Axon guidance factor Slit2 inhibits neural invasion and metastasis in pancreatic cancer

Andreas Göhrig1,2,*, Katharina M. Detjen1,2,*, Georg Hilfenhaus2, Jan Körner2, Martina Welzel1,2, Ruza Arsenic3, Rosa Schmuck4, Marcus Bahra4, Jane Y. Wu5, Bertram Wiedenmann2, and Christian Fischer1,2,#

1Experimental and Clinical Research Center, 2Department of Hepatology and Gastroenterology, 3Institute of Pathology, 4Department of Surgery, all Charité-Universitätsmedizin Berlin, Germany.
5Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA.

* These authors contributed equally.

Running title: Slit2 inhibits metastasis and invasion of pancreatic cancer

Key words: Slit2, axon guidance, pancreatic cancer, neural invasion, metastasis

#Correspondence to: Christian Fischer, MD
Charité-Universitätsmedizin Berlin
Department of Hepatology and Gastroenterology, CVK
Berlin, Germany
Phone: ++49-30450553042
Fax: ++49-30450553902
Email: christian.fischer@charite.de

This work is supported by Wilhelm Sander-Stiftung to CF, by Sonnenfeld-Stiftung to AG, and by Horst Müggenburg Stiftung to BW. JYW is supported by NIH and James S. McDonnell Foundation.

Authors disclose no potential conflicts of interest.

Number of figures: 7
ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular and local invasion routes, which limit patient survival. In nerves and vessels, Slit2 and its Robo receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the Slit2-Robo system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent Slit2-Robo signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected Slit2 receptors Robo1 and Robo4 on epithelia, nerves and vessels in healthy pancreas and PDAC specimens, respectively. Slit2 mRNA expression was reduced in PDAC compared to non-transformed pancreatic tissues and cell lines, suggesting a reduction in Slit2-Robo pathway activity in PDAC. In support of this interpretation, restoring the Slit2 expression in Slit2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine Slit2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNAi-mediated silencing of Robo1 stimulated the motility of Slit2-competent PDAC cells. Furthermore, culture supernatants from Slit2-competent PDAC cells impaired migration of endothelial cells (HUVEC) whereas an N-terminal Slit2 cleavage fragment stimulated such migration. In vivo investigations of orthotopic pancreatic tumors with restored Slit2 expression demonstrated reduced invasion, metastasis and vascularization, with opposing effects produced by Robo1 silencing in tumor cells or sequestration of endogenous Slit2. Analysis of clinical specimens of PDAC showed that those with low Slit2-mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting Slit2-Robo signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion.
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the Western world with a 5-year survival rate of <5% (reviewed in(1)). Due to early invasive growth and metastatic spread, the vast majority of patients are diagnosed with advanced, unresectable disease, facing a median survival of 4-6 months under palliative chemotherapy(1). Even after curative resection, median survival is as low as 12-20 months, since most patients eventually experience disease recurrence(1).

Neural invasion (referred to as NI) represents a key pathologic feature of PDAC, and a distinct and independent route of tumor cell spread(reviewed in(2)). NI is considered a major risk factor of tumor recurrence and a major cause of neuropathic pain, and hence limits both the success of curative surgery and the quality of life of PDAC patients. NI is currently perceived as a process driven by mutual attraction and reciprocal interaction between tumor cells and nerves, resulting in both, axonal growth and tumor cell invasion(2-4). Thus, neural hypertrophy and increased nerve densities are frequent pathological features of PDAC, indicating that tumor cells affect neural morphology and plasticity(5). Several signaling molecules from neural and/or tumor cells, have been implicated in NI, including soluble ligands such as neurotrophins, cytokines and chemokines, as well as cell surface bound ligands and their respective receptors(2).

Axon guidance factors and their receptors constitute a signaling system with features that uniquely qualify them as regulators of NI. Physiologically, axon guidance factors function as molecular cues to control growth, navigation and positioning of neurons in the developing brain(6). Furthermore, blood vessels, which arose later in evolution than nerves, co-opted several of the molecular mechanisms that originally served the nervous system(7). Thus, well-established regulators of angiogenesis, such as VEGF, originated as regulators of neurogenesis; conversely, axon guidance factors act on endothelial cells to control angiogenesis(7). Axon guidance molecules therefore represent attractive candidate regulators of both networks that provide the infrastructure for PDAC metastatic spread, i.e. vascular routes and neural invasion.
Slits and their Robo receptors are such guidance factors that navigate nerves and vessels (7-9). By now, three mammalian Slit homologues (Slit1-3) have been characterized. The activity of secreted Slit ligands is mediated through interaction with Robos, which are single-pass transmembrane receptors belonging to the immunoglobulin-superfamily of cell adhesion molecules (8-10). Originally characterized as repulsive axon guidance cues in midline crossing of commissural axons during neural development (11, 12), subsequent genetic studies confirmed Slits and Robos as chemorepellent cues controlling axon guidance and branching (13), migration of neurons and glia (14, 15), and navigation of neural crest cells during neurogenesis (16, 17). However, Slits and Robos also function in developmental processes outside the nervous system (9, 10). Thus, the discovery of the endothelial specific receptor Robo4 suggested a key role of the Slit-Robo system in angiogenesis (18, 19), and indeed revealed that Slit2 also regulates angiogenic sprouting and vascular homeostasis (reviewed in (9, 10)). In addition, chemorepellent Slit2 signaling has been implicated in the control of stereotypic and polarized branching morphogenesis during development of epithelial organs such as kidney, mammary gland and lungs (20-22). The tightly regulated pathways that control morphogenesis are frequently corrupted in epithelial malignancies (9, 10), and Slit2 has indeed been implicated in a number of human tumors. Initial seminal studies reported overexpression of Slit2 in human tumor samples and functionally linked Slit2 with enhanced tumor growth and vascularization (23). However, loss of Slit2 expression by epigenetic inactivation was reported in tumors such as breast, colon and lung cancer (24, 25), and low Slit2-mRNA expression was associated with distant metastasis and poor survival (9, 10). Loss of Slit2 was furthermore linked to aberrant growth and migration of tumor epithelial cells, thereby promoting tumor growth and metastatic spread in experimental settings (9, 10).

