IIlo/lo and MHC-IIlo/lo TAM. Moreover, by gating on the CD11b*Ly6G-Ly6C- (encompassing only mature TAM and TADC subsets)
HP-1^{high} versus HP-1^{low} cells, a higher expression of MMR, IL-4Rα and SR-A could be detected on the HP-1^{high} fraction, corroborating the presence of the more M2-like MHC-II^{lo} TAM in this fraction. In conclusion, MHC-II^{lo} TAM rather associate with hypoxic regions, while MHC-II^{hi} TAM reside in less hypoxic areas.

3. Hypoxia does not define TAM differentiation and polarization, but specifically fine-tunes the molecular and functional profile of the MHC-II^{lo} TAM subset.

To address whether hypoxia is the driving force behind TAM subset differentiation, 3LL-R tumors were inoculated in PHD2^{+/−} mice. PHD2-haplodeficiency was shown before to foster vessel maturation and enhanced tumor oxygenation in several mouse tumor models without affecting primary tumor growth (13). Accordingly, overall oxygen pressure was significantly increased and the hypoxic HP-1⁺ area significantly reduced in PHD2^{+/−} 3LL-R tumors (Fig 3A,B). Tumor perfusion (Fig S4B,C,D) and vessel coverage (Fig S4E,F,G) were also significantly higher in PHD2^{+/−} tumors, while vessel density remained unchanged (Fig S4A), indicating that these vessels were more mature, tight and stable. However, nearly no differences were observed at the level of myeloid cell infiltration, the relative abundance of MHC-II^{lo} and MHC-II^{hi} TAM, or the expression of prototypical M2 markers in these cells (Fig 3C,D). Hence, hypoxia is not the main driver of TAM subset differentiation and polarization inside tumors.

We then assessed whether hypoxia contributes to a fine-tuning of the TAM phenotype. Corroborating their association with hypoxic regions, many of the
hypoxia-dependent genes (Vegfa, Angpt2, Flt1 (VEGFR1), Kdr (VEGFR2), Egf, Slc2a1 (Glut1), Slc2a3 (Glut3), Ldha, Plau (uPA), Igf1, Serpine1 (PAI-1), Nos2 (iNOS) and Cxcl1 (KC)) were significantly upregulated in MHC-IIlo TAM compared to MHC-IIhi TAM in control tumors (Fig 4A). Interestingly, genes regulating angiogenesis, metabolism or cancer cell invasiveness such as Vegfa, Slc2a1, Slc2a3, Serpine1, Plau, Nos2 and Cxcl1 were significantly downregulated in MHC-IIlo TAM from PHD2+/− tumors compared to MHC-IIlo TAM of control tumors. In contrast, the expression level of these hypoxia-regulated genes was less altered in MHC-IIhi TAM of both genotypes. Hence, hypoxia regulates the expression of a subset of genes mainly in the MHC-IIlo TAM population. For VEGF-A, GLUT-3, GLUT-1 and iNOS, these findings could be recapitulated at the protein level (Fig S5A,B). In agreement, the in vivo angiogenic activity of MHC-IIlo TAM from PHD2+/− tumors is significantly reduced as compared to their WT counterparts, while this is not the case for MHC-IIhi TAM (Fig 4B).

A potential caveat for the interpretation of the results in PHD2+/− mice is the fact that also the macrophages in these mice are PHD2-haplodeficient, and hence experience a “genetic type” of hypoxia with a potential skewing of their activation state (14). Therefore, we inoculated 3LL-R in PHD2+/− → PHD2+/− bone marrow chimeric mice (microenvironmental haplodeficiency) versus PHD2+/− → PHD2+/− controls. Tumor hypoxic areas were smaller in the former (Fig 4C), illustrating that PHD2-haplodeficiency in non-hematopoietic cells is sufficient to increase oxygenation. In line with the data in PHD2+/− mice, many hypoxia-regulated genes were significantly downregulated in MHC-IIlo, but not MHC-IIhi, TAM from tumors grown in PHD2+/− → PHD2+/− mice (Fig 4D). These
data corroborate the conclusion that environmental hypoxia mainly affects the MHC-IIlo TAM phenotype.
DISCUSSION

TAM reside in a complex microenvironment, so their molecular and functional profile is under the influence of multiple factors. In vivo evidence exists for the role of immune cell- and cancer cell-derived factors (e.g. cytokines such as IL-4 and IL-10, immunoglobulins, prostaglandin E₂, exosomes) in shaping the protumoral functions of TAM during tumor progression (15,16). However, the impact of tumor hypoxia (0.1-3% O₂) is less clear in this respect, despite the known association of macrophages with hypoxic regions (4-7).

