LEF1 and B9L Shield β-Catenin from Inactivation by Axin, Desensitizing Colorectal Cancer Cells to Tankyrase Inhibitors

Marc de la Roche, Ashraf E.K. Ibrahim, Juliusz Mieszczanek, and Mariann Bienz

Abstract

Hyperactive β-catenin drives colorectal cancer, yet inhibiting its activity remains a formidable challenge. Interest is mounting in tankyrase inhibitors (TNKSi), which destabilize β-catenin through stabilizing Axin. Here, we confirm that TNKSi inhibit Wnt-induced transcription, similarly to carnosate, which reduces the transcriptional activity of β-catenin by blocking its binding to BCL9, and attenuates intestinal tumors in ApcMin mice. By contrast, β-catenin’s activity is unresponsive to TNKSi in colorectal cancer cells and in cells after prolonged Wnt stimulation. This TNKSi insensitivity is conferred by β-catenin’s association with LEF1 and BCL9/B9L, which accumulate during Wnt stimulation, thereby providing a feed-forward loop that converts transient into chronic β-catenin signaling. This limits the therapeutic value of TNKSi in colorectal carcinomas, most of which express high LEF1 levels. Our study provides proof-of-concept that the successful inhibition of oncogenic β-catenin in colorectal cancer requires the targeting of its interaction with LEF1 and/or BCL9/B9L, as exemplified by carnosate. *Cancer Res; 74(5); 1–11. ©2014 AACR.*

Introduction

Wnt/β-catenin signaling plays pivotal roles in animal development and tissue homeostasis, and in human cancer (1). In the absence of Wnts, β-catenin is continually earmarked for proteasomal degradation by the Axin complex: Axin provides scaffolding for glycogen synthase kinase 3 (GSK3) to phosphorylate the N-terminus of β-catenin (after priming by casein kinase 1α, CK1α), thus generating a phosphodegron recognized by the ubiquitin ligase adaptor β-TrCP (2). This process relies on the adenomatous polyposis coli (APC) tumor suppressor, which promotes Axin complex assembly (3), releases phosphorylated β-catenin (to be called PBC) from the complex (4), and/or promotes PBC recognition by β-TrCP and subsequent ubiquitylation (5). Wnt stimulation blocks the activity of the Axin complex, thereby causing accumulation of unphosphorylated β-catenin (equivalent to activated β-catenin, ABC). ABC thus binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) DNA-binding proteins to operate a transcriptional switch, recruiting various chromatin modifiers and remodelers to TCF/LEF target genes (6).

A wide range of cancers exhibit hyperactive β-catenin, either due to oncogenic mutations in its N-terminal phosphodegron, or through mutational inactivation of its negative regulators APC or Axin (1). Similarly, inactivation of Apc, or activation of β-catenin, initiates tumorigenesis in the murine intestine (7, 8), in which the normal crypt stem cell compartment depends on Wnt/β-catenin signaling (1). In mice, β-catenin is continually required for growth and progression of Apc-dependent adenomas and Apc-mutant human xenografts (9), and the progressive accumulation of nuclear β-catenin in colorectal carcinomas also implies their continual reliance on oncogenic β-catenin through cancer progression (9, 10).

The case for β-catenin as a target for therapeutic intervention in colorectal cancer is thus overwhelming. However, developing β-catenin inhibitors has proved to be a considerable challenge (11): β-Catenin is an intracellular protein whose oncogenic activity is little affected by upstream Wnt signaling components, and its inhibition therefore requires cell-permeable agents. Furthermore, its activity depends primarily on its binding to TCF/LEF through the same extensive molecular interface that also binds its negative regulators Axin and APC (4, 12, 13). Nevertheless, small-molecule antagonists have been reported to target the β-catenin–TCF interaction, or regulators of β-catenin’s activity or stability (Supplementary Fig. S1). There has been a recent boom of interest in a highly promising group of compounds that inhibit tankyrase inhibitors (TNKSI), which destabilize β-catenin by blocking the turnover of Axin (14–18).