To date, neither expression nor function of the Slit2-Robo system in PDAC has been studied in detail. Therefore, we addressed the function of Slit2-Robo guidance cues for growth, metastasis, angiogenesis and NI of PDAC.
MATERIAL AND METHODS

Materials
Antibodies were from SIGMA-Aldrich (St. Louis, USA; Flag), Invitrogen (Darmstadt, Germany; Myc); Millipore (Billerica, USA; Slit2, cortactin), Bethyl (Montgomery, USA; Robo1), Abcam (Cambridge, UK; Robo4) and BD Pharmingen (Heidelberg, Germany; CD31). Human Slit2 was from SIGMA-Aldrich and PeproTech (Hamburg, Germany), and Robo1-Fc from R&D Systems (Wiesbaden, Germany).

Cell culture
MiaPaCa, ASPC1, and Panc1 cells were from ATCC (Manassas, USA); Capan-1, Capan-2 and DANG cells were from DSMZ (Braunschweig, Germany) and maintained as described(26). The immortal HPDE cell line H6c7 was from UHN (Toronto, Canada)(27, 28).

Pancreatic cancer specimens
Tissue samples were from PDAC patients undergoing surgery at Charité-Universitätsmedizin from 1996-2013. Patients gave written informed consent. Data on TNM classification and tumor infiltration of lymph nodes were retrieved from pathology reports.

Quantitative RT-PCR
RNA was purified using the RNeasy-mini kit (Qiagen; Hilden, Germany), and quantified on Agilent's 2100 Bioanalyzer using the RNA-6000-Nano Kit (Agilent; Santa Clara, USA). qRT-PCR was conducted in triplicate using Slit2 TaqMan primer/probes (Hs00191193_m1, Applied-Biosystems, Foster City, USA) with the One-Step RT-PCR Kit (Invitrogen) on a CFX96 thermo-cycler (Bio-Rad; Hercules, USA). RNA isolation and qRT-PCR of cultured cells were performed as described(29). Relative quantification was calculated by the Livak-method.
Generation of cell clones

Full-length Slit2-cDNA (Hs.29802; imaGenes, Berlin, Germany) was flanked by a N-terminal 3xFlag-tag and subcloned into pcDNA4/TO-3xflag-mycHIS (T-Rex; Invitrogen), resulting in pcDNA4/TO-SP-3xflag-Slit2-mycHis. Following sequential transfection of pcDNA6/TR (cells described in(30)) and pcDNA4/TO-SP-3xflag-Slit2-mycHis, Slit2 expression was induced by 1µg/ml doxycycline (SIGMA-Aldrich). Cells expressing pcDNA6/TR were used to exclude off-target effects of doxycycline. MISSION® lentiviral-transduction particles (SIGMA-Aldrich) for shRNA-mediated Robo1-knockdown and non-target control particles were used at a MOI of 10, and clones selected with 0.6µg/ml puromycin.

Preparation of cell extracts and immunoblotting

5x10^6 cells were treated with doxycycline for 48h, lysed in 100µl RIPA buffer and immunoblotted as described(26). TCA-precipitates from culture supernatants were prepared as described(26).

Migration and invasion assays

For migration assays, 2x10^5 cells/insert (doxycycline-pretreated, if applicable) were placed in serum-free medium in 8µm-Transwells inserts (Corning) and allowed to migrate towards chemotactic gradients for the times indicated. Migrated cells were stained with crystal-violet or DAPI and quantified by counting 5 standardized fields at 100x magnification(29, 31). Please refer to supplemental methods for details. For 3D-Matrigel-Invasion assays, 8µm-Transwells were coated with 1mg/ml growth-factor-reduced Matrigel® (BD Pharmingen). Experiments were performed in triplicates.

Lamellopodia formation of endothelial cells

Serum-starved HUVEC (Lonza; Basel, Switzerland) were grown on collagen-coated cover-slides. Following treatments, cells were fixed with 70% ethanol and co-stained with phalloidin
and FITC-conjugated α-cortactin. Lamellipodia were quantified using Axiovision® (Zeiss; Jena, Germany) and ImageJ® software (NIH; Bethesda, USA).