Indeed, our data demonstrate the existence of at least two main TAM subsets, discriminated mainly by the differential MHC-II expression level, in subcutaneous and orthotopic lung carcinomas. Hereby the MHC-II^{lo} subpopulation resides in more hypoxic regions as illustrated by intracellular FACS staining and immunohistochemistry upon pimonidazole treatment of the tumors. Earlier findings also pointed to the co-existence of TAM within hypoxic and less hypoxic regions in models of mouse mammary (4, 5) and human prostate carcinoma (6). The molecular mechanisms responsible for the guidance of TAM towards hypoxic areas are not entirely clear, but it has been shown that the angiopoietin-2/Tie2 interaction regulates the vascular proximity of MMR⁺Tie2⁺ macrophages (17). Importantly, both TAM subsets derive from a common Ly6C^{hi} monocyte precursor that continuously seeds the tumor, suggesting that distinct intratumoral cues drive the differentiating monocytes either to an MHC-II^{lo} or MHC-II^{hi} phenotype. One of the outstanding questions was whether hypoxia itself is the driving force behind this dichotomous monocyte differentiation. In addition, hypoxic MHC-II^{lo} TAM express higher
levels of prototype M2-markers such as MMR, IL-4Rα and arginase, and it was unclear whether this activation state is regulated by oxygen deprivation. We employed PHD2-haplodeficient mice as a tool to directly alter oxygen availability in the tumor. Mazzone et al (13) had demonstrated that the tumor vessels in these mice are more mature, increasing oxygen transport to the tumor, and that an endothelial cell-restricted PHD2-haplodeficiency is sufficient to drive this phenomenon. In agreement with these findings, oxygen pressure increases and the hypoxic area diminishes in 3LL-R tumors grown in PHD2+/− mice, as well as in PHD2+/− → PHD2+/− chimeras. It is important to note that this approach more directly assesses the overall impact of hypoxia on tumor macrophages, in contrast to studies where macrophages were engineered to lack only HIF-1α or HIF-2α (18,19). Moreover, HIFs also act on gene transcription in a hypoxia-independent fashion, whereby HIF-1α is induced by Th1 cytokines in pro-inflammatory M1 macrophages and HIF-2α by Th2 cytokines in M2 macrophages (20). Our findings in PHD2-haplodeficient mice demonstrate that the tumor oxygenation state does not significantly alter the attraction of monocytes to the tumor nor the efficiency of monocyte differentiation into M2-like MHC-IIlo or M1-like MHC-IIhi TAM. Reduced hypoxia also does not seem to affect the expression of such M2-markers as MMR, IL-4Rα and arginase in MHC-IIlo TAM, but rather downregulates their expression of typical hypoxia-responsive genes involved in glycolysis (Slc2a1, Slc2a3, Ldha), angiogenesis (Vegfa, Angpt1, Angpt2, Kdr, Nos2, Cxcl1) and metastasis (Egf, uPA, uPAR, Igf1, Serpine1). These results were phenocopied in PHD2+/− → PHD2+/− chimeras, illustrating that the
PHD2-haplodeficiency in macrophages does not majorly account for the observed changes in gene expression.

Together, our data suggest a model whereby tumor-infiltrating Ly6C^hi monocytes either become MHC-II^lo M2-like TAM or MHC-II^hi M1-like TAM under the influence of microenvironmental stimuli other than hypoxia. Once formed, MHC-II^lo TAM are preferentially attracted to hypoxic regions where they upregulate hypoxia-regulated genes and their angiogenic capacity. By contrast, MHC-II^hi TAM remain largely unaffected by hypoxia.
ACKNOWLEDGMENTS

The authors wish to thank Martin Guilliams for help with the lung monocyte/macrophage gating, Camille Mommer for FACS sorting and Ella Omasta, Marie-Thérèse Detobel, Maria Slazak, Nadia Abou and Eddy Vercauteren for technical and administrative assistance.
REFERENCES

FIGURE LEGENDS

Figure 1. 3LL-R tumors are hypoxic and infiltrated by distinct mononuclear phagocyte subsets. (A) Frozen tumor sections from HP-1 injected mice were stained for HP-1 adducts and DAPI. (B) Single-cell suspensions of 13-day old 3LL-R tumors were stained for the indicated markers. Percentages represent the mean ± s.d. within the CD11b+Ly6G- population. Forward scatter vs. side scatter plots and cytospins (scale bar = 10 μm), or (C) histogram overlays are shown. Shaded histogram = expression of the indicated marker; black line = isotype control. (D) Arginase enzymatic activity was measured in lysates of 5x10^5 sorted TAM or TADC. Spontaneous IL-10 and NO production was measured upon 48h in vitro culture (3x10^5 TAM or TADC per 200μl medium). Graphs show mean ± s.e.m. *, p < 0.05; ***, p < 0.001. All experiments, n≥6.