We recently identified a natural compound (carnosate) that destabilizes ABC in colorectal cancer cells, apparently by...
promoting its aggregation through an intrinsically labile α-helix in its N-terminus, which prevents binding to its cofactor BCL9 (19). Carnosate is the only compound known to target ABC directly, and we thus set out to compare its efficacy with that of indirect β-catenin inhibitors. Here, we show that most of these elicit unspecific off-target effects, except for carnosate and TNKS1i, which specifically reduce β-catenin–dependent transcription in Wnt-stimulated cells. In APC-mutant colorectal cancer cells, carnosate proved the most effective β-catenin inhibitor, and it also attenuated the levels and transcriptional outputs of ABC in the murine intestine, and intestinal tumorigenesis in ApcMcK mice. In contrast, although TNKS1i stabilize Axin and thus reduce ABC to low levels in colorectal cancer cells, they fail to block its transcriptional activity. Notably, in APC-wt cells, β-catenin also becomes TNKS1i unresponsive after pretreatment with Wnt3a for 4 to 6 hours. This TNKS1i insensitivity is conferred by LEF1 and B9L (the nuclear paralog of BCL9, also called BCL9–2; refs. 20, 21). Both factors are Wnt inducible, accumulating to high levels in cells with chronic Wnt pathway activity, which enables them to divert β-catenin from the Axin complex. Finally, most colorectal carcinomas express high levels of LEF1, which could render them TNKS1i insensitive. Our results highlight a key requirement for effective β-catenin inhibitors, namely their ability to block β-catenin’s association with LEF1 and B9L—a complex capable of limiting the Axin-dependent inhibition of β-catenin in cells with chronic Wnt/β-catenin pathway activity.

Materials and Methods

Plasmids, antibodies, and chemicals

The following reagents were used: FLAG-β-catenin, TCF1 (p45; provided by H. Clevers Hubrecht Institute, Utrecht, The Netherlands); TOP-GFP/CMV-dsRFP (provided by C. Gottardi, Northwestern University Feinberg School of Medicine, Chicago, Il); FLAG-BCL9, FLAG-BCL9Δ366K, FLAG-BCL9ΔC, FLAG-BCL9ΔC366K (22); pcDNA-Myc-TCF4 (23); pcDNA-HA-LEF1; SuperTOP (24); dimethyl sulphoxide, carnosate, XAV939, or 25 mol/L; XAV939, or 25 mol/L; c-Myc, Mm00487804 (Applied Biosystems).

Cell-based assays

Cell lines were purchased from the European Collection of Cell Cultures (HEK293T and HCT-116 in 2007; COLO320 in 2011; SW480 and DLD1 in 2013). RKO cells were kindly provided by Doug Winton (University of Cambridge, Cambridge, UK; in 2012). All cell lines were authenticated by short tandem repeats (STR) DNA profiling. Upon receipt, cells were frozen, and individual aliquots were taken into culture, typically for analysis within <10 passages. For SW480 and COLO320 cells, truncated APC protein was monitored by Western blot analysis (see Results). Cells were grown and transfected for Wnt reporter assays and indirect immunofluorescence as described (22). Cytotoxicity assays were done as described (19). An SW-480 cell line with integrated TOP-GFP reporter (see section Plasmids, antibodies, and chemicals; ref. 25) was isolated by negative selection and cloning of stable transfectants, and GFP was monitored by fluorescence-activated cell sorting (FACS). Standard inhibitor treatment was for 24 hours (2.5 μmol/L XAV939, or 25 μmol/L carnosate), unless specified otherwise.

Quantitative real-time PCR and Western blot analysis
cDNA was synthesized, and quantitative real-time PCR (qRT-PCR) reactions were carried out with the ABI7900 Taqman Thermocycler (Applied Biosystems), with primers and gene expression assays for human Wnt target genes (22), and the following murine Wnt target genes (26): Tnfsf12a, Mm00489103; Tp53, Mm00464971; Bcl9, Mm00518807; Axin2, Mm00443610; c-Myc, Mm00487804 (Applied Biosystems). Western blots were done as described (22).

Animal experiments

Animal care and procedures were done according to the standards set by the United Kingdom Home Office. Administration of single doses of carnosate (dissolved in British Pharmacopoeia compliant olive oil) to C57Bl/6j mice by gavage, and preparation of lysates from isolated intestinal epithelia were done essentially as previously described (10, 27). ApcMcK+/− control mice were fed AIN-76A, whereas treatment cohorts were fed AIN-76A pelleted with 0.1% carnosol or carnosate, or with 1% carnosate from weaning, as described (28). Weights were checked twice weekly, to monitor growth and food intake. Intestinal tumors were “blind” scored in methacarn-fixed small intestines upon dissection, as described (10, 29). Proliferation and apoptosis was monitored by immunofluorescence using antibodies against Ki67 and cleaved caspase-3 (Asp175 and 8D5, respectively; Cell Signaling Technology).