Tumor models

Local authorities approved animal experiments. Female SCID beige mice (20-24g) were from Charles River Laboratories (Sulzfeld, Germany). For orthotopic tumors, 10^6 cells were injected into the pancreatic head(26, 29). After 7 (MiaPaCa) or 3 (DANG) weeks, mice were sacrificed, primary tumors harvested, and enlarged lymph nodes collected. Metastatic nodules in the mesentery were counted as described(29).

Immunohistochemical analyses

Immunohistochemistry was conducted on cryostat-sections as described and the average number of CD31-positive vessels was determined from digital images of 3 regions of maximal vascular density (MiaPaCa) or by counting of all vessels per field (DANG) at 100x magnification(26).

DRG-tumor cell co-culture assay

DRGs and tumor cells were placed in separate growth-factor-reduced Matrigel-drops at 1mm distance in 12-well plates, and connected with a Matrigel-bridge. Time-lapse imaging (Leica DMI6000-B) conducted between 9 and 15 days of culture was evaluated using automated acquisition software (Leica LAS AF6000). Images of individual tumor cells were taken every 30min to follow locomotion. Travel distances, velocity and directness were calculated using ImageJ® and IBIDI® chemotaxis software (refer to Supplementary Methods for further details).
Statistics

Statistical significance was determined by t-test, Fisher’s exact test, and Mann-Whitney test using GraphPad® Prism (San-Diego, CA). Data represent means±SEM unless stated otherwise.

ACKNOWLEDGMENTS

The authors thank Andrea Behm, Ines Eichhorn and Maik Schröder for expert technical assistance.
RESULTS

Slit2-mRNA expression is reduced in human PDAC and correlates with lymphatic metastasis

Initial experiments assessed the expression of the Slit2 receptors Robo1 and Robo4 in pancreatic tissues. Immunohistochemistry localized Robo1 to ductal epithelial cells and Robo4 to the vasculature of both the non-transformed pancreas and PDAC (Fig. 1A-F). Moreover, Robo1 immunoreactivity was localized on pancreatic nerves (Fig. 1C), as confirmed by serial sections stained with the neuronal marker S100P (Supplementary Fig. S1A-C).

Next, we determined Slit2 expression in PDAC cell lines and human tissue samples. Slit2-mRNA was low or absent in all PDAC cell lines examined except the well-differentiated cell line DANG, which exhibited levels comparable to the immortalized pancreatic epithelial cell line HPDE (Fig. 1G). 5-AZA-dC treatment reactivated Slit2 expression in Panc1 cells (Supplementary Fig. S1D), suggesting epigenetic silencing as one potential mechanism of Slit2 inactivation. Moreover, qRT-PCR indicated a reduction of Slit2-mRNA expression in PDAC when compared to non-transformed pancreas in clinical specimens, both in the overall cohort (Fig. 1H) and the subgroup of paired tumor and non-transformed tissues (Supplementary Fig. S1F). Based on the best separation indicated in ROC-curves, we identified tumors with pathologic Slit2-mRNA expression (Fig. 1I). In these tumors, Slit2-mRNA expression < median correlated with higher incidence (Fig. 1J) and a higher extent of lymph node metastasis (Fig. 1K). Conversely, N1 tumors exhibited lower Slit2-mRNA than N0 tumors. Thus, the Slit2/Robo signaling pathway is present in the pancreas, and Slit2 expression is reduced in PDAC patients with nodal metastasis.

Slit2 inhibits directed migration and invasion of PDAC cells in vitro

To experimentally address the function of Slit2 in PDAC, we decided on tetracycline-inducible re-expression of Slit2 in MiaPaCa and Panc1 cells, which lack endogenous Slit2 (Fig. 1G). Doxycycline induced production and secretion of myc- and Flag-tagged full-length
Slit2, and of the bioactive, Robo-binding N-terminal cleavage fragment Slit2N(32) in MiaPaCaTR-Sli2 and Panc1TR-Sli2 clones was confirmed by immunoblotting (Fig. 2A; Supplementary Fig. S2A). Thus, transfected PDAC cells produced and processed Slit2.

As Robo1 is present on MiaPaCa and Panc1 cells (Supplementary Fig. S1E), we initially determined auto-/paracrine Slit2 effects \textit{in vitro}. Slit2 re-expression did not affect proliferation of PDAC cells (Fig. 2B; Supplementary Fig. S2B), nor did it affect random migration (Fig. 2C; Supplementary Fig. S3) and wound-healing of MiaPaCaTR-Sli2 monolayers (Fig. 2D). However, Slit2 induction markedly inhibited directed migration and invasion of MiaPaCaTR-Sli2 (Fig. 2E and F) and Panc1TR-Sli2 cells (Supplementary Fig. S2C and D). Slit2 effects on migration were prevented by co-treatment with the soluble Robo1-decoy receptor RoboN (Fig. 2G). Migration of MiaPaCa and Panc1 clones with stable overexpression of Slit2 was similarly inhibited by 72.7\% (n=3; \(p=0.002 \)) and 57.7\% (n=3; \(p=0.043 \)), respectively, indicating that Slit2 effects did not depend on the mode of ectopic expression. Furthermore, Slit2-conditioned medium from MiaPaCaTR-Sli2 clones impaired migration of Robo1-competent wildtype MiaPaCa, but not of Robo1-deficient ASPC1 cells (Fig. 2H and I). Use of a purified N-terminal fragment of Slit2 also reproduced the effects of Slit2-conditioned tumor cell media (Supplementary Fig. S2E and F), and co-incubation with a soluble Fc-coupled Robo1 receptor (Robo1-Fc) prevented the inhibition of migration (Fig. 2H; Supplementary Fig. S2E). Finally, migration of DANG cells with endogenous Slit2 expression was enhanced by knockdown of Robo1 (Fig. 2J and K). Overall, these data are consistent with a Robo1-mediated, auto-/paracrine action of Slit2 as a suppressor of PDAC cell motility.