Figure 2: TAM subsets are derived from the same monocyte precursor but reside in differentially oxygenized tumor regions. (A) The percentage of fluorescent latex^+ cells infiltrating 6-day old 3LL-R tumors from untreated mice (No Lx) or from mice in which the Ly6C^lo (+Lx) or Ly6C^hi (+CLL+Lx) blood monocytes were labeled, are shown. In addition, Ly6C vs MHC-II plots of the gated total CD11b^+Ly6G^- population or the latex^+CD11b^+Ly6G^- population within 3LL-R tumors (Ly6C^hi blood monocyte labeled), are shown. (B) Kinetics of BrdU incorporation in the distinct TAM subsets. 10 days 3LL-R tumor-bearing mice were left untreated (0 h) or continuously given BrdU in the drinking water for the indicated time periods, after which tumors were
collected. BrdU incorporation was measured using intracellular flow cytometry. The graph shows the percentage of BrdU+ cells within the gated subpopulation after different time points of BrdU administration. (C) 3LL-R tumor-bearing mice were left untreated (control) or were injected with pimonidazole (HP-1). Tumors were then collected and the presence of HP-1 adducts on gated TAM subsets was assessed using intracellular flow cytometry. ∆MFI = MFI HP1 – MFI control. (D) Frozen tumor sections from HP-1 injected mice were triple stained for F4/80, MHC-II and HP-1 adducts. Nuclei were stained using DAPI. All experiments, n≥6.

Figure 3: Characterization of 3LL-R tumors in PHD2+/− mice. 3LL-R tumors were grown for 12 days in PHD2+/+ and PHD2+/− mice, after which (A) intratumoral pO2 was measured via EPR oxymetry (n=5) and (B) morphometric quantification of HP-1 staining on tumor slides was performed (n=5) (C) The % of CD11b+ cells (within the total tumor single cell suspension) and the % of mononuclear phagocyte subsets (within the gated CD11b+ population) were determined (n=6). (D) Surface marker expression for the M2 markers MMR and IL-4Rα on TAM of PHD2+/+ and PHD2+/− tumors was assessed by flow cytometry. Shaded histogram = expression of the indicated marker; black line = isotype control. Arginase enzymatic activity was measured in lysates of 5x10^5 sorted TAM from a pool of 6 tumor-bearing mice.

Figure 4: Influence of environmental hypoxia on the gene expression profile and angiogenic activity of TAM subsets. (A) Expression of hypoxia-
regulated genes in sorted MHC-IIlo and MHC-IIhi TAM from 13-days old 3LL-R tumors grown in \textit{PHD2}+/- or \textit{PHD2}+/- mice was assessed using qRT-PCR. The expression of each gene was normalized based on the S12 housekeeping gene and is shown as the fold induction compared to the expression in sorted peritoneal macrophages (PEM). (B) Sorted MHC-IIlo and MHC-IIhi TAM from 12-days old 3LL-R tumors grown in \textit{PHD2}+/- and \textit{PHD2}+/- mice were grafted on the developing chorioallantoic membrane from fertilized chicken eggs. BSA and rhVEGF were used as negative and positive controls, respectively. The number of vessels growing towards the implants was quantified and this region was photographed. Values are the mean number of implant-directed vessels ± s.e.m. (C) Tumor sections from 3LL-R tumors grown in \textit{PHD2}+/+ \rightarrow \textit{PHD2}+/- and control \textit{PHD2}+/- \rightarrow \textit{PHD2}+/- bone marrow chimeras were frozen upon HP-1 injection and were stained for HP-1 adducts and DAPI. Mean % HP-1 area ± s.e.m are given. (D) Gene expression of sorted MHC-IIlo and MHC-IIhi TAM grown in \textit{PHD2}+/- \rightarrow \textit{PHD2}+/- bone marrow chimeras. Expression levels were first normalized based on the S12 gene and calculated as the fold induction compared to the expression in sorted PEM. Bars represent the up- or downregulation of the expression of the indicated genes, compared to the corresponding TAM subset in control bone marrow chimeras. All experiments, n\geq3. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Figure 1
Figure 2
Figure 3
Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population.

Damya Laoui, Eva Van Overmeire, Giusy Di Conza, et al.

Cancer Res Published OnlineFirst November 12, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-13-1196

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2013/11/12/0008-5472.CAN-13-1196.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.