Tissue microarray analysis

Tissue microarrays (TMA) were processed for antibody staining as described (10, 29), except that indirect immunofluorescence was used. Scoring of protein expression levels was done blind (by A.E.K. Ibrahim, an experienced histopathologist specializing in colorectal cancer), classifying LEF1 staining as described (10, 29). Proliferation and apoptosis was monitored by immunofluorescence using antibodies against Ki67 and cleaved caspase-3 (Asp175 and 8D5, respectively; Cell Signaling Technology).

Results

For a side-by-side comparison of previously reported β-catenin antagonists, we conducted functional tests in Wnt3a-stimulated HEK293T cells treated with inhibitors, using a TCF-specific reporter (SuperTOP) as a readout of β-catenin–dependent transcription. The TNKSi XAV939 (15) and IWR-1 (14) inhibited SuperTOP (IC50 0.3 and 0.1 μmol/L, respectively) more potently than carnosate (IC50 7 μmol/L; Fig. 1A). However, the other compounds that reduced SuperTOP (e.g., pyrvinium and ICG-001) also reduced the internal (cytomegalovirus-based) control reporter and elicited pronounced cell toxicity at their IC50, indicating significant off-target effects (Supplementary Fig. S2).
We further tested these agonists in SW480 colorectal cancer cells, which express an APC truncation lacking its Axin-binding sites (30), and thus accumulate high levels of ABC, as detectable by an antibody specific for this unphosphorylated form (31). Again, most inhibitors showed high cell toxicity and unspecific side effects (Supplementary Fig. S2). Of the nontoxic compounds, carnosate reduced SuperTOP to 40% of mock-treated SW480 cells (19); however, TNKSi had very little effect (Fig. 1A), even in combination with carnosate (Supplementary Fig. S3). Notably, this was true for both XAV939 and IWR-1, which represent different classes of TNKSi (binding to the nicotinamide and adenosine pocket of TNKS, respectively; ref. 17), arguing that the inability of these inhibitors to reduce the β-catenin–dependent transcription in these cells is not limited to a single TNKSi class. We also tested TNKSi on DLD1 cells (another APC-mutant colorectal cancer cell line commonly used; ref. 15), which were only marginally more TNKSi responsive than SW480 cells (Supplementary Fig. S3). Our data are consistent with previous reports that TNKSi are more potent in Wnt-stimulated compared with APC-mutant cells (14–16).

TNKSi reduce the levels but not the activity of ABC in APC-mutant colorectal cancer cells

We confirmed that carnosate reduces ABC levels in SW480 cells (19; Fig. 1B), explaining why it attenuates SuperTOP (see Fig. 1A) and expression of endogenous AXIN2 (Fig. 1B), a well-established β-catenin target gene (32). TNKSi had an even more profound effect, reducing the levels of total β-catenin, and of ABC, to <10% of mock-treated controls (Fig. 1B). In contrast, the PBC levels remained high, and were even slightly increased (Supplementary Fig. S3), supporting the notion that TNKSi deplete ABC by promoting its phosphorylation. Because PBC is the substrate for β-TrCP recognition and subsequent degradation (see Introduction), this explains why TNKSi reduce total β-catenin through stabilizing Axin, as previously shown (15). It is well known that overexpressed Axin promotes β-catenin degradation in SW480 cells, despite their dysfunctional APC (e.g. 3, 33).

We also assessed the levels of β-catenin and its regulators in APC-wt cells after inhibitor treatment—namely in Wnt-stimulated HEK293T cells (Fig. 1B), and in the colorectal cancer cell lines HCT116 (in which ABC is high, due to a mutation in the CK1α phosphorylation site) and RKO (in which ABC is undetectable because its Wnt pathway is inactive; Supplementary Fig. S3). XAV939 increased the levels of AXIN1 and tankyrase in these cells, but the levels of total β-catenin and ABC were essentially unaffected.

ABC is destabilized by Axin degradasomes in TNKSi-treated SW480 cells

Immunofluorescence confirmed that overall β-catenin staining was reduced in TNKSi-treated SW480 cells, consistent with our Western blots (see Fig. 1B), though many cells retained substantial levels of nuclear β-catenin (Fig. 2A and B), which could account for their sustained β-catenin–dependent transcription. In contrast, the nuclear β-catenin staining...
was reduced in carnosate-treated SW480 cells, which also showed less AXIN2 staining (19; Fig. 2A), reflecting reduced AXIN2 expression. Thus, the nuclear pool of β-catenin seems depleted by carnosate but less so by TNKSi.