\textbf{Slit2 exhibits variable effects on endothelial cell migration \textit{in vitro}}

Since we detected Robo receptors in PDAC vasculature, we addressed angioregulatory activities of tumor cell-derived Slit2 \textit{in vitro}. Use of purified recombinant Slit2N increased (Fig. 3A), whereas Slit2-conditioned media from stable MiaPaCaSli2 clones reduced HUVEC migration (Fig. 3B). Blocking Slit2 in the MiaPaCaSli2-conditioned media by Robo1-Fc counteracted this effect, suggesting a direct inhibitory action of tumor cell derived Slit2 (Fig.
Tumor cell-derived Slit2 furthermore impaired VEGF-induced lamellipodia formation of HUVEC by preventing F-actin polymerization and spatial redistribution of cortactin (Fig. 3C-E). Thus, variable direct effects on endothelial motility were observed with purified truncated Slit2N and PDAC-derived full-length Slit2, with the latter exhibiting inhibitory effects.

Slit2 and Robo1 inhibit invasion, metastasis and angiogenesis of PDAC xenografts in vivo

To address Slit2 effects on PDAC growth and progression in vivo, MiaPaCa^{TR-Slit2} cells were grown as orthotopic xenografts. Slit2 induction (confirmed in tumor lysates; Supplementary Fig. S4) moderately decreased primary tumor growth (Fig. 4A-C), but substantially reduced abdominal metastasis (Fig. 4D-F) and nodal spread (Fig. 4L), even when size-matched tumors were compared (Supplementary Fig. S5A-D). Slit2 also diminished invasive growth into adjacent organs (Fig. 4J and K). Furthermore, micro-vessel densities were reduced in MiaPaCa^{TR-Slit2} tumors with Slit2 induction in the overall group (Fig. 4G-I) and in a subgroup analysis of size-matched tumors (Supplementary Fig. S5E-F), supporting an antiangiogenic action of Slit2 in vivo.

As high-level Slit2 production in our overexpression model might not accurately reflect the biological role of endogenous Slit2, we pursued a complementary experimental approach and used DANG^{Robo1-KD} cells to study the in vivo consequences of disrupted Slit2/Robo1 signaling in PDAC. DANG^{Robo1-KD} tumors exhibited enhanced local invasion and a marked increase in the incidence and extent of metastasis compared to controls, though primary tumor growth was not significantly augmented (Fig. 5A-E; Supplementary Fig. S6A-D). Similarly, tumor vascularization was not different between experimental groups – consistent with unaltered Slit2 levels in this approach (Fig. 5F; Supplementary Fig. S6E-F). To interrogate the role of Slit2 for angiogenesis, we used subcutaneous DANG-xenografts, as this approach allowed us to sequester and inactivate Slit2 by co-injection of Robo1-Fc. As in the orthotopic setting, DANG^{scr} and DANG^{Robo1-KD} tumors presented equal micro-vessel densities (Supplementary Fig. S7), suggesting that auto-/paracrine Slit2/Robo1 signaling.
events in the tumor cells had no major impact on vascularization. In contrast, functional inactivation of Slit2 by Robo1-Fc increased vascularization (Supplementary Fig. S7), thus supporting an antiangiogenic role of Slit2 via interaction with stromal cells.

Slit2 inhibits invasion and metastasis of syngeneic Panc02 pancreatic cancer in vivo

To corroborate the anti-tumor action of Slit2 in an immunocompetent model, syngeneic orthotopic Panc02 tumors were evaluated. Primary tumor growth was comparable in mice bearing Panc02^{Slit2} tumors with ectopic Slit2 expression as compared to Mock-controls (Supplementary Fig. S8A-C). However, invasive growth into adjacent organs as well as abundance of abdominal metastasis and malignant ascites were markedly diminished in mice bearing Slit2-producing Panc02^{Slit2} tumors (Supplementary Fig. S8D-H). Thus, anti-metastatic and anti-invasive properties of Slit2 were not confined to immunocompromised xenografts.

Slit2 inhibits bidirectional chemoattraction of PDAC and neuronal cells

Given that Robo1 expression was observed in pancreatic nerves, we addressed Slit2 effects on the mutual interaction of PDAC cells with neuronal cells. Since xenograft tumors are poorly innervated, we combined *in vitro* and *ex vivo* approaches with increasing complexity. First, directed migration of MiaPaCa^{TR-Slit2} or Panc1^{TR-Slit2} cells towards chemoattractant stimuli from Schwann-cell cultures was diminished by Slit2 (Fig. 6A; Supplementary Fig. S2G). *Vice-versa*, directed migration of Schwann-cells was reduced, when Slit2-expressing MiaPaCa^{TR-Slit2} cells were grown in the lower chamber (Fig. 6B). Thus, Slit2 counteracted bidirectional chemoattraction between neuronal and PDAC cells.

Slit2 impairs unidirectional migration of PDAC cells along nerves

In order to obtain a representation of tumor cell migration along neurites, co-culture assays of DRG and PDAC cell colonies were established (Fig. 6C). Time-lapse microscopy captured the dynamic process by which neurites grew out from DRGs and projected into cancer cell
colonies; reciprocally, tumor cells dissociated from the colony, unidirectionally migrated along the neurites, once contact was established, and ultimately formed tumor cell protrusions towards the ganglia of origin (Fig. 6D-F; Supplementary video S1, S2). GFP-labeled MiaPaCa cells confirmed that these were tumor cell projections (Supplementary Fig. S9). Under vehicle-control conditions, this neural invasion consistently occurred and increased over time (Fig. 6G). Induction of Slit2 however diminished the extent of neural invasion of MiaPaCa^{TR-Slit2} cells (Fig. 6G).

Furthermore, evaluation of individually tracked MiaPaCa^{TR-Slit2} cells revealed that tumor cells with nerve contact travelled greater distances with increased directness, and reached higher velocities, as compared to cells without nerve contact, which exhibited random, non-directional movements (Fig. 7). Notably, induction of Slit2 in MiaPaCa^{TR-Slit2} cells with nerve contact impaired their capacity to migrate along neurites by reducing their travel speed and distance, and directionality (Fig. 7I-L). In contrast, Slit2 did not change these parameters in tumor cells lacking nerve contact (Fig. 7I-L), suggesting that Slit2 specifically regulated PDAC cell motility in close vicinity with nerves. Overall, these data indicate that Slit2 inhibits directed navigation of PDAC cells along contacted neurites.
DISCUSSION

Understanding the molecular basis of the almost inevitable, therapy-refractory progression of PDAC constitutes a central task for translational research. A recent sequencing effort in PDAC revealed an unexpected cluster of alterations in genes of the axon guidance factor family (33). More specifically, genomic mutations in the Slit2 and Robo1/2 pathway were prevalent, and reduced expression of components of this pathway correlated to shorter survival in PDAC (33). Our current data confirm reduced Slit2-mRNA expression in PDAC tissues, and delineate the function of Slit2-Robo signaling for several clinically relevant aspects of PDAC biology. Main findings in PDAC cells with experimental re-expression of Slit2 are a reduced capacity to metastasize and to induce neo-vascularization. Conversely, enhanced invasion, metastasis and vascularization characterize PDAC xenografts with Robo1-knockdown or sequestration of endogenous Slit2. The Slit2-mediated control of tumor spread in our experimental models translates to the clinical observation that low tumoral Slit2-mRNA levels correlated to nodal spread of PDACs. Our in vitro data furthermore assign a novel function to Slit2, as they implicate Slit2 in the control of pancreatic cancer cell invasion along outgrowing neurites.

Published expression arrays indicate expression of Slit2 in ductal epithelial cells of the healthy pancreas (34, 35), which fits our detection of Slit2-mRNA expression in non-transformed pancreas and ductal HPDE cells. We furthermore found Robo4 in the (neo)vasculature, whereas ductal epithelial cells and intrapancreatic nerves displayed Robo1 immunoreactivity. These observations suggest that Slit2-Robo signaling occurs physiologically in the pancreas, which is in line with the reported chemorepellent function of Slit2 in epithelial differentiation and ductal morphogenesis during breast, lung, colon, and kidney development (20-22). In turn, loss of Slit2 resulted in deregulated morphogenesis and aberrant epithelial growth in lung and breast cancer (10), which agrees with the current observation of reduced Slit2-mRNA expression in PDAC. Moreover, the concept of Slit2 as a tumor suppressor in PDAC is supported by the frequent loss of Slit2 expression in PDAC cell lines (33, 34).
Our experimental re-expression of Slit2 in PDAC cells inhibited directed migration and invasion via Robo1-mediated auto-/paracrine mechanisms. These observations are in line with existing concepts on how loss of Slit2 affects tumor progression, which propose that Slit2 counteracts cell motility induced by chemoattractant stimulation via cytokines or growth factors (36-38). Different from the Slit2 mode of action in breast(39) and lung cancer cells(40), we did not detect a Slit2 dependent regulation of AKT activity in PDAC cells (data not shown), suggesting a cell type specific wiring of downstream signals.

Three orthotopic in vivo models in our study emphasized the capacity of Slit2/Robo1 signaling to reduce metastatic spread and local invasive growth. This aspect is reflected in the clinical situation, as low Slit2-mRNA in PDAC specimens was associated with higher incidence and a higher extent of lymph node metastasis. Fittingly, published expression profiles of PDAC specimens with or without lymph node metastasis listed Slit2 among genes with reduced expression in lymph node positive PDAC(41).

The Slit2 mediated suppression of tumor spread in our in vivo models may arise from reduced tumor cell motility, and/or as a consequence of impaired tumor angiogenesis. In fact, the enhanced tumor spread in our DANG orthotopic xenografts with Robo1-knockdown suggests that altered auto-/paracrine Slit2/Robo1 signaling in tumor cells is sufficient for this phenotype.