We noticed discrete cytoplasmic puncta of β-catenin in TNKSi-treated SW480 cells (Fig. 2B, arrows), which are neither visible in carnosate-treated nor in control cells. These puncta also contain Axin, and GSK3β, tankyrase (Fig. 2) and APC (see below). Given that they also contain PBC (Fig. 2C), they are likely to represent functional Axin degradasomes (3) that promote the phosphorylation and subsequent degradation of β-catenin. TNKSi-induced Axin degradasomes do not contain other Axin- or APC-interacting proteins such as phosphorylated LRP6 (signifying activated Wnt coreceptor; ref. 2), nor markers for endosomes or autophagosomes (Supplementary Fig. S4).

Axin degradasomes have been observed following Axin overexpression (3, 33), but endogenous Axin degradasomes are neither detectable in untreated SW480 cells (Fig. 2) nor in APC-wt cells (Supplementary Fig. S4), probably because the endogenous Axin levels are low in mammalian cells (34). TNKSi thus enabled us for the first time to observe endogenous Axin degradasomes (AXIN1 3-5×, AXIN2 5-20×; Fig. 1B).

We also examined COLO320 cells, which express a rare APC truncation without any β-catenin and Axin-binding sites (30). These cells also exhibit Axin puncta, which are however negative for APC, as expected. In contrast with SW480 cells, TNKSi-treated COLO320 cells did not show reduced ABC levels (unlike carnosate-treated cells) but, instead, vastly increased PBC levels (Supplementary Fig. S5). This indicates that the Axin degradasomes in these cells actively promote β-catenin phosphorylation (consistent with their PBC reactivity; Supplementary Fig. S5); in other words, they are fully functional with regard to scaffolding of GSK3. However, they seem unable to promote the ubiquitylation and/or proteasomal degradation of PBC, likely due to the complete lack of interaction between APC and β-catenin. They thus seem to be stalled degradasomes.

ABC activity in SW480 cells remains refractory to TNKSi even during prolonged treatment

Our immunofluorescence indicated persistence of the nuclear β-catenin pool in TNKSi-treated SW480 cells through the 24-hour treatment. We thus extended the treatment to 5 days (replenishing XAV939 daily), but found that the effects of TNKSi plateaued within 2 days, with the levels of total β-catenin and ABC no longer reducing, and those of tankyrase and Axin no longer increasing (Supplementary Fig. S6). Indeed, all TNKSi-induced changes in the levels and subcellular distributions of these proteins were observed after the first day of treatment, and persisted thereafter.
We also monitored the effects of TNKSi on β-catenin-dependent transcription over a 5-day treatment, using an integrated TCF reporter based on destabilized enhanced green fluorescent protein (25). SW480 cells remained unresponsive to XAV939 over 3 days, whereas carnosate reduced reporter activity after the first day, and further still by the third day of treatment. Likewise, carnosate reduced AXIN2 and B9L expression within 24 hours to approximately 20% and 45%, respectively (19), whereas TNKSi only modestly reduced the expression of these target genes (to 75%–90%), even after 5 days (Supplementary Fig. S6). Thus, β-catenin remains transcriptionally active in TNKSi-treated SW480 cells during extended treatment, despite the TNKSi-induced depletion of their ABC.

Prolonged Wnt stimulation renders β-catenin activity unresponsive to TNKSi

We asked whether β-catenin activity would also become refractory to TNKSi in APC-wt cells after prolonged Wnt stimulation. We thus stimulated HEK293T cells with Wnt3a for various periods before TI treatment (Fig. 3A), and monitored their TCF-dependent transcription. As expected, Super-TOP activity was much reduced if the cells were exposed simultaneously to TNKSi and Wnt3a, but became increasingly TNKSi insensitive with longer Wnt prestimulation, and was completely refractory 6 hours after Wnt3a stimulation (Fig. 3B), accompanied by a slight progressive increase of ABC and decrease of AXIN1 (Fig. 3C). The same was also seen in other APC-wt cell lines such as HeLa (Supplementary Fig. S7). In contrast, HEK293T cells remained fully carnosate-responsive, even after 6 hours of Wnt prestimulation (Fig. 3B). Therefore, 4 to 6 hours of Wnt stimulation of APC-wt cells suffices to render their β-catenin activity refractory to TNKSi, mimicking the situation in APC-mutant cells.