Though effects of Slit2 on angiogenesis in two PDAC models indicated an antiangiogenic action, in vitro observations suggest a more complex situation. Intriguingly, purified Slit2N from commercial sources stimulated endothelial cell migration, whereas Slit2 produced by PDAC cells inhibited the process, creating a need for further investigation. Explanations are speculative at this time: (1) Co-factors produced by PDAC cells possibly account for the inhibitory outcome, which fits the observation that both, purified Slit2N and tumor-derived Slit2 preparations uniformly inhibit PDAC cell migration. Precedence for such a co-factor dependent switch in Slit2 action was reported with respect to Ephrin-A1 or matrix components(32, 42, 43). (2) Purified Slit2N preparations contain but the N-terminal fragment, which binds and activates Robo1/2 receptors. In contrast, supernatants from PDAC cells
contain full-length Slit2 and the full range of processing products. As full-length Slit2 may act antagonistic to Slit2N(32, 42) the differential action of cleavage fragments is a possibility that we actively investigate. (3) Endothelial cells also express Robo4 receptors, raising the possibility that the differential repertoire and activation of Robo4 versus Robo1/2 determines the migratory response. Published data from siRNA knockdown of either Robo4 or Robo1 in lung-HMVECs indicate that Slit2N blunted the VEGF induced migration of these cells via Robo4, but not Robo1(44).

Reports on Slit2 effects in the even more complex situation of in vivo angiogenesis also offer disparate findings. According to genetic loss-of-function studies, Robo4 activation via Slit2 counteracted VEGF-induced vascular leak, while disruption of Slit2-Robo4 signaling stimulated pathological angiogenesis and vessel leakiness(45, 46). Other reports have however suggested a prometastatic and proangiogenic function of Slit2 on experimental tumor growth(10, 23, 47, 48). Future more detailed understanding of Slit2/Robo signaling will hopefully fit these experimental data to a unified concept.

Notably, our studies identified a novel, critical function of Slit2 for the interaction of PDAC cells with peripheral nerves. Re-expression of Slit2 in PDAC cells impaired their capacity to navigate along contacted neurites. By comparison, no effect on the movements of tumor cells without neurite contact was apparent, suggesting that Slit2 counteracted mechanisms that facilitate directional mobility of tumor cells in the immediate vicinity and/or created by contacting nerves. In conjunction with the inhibitory effects of Slit2 on the migration of PDAC cells against chemoattractant gradients released by neuronal cells in transwell-assays, we assume that both mechanisms, i.e. chemoattraction and contact cues, can contribute.

Currently, we are unable to address Slit2 function in NI in our xenograft models, which display poor innervation. However, we observed Robo1 immunoreactivity in pancreatic nerves of human PDAC. During development, the spatial-temporal expression of Slit2-Robo1 guidance cues help to confine the patterned migration of those neural crest cells, which give rise to the enteric and sensory neuronal network innervating the pancreas(17, 49). Mechanistically, Slit2 expressed from tissues adjacent to the trajectory routes provide
guidance by repelling Robo1-expressing neural crest cells and preventing them from entering regions with high concentrations of Slit2. In analogy to this developmental role, Slit2 and Robo1 may conceivably restrict peripheral innervation of the adult pancreas by guiding and/or counteracting growth factor and chemokine-mediated attraction of pancreatic nerves.

In support of a role for axon guidance molecules in the correct growth and patterning of peripheral nerves during organ innervation, loss-of-function studies implicated Slit2-Robo1 repulsion in axon fasciculation of motor-neurons during muscle innervation(50). In PDAC, silencing of Slit2 in epithelial tumor cells may possibly relieve repulsion between pancreatic nerves and surrounding tissues and consequently facilitate NI. Our in vitro data support this scenario by demonstrating swift movement of PDAC cells along axons, which is impaired by Slit2 re-expression. Definitive evidence awaits future studies.

Taken together, our results provide evidence that Slit2 functions as a suppressor of metastasis and local tumor spread in experimental models of PDAC. Mechanistically, tumor cell derived Slit2 reduced the motility of PDAC and endothelial cells towards chemoattractants, and furthermore prevented PDAC cells from efficient directional movement along conduits provided by axonal projections from cultured ganglia. These experimental findings are reflected in our clinical observation of more extensive nodal metastasis in PDAC with low Slit2-mRNA. Our data thus emphasize the importance to further assess the Slit-Robo pathway activity as potential diagnostic and/or prognostic marker, or as candidate therapeutic target in PDAC.
REFERENCES

FIGURE LEGENDS

Figure 1. Slit2-mRNA expression is reduced in human PDAC and inversely correlates with lymph node metastasis

A-F, Immunohistochemistries for Robo1 (A-C) and Robo4 (D-F) in non-transformed pancreas, PDAC, and intrapancreatic nerves. Arrows indicate Robo1 in ductal epithelial cells, arrowheads point to Robo4 in the vasculature, and filled arrowheads depict pancreatic nerves. Bar is 100µm. G, Slit2-mRNA expression in PDAC cell lines using qRT-PCR, normalized to 18S-RNA. H, Slit2-mRNA expression in PDAC (n=28) and non-transformed pancreas (n=29) was determined using qRT-PCR and normalized to GAPDH. Shown is the scatter dot plot with Median and interquartile range (H; p<0.0001, Mann-Whitney test). I, ROC-analysis for determination of a cut-off level, which best discriminates PDAC from non-transformed pancreas (cut-off < 0.458, likelihood ratio: 18.64). Further analysis was restricted to tumors exhibiting pathologic Slit2-mRNA levels (n=18). J-K, Incidence of nodal metastasis (J; p=0.009; Fisher’s exact test) and percentage of tumor-infiltrated lymph nodes (K; p=0.005; Mann Whitney test) in patients with low (< median, n=9) or high (> median, n=9) tumoral Slit2-mRNA levels. L, Tumoral Slit2-mRNA levels in patients without (N0) and with nodal metastasis (N1); p=0.0043, Mann Whitney test. Shown is the scatter dot plot with Median and the interquartile range.

Figure 2. Re-expression of Slit2 inhibits directed migration and invasion of PDAC cells

A, Inducible expression of myc- and Flag-tagged Slit2 in immunoblots of TCA-precipitates from MiaPaCa^TR-Slit2 culture supernatants treated with 1µg/ml doxycycline (Dox) for 48h or vehicle-controls. Proteolytic cleavage of full-length Slit2 (200kDa) generated the N-terminal Slit2-fragment (Slit2-N, 140kDa). B-C, MiaPaCa^TR-Slit2 cells were treated as above, and cell numbers counted (n=3; p=0.89, Anova; B), or random migration assessed using time-lapse microscopy. Shown is the euclidean distance reached at t=12h (C; n=3; p=0.87). D, Confluent MiaPaCa^TR-Slit2 cell layers were scratched, and percent reduction of open wound areas evaluated (n=3; p=0.37; Anova). E-F, Re-expression of Slit2 inhibited directed
migration (n=4; p=0.023) and invasion (n=3; p=0.034) of MiaPaCaTR-Slit2 cells as compared to vehicle-controls. G, RoboN-conditioned medium abrogated the inhibitory effect of Slit2 on tumor cell migration as compared to Mock-control medium (n=3; *p<0.001, #p<0.05). H-I, Slit2-conditioned medium from Slit2-transfected MiaPaCa cells inhibited migration of \textit{wildtype} Robo1-competent MiaPaCa cells (H; n=5; *p=0.012906), but not of ASPC1 cells deficient for Robo1 (I; n=3; p=0.51), whereas Robo1-Fc abrogated this effect (H; n=5; #p=0.0317). J-K, shRNA-mediated knockdown of Robo1 in DANG cells was confirmed using immunoblotting of cell lysates (J) and enhanced migration of DANG cells as compared to scrambled-controls (scr; K; n=4; p=0.0353), while proliferation remained unchanged (not shown).

\textbf{Figure 3. Tumor-derived Slit2 inhibits migration and lamellopodia formation of endothelial cells}

A-B, HUVEC migration towards chemoattractant gradients (2% FCS) was evaluated in the presence of recombinant huSlit2 (A; n=4; p=0.0268) or Slit2- and Mock-conditioned media derived from stably transfected MiaPaCaSlit2/Mock clones, added in the lower transwell-chamber (B; n=4; *p=0.007605). Robo1-Fc abrogates effects of Slit2-conditioned medium (B; n=4; #p=0.0208). C-E, Cortactin (green) and phalloidin (red) immunofluorescence illustrated VEGF-induced (50ng/ml; 1hr) formation of lamellopodia (C; arrowheads), which as abrogated by Slit2-conditioned medium (D). Lamellopodia were quantified as percent of total HUVEC perimeter. A total of n=95-120 individual endothelial cells out of 3 independent experiments were analyzed (E; p<0.0001, Anova). Scale bar is 10\textmu m.

\textbf{Figure 4. Inducible re-expression of Slit2 inhibits invasion, metastasis and angiogenesis of orthotopic pancreatic tumors}

A-F, MiaPaCaTR-Slit2 cells were grown as orthotopic tumors in mice treated with vehicle (n=13) or doxycycline (Dox: 2mg/ml; n=11) via drinking water. Shown are illustrations of pancreatic tumors \textit{in situ} (A, B; white arrowheads) and excised mesenteries with metastases (D-E; yellow arrowheads) from vehicle or doxycycline-treated mice. C, Evaluation of tumor weight;
p=0.018, Mann-Whitney test. F and J-L, Contingency graphs of mesenteric metastasis (F; p=0.033), tumor invasion into duodenum (J; p=0.0005) and stomach (K; p=0.002), and metastatic spread to retroperitoneal lymph nodes (L; p=0.0002); all Fisher's exact test. G-I, CD31-positive micro-vessel densities in vehicle (G; n=12) and doxycycline-treated (H; n=11) tumors were quantified (I; p=0.036). Arrowheads depict tumor vessels. Scale bar is 200μm.

Figure 5. Robo1-knockdown enhances invasion and metastasis of orthotopic pancreatic tumors

A-E, Orthotopic tumors derived from DANGRobo1-KD cells (n=11) and scrambled controls (scr; n=10) were evaluated for tumor weight (A; p=0.170). Contingency graphs show incidence of tumor invasion into duodenum (B; p=0.0075) and stomach (C; p=0.0237), and lymphatic metastasis (D; p=0.0351); all Fisher’s exact test. Numbers of metastases per mouse increased in DANGRobo1-KD tumor-bearing animals (E; p=0.0161; Mann-Whitney test). F, CD31-positive micro-vessel density in DANGRobo1-KD tumors versus scrambled-controls (p=0.3233).