LEF1- and B9L-associated β-catenin is protected from TNKSi-induced Axin degradasomes

β-Catenin equilibrates rapidly between nucleus and cytoplasm (35, 36), and it is therefore unlikely that the observed TNKSi insensitivity of the transcriptionally active β-catenin in chronically Wnt-stimulated cells is due to its insulation from the cytoplasmic pool. Indeed, we estimate that the nuclear β-catenin in unstimulated HEK293T cells turns over with a t1/2 of approximately 60 minutes (Supplementary Fig. S6). We therefore surmised that transcriptionally active β-catenin is shielded by a factor that limits its access to Axin degradasomes. Because 6 hours of Wnt stimulation suffices to render this pool refractory to TNKSi, we further surmised that this factor would accumulate during this period, and that it would bind to β-catenin in competition with Axin. This identifies BCL9/B9L and TCF/LEF as potential candidates.

Examining the expression levels of these candidates in Wnt-stimulated HEK293T and HeLa cells, we found that only LEF1 and B9L are Wnt inducible (Fig. 4A). Furthermore, amongst four tested colorectal cancer cell lines with chronic Wnt pathway activity, each expressed high levels of at least one TCF/LEF and one BCL9/B9L family member, with SW480 cells expressing high levels of both LEF1 and B9L (Fig. 4A). Importantly, immunoprecipitation revealed that TNKSi treatment reduced the β-catenin associated with TCF and BCL9, but not with LEF1 and B9L (Fig. 4B). Thus, the LEF1- and B9L-associated β-catenin is protected from TNKSi-induced degradation in SW480 cells.

LEF1 and B9L confer TNKSi insensitivity on β-catenin in cells with chronic Wnt pathway activity

To test the ability of our candidates to confer TNKSi insensitivity on β-catenin, we overexpressed them at moderate levels in HEK293T cells (<5× over endogenous; Fig. 4C) before stimulation with Wnt3a. Overexpression of B9L, TCF1, LEF, and β-catenin increased SuperTOP activity in unstimulated and Wnt3a-treated cells (Supplementary Fig. S8), but this activity was strongly reduced if the cells were simultaneously treated with TNKSi (as shown in Fig. 3B), even in cells overexpressing BCL9, TCF4, or TCF1 (Fig. 4C). By contrast, approximately 30% of the SuperTOP activity was retained in cells overexpressing B9L, but not in cells expressing a B9L mutant unable to bind β-catenin (22). Strikingly, cells overexpressing LEF1 retained >95% of their SuperTOP activity despite simultaneous exposure to TNKSi and Wnt3a (Fig. 4C). Thus, LEF1...
renders β-catenin completely unresponsive to TNKSi in HEK293T cells, even at moderate overexpression levels (approximately 4× above normal) comparable with endogenous LEF1 in SW480 cells (Fig. 4A).

As a further test, we asked whether reducing LEF1 levels would restore TNKSi responsiveness in HEK293T cells prestimulated with Wnt3a for 6 hours. We used two different LEF1 sequences (an exon 1-specific siRNA and an exon 5-specific short hairpin RNA), both of which depleted LEF1 2–3× (Supplementary Fig. S8) approximately to the levels of uninduced cells (Fig. 5A). As shown in Fig. 3B, prestimulation with Wnt3a for 6 hours rendered SuperTOP in mock-depleted HEK293T cells refractory to TNKSi, in contrast with LEF1-depleted cells, which recovered a near-complete TNKSi response (Fig. 5A and B). Interestingly, depletion of BCL9 and B9L also restored TNKSi sensitivity under these conditions (Fig. 5B), whereas depletion of TCF1 and of TCF4 did not.

Finally, we tested whether LEF1 depletion in SW480 cells would render its ABC TNKSi-responsive. This was the case: LEF1 depletion reduced β-catenin–dependent transcription in TNKSi-treated SW480 cells to 50% to 60% compared with mock-depleted cells (Fig. 5C). We conclude that their elevated LEF1 is a crucial determinant of β-catenin’s TNKSi insensitivity in these APC-mutant colorectal cancer cells.