Figure 6. Slit2 impairs bidirectional chemoattraction of tumor and neuronal cells and inhibits neural invasion in tumor cell-DRG co-cultures

A, Slit2 inhibits migration of MiaPaCaTR-Slii2 cells towards chemoattractants from Schwann-cells (SWC) seeded in the lower transwell-chamber (n=3; p=0.014). B, Slit2 released from MiaPaCaTR-Slii2 cells (lower transwell-chamber) inhibits migration of Schwann-cells (n=3; p=0.027). C, Three-dimensional co-cultures of tumor cells (asterisk) and dorsal-root-ganglia (DRG; #) were assembled in Matrigel. D, Outgrowth and extension (blue arrowheads) of neurites from the DRG towards the tumor cell colony around day 5. E-F, Upon contact, tumor cells disengage and navigate along the contacted neurites (blue arrowheads) towards the DRG. Numbers indicate sites of neurite-tumor cell contact initiation and refer to corresponding magnified areas in (F). G, Neural invasion of vehicle or doxycycline-treated MiaPaCaTR-Slii2 cells was quantified as the change in area covered by tumor cell projections.
at day 9 and 12 as compared to the day of co-culture start; n=3; *p<0.05. Scale bars are 500µm (C-E) or 50µm (F).

Figure 7: Slit2 inhibits tumor cell migration along neurites in three-dimensional tumor cell-DRG co-cultures

A-H, Time-lapse microscopy monitored migration of individual MiaPaCa^{TR-Slt2} cells along a contacted DRG neurite. Phase-contrast images depict projection of a DRG neurite (blue arrowheads) into the tumor cell colony, and consecutive migration of tumor cells (green asterisk) alongside the neurite. Green arrow (F) indicates the trajectory and migration distance of one individual tumor cell after 12h. Migration of tumor cells without nerve contact is illustrated by red arrowheads in A and H. B and G display magnified views of boxed areas in A and H. Scale bar is 50µm. I-L, Trajectories of tumor cells with or without neurite contact were captured, and euclidian and accumulated distances, directionality and velocity quantified. Bar graphs are from 10 experiments with a total number of n=45-81 individually tracked tumor cells per condition (p<0.05; Anova).
Figure 2

A. MiaPaCa^{TR-Slit2} (supernatant)

B. Proliferation MiaPaCa^{TR-Slit2}

C. Random migration MiaPaCa^{TR-Slit2}

D. Wound healing MiaPaCa^{TR-Slit2}

E. Migration MiaPaCa^{TR-Slit2}

F. Invasion MiaPaCa^{TR-Slit2}

G. Migration MiaPaCa^{TR-Slit2}

H. Migration MiaPaCa wt

I. Migration ASPC1 (Robo1^{−/−})

J. DANG (lysate)

K. Migration DANG
Figure 3

A. Migration HUVEC vs recSlit2

B. Migration HUVEC

C. Lamellopodia formation

D. Slit2

E. Lamellopodia formation

Mock + - -

Slit2 - + +

Robo1 Fc - - +

V EGF + + +
Figure 4

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>Dox</td>
<td>tumor weight (× 10 mg)</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>metastasis</td>
<td>CD 31</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>angiogenesis</td>
<td>CD 31</td>
<td>vessel density</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>invasion</td>
<td>duodenum</td>
<td>stomach</td>
</tr>
</tbody>
</table>

- A: Primary tumor
- B: Primary tumor
- C: Tumor weight
- D: Metastasis
- E: Metastasis
- F: Mesenteric metastasis
- G: Angiogenesis
- H: Angiogenesis
- I: Vessel density
- J: Invasion duodenum
- K: Invasion stomach
- L: Invasion lymph node
Figure 5

<table>
<thead>
<tr>
<th></th>
<th>primary tumor</th>
<th>invasion</th>
<th>metastasis</th>
<th>angiogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>tumor weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>duodenum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>invasion (% of animals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>stomach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>invasion (% of animals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>metastasis (% of animals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>metastasis (numbers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>vessel density</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates statistical significance. ns indicates not significant.
Figure 6

A. Migration
MiaPaCa_{TR-Slit2} vs. SWC

B. Migration
SWC vs. MiaPaCa_{TR-Slit2}

C. Neural invasion
MiaPaCa_{TR-Slit2}

D, E, F, G. Additional images and graphs showing migration and neural invasion experiments.
Figure 7

I Euclidean distance

<table>
<thead>
<tr>
<th></th>
<th>w/o contact</th>
<th>with contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dox</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

J Accumulated distance

<table>
<thead>
<tr>
<th></th>
<th>w/o contact</th>
<th>with contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dox</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

K Directness

<table>
<thead>
<tr>
<th></th>
<th>w/o contact</th>
<th>with contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Dox</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

L Velocity

<table>
<thead>
<tr>
<th></th>
<th>w/o contact</th>
<th>with contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Dox</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Axon guidance factor Slit2 inhibits neural invasion and metastasis in pancreatic cancer

Andreas Gohrig, Katharina M. Detjen, Georg Hilfenhaus, et al.

Cancer Res Published OnlineFirst January 21, 2014.