Carnosate reduces ABC in the normal murine intestine and the tumor numbers of Apc^{Min} mice

Given the poor TNKSi response of cells with chronic Wnt pathway activity, there was little incentive for testing TNKSi in tissues with sustained Wnt signaling, e.g., normal intestinal crypts or Apc-mutant intestinal tumors (see Introduction). Intrinsic in vivo toxicity of some TNKS inhibitors (see also Supplementary Fig. S2; ref. 16) further argues against their use on animals. However, we decided to test carnosate in the Apc^{Min} model, given its inhibitory activity in COLO320 cells whose APC mutation resembles that of the Apc^{Min} mutation (truncating all β-catenin and Axin-binding sites). Moreover, it was previously shown that orally administered carnosate...
spreads rapidly to various murine tissues including the brain, in which it exhibits bioactivity (27).

We thus adopted this experimental regime (27), administering a single dose of 1 mg carnosate to individual mice, and monitored the transcript levels of different β-catenin target genes (22, 26) in cell lysates from intestinal epithelial preparations (Supplementary Fig. S9). Indeed, the genes (22, 26) in cell lysates from intestinal epithelial preparations could not be detected a statistically significant effect on c-Myc transcripts, possibly because the β-catenin–dependent modulation of c-Myc transcription is subtle (37). As expected, the ABC levels were also reduced upon carnosate treatment, whereas the total β-catenin levels were not affected significantly (Fig. 6B; Supplementary Fig. S9), consistent with the carnosate effects in cell culture (19).

We also tested whether carnosate attenuates intestinal tumorigenesis in Apcmin mice, which develop multiple intestinal neoplasms, driven by β-catenin activation following sporadic Apc loss (7). Of note, a previous study showed that carnosol, a close chemical relative of carnosate, reduced the tumor burden of Apcmin mice if administered in their diet (28). We thus adopted the same experimental design, administering 0.1% carnosol to Apcmin mice in their diet, or 0.1% or 1% carnosate (because carnosate is less toxic than carnosol; ref. 19). At 105 days, control mice showed 19 ± 7.5 tumors, whereas all three treatment cohorts had significantly reduced tumor numbers (Fig. 6C). The tumor volume was also reduced approximately 2× in the treatments groups compared with the control (Supplementary Fig. S9). Thus, carnosate is as effective as carnosol in attenuating intestinal tumorigenesis in this mouse model.

LEF1 overexpression is prevalent in colorectal carcinomas

A recent analysis of LEF1 expression in colorectal carcinomas, based on immunohistochemistry, concluded that LEF1 protein is detectable only in 26% of carcinomas (38). Accordingly, most carcinomas would therefore be potentially responsive to TNKS1. However, these results contrasted with those from an earlier analysis, demonstrating that LEF1 transcripts are highly abundant in colorectal cancer cell lines and carcinomas (39). Indeed, evidence from murine models and human cancers indicates a key role of LEF1 during cancer progression (6).

To resolve this controversy, and to examine the potential therapeutic value of TNKS1 in colorectal cancer, we decided to reexamine LEF1 expression in tissue specimens from patients with cancer. We thus screened a TMA containing tissue cores from normal colonic mucosa, adenomatous polyps, and colon carcinomas by immunofluorescence, and using a different LEF1 antibody, the combination of which improved the sensitivity of endogenous LEF1 detection considerably (Supplementary Fig. S10). Costaining this TMA for LEF1 and β-catenin, we found that most epithelial cells of the normal mucosa were only weakly positive for both proteins, except for a small number of cells near the bottom of crypts, which exhibit high levels of LEF1 and β-catenin, coinciding in each case (Fig. 7A)—likely marking LGR5-positive intestinal progenitor cells (40). However, virtually all cores from adenomas (n = 21) show elevated levels of both proteins, and carcinomas (n = 32) showed even higher levels of LEF1 and nuclear β-catenin throughout, in each case strikingly coinciding at the cellular level (Fig. 7B and C). Semiquantitative analysis of the immunofluorescence signal intensity of each core indicates higher levels of LEF1 in carcinomas compared with adenomas (Fig. 7D), correlating with nuclear β-catenin (r = 0.78; P < 0.0001; Pearson correlation test) whose levels also increase from adenoma to carcinoma (9, 10). Our data are fully consistent with the RNA expression data (39), showing that high levels of LEF1 expression are prevalent in colorectal carcinomas.
While comparing the potencies of recently identified \(\beta \)-cate
nin inhibitors in cell-based assays, we encountered substantial cell toxicity and unspecific off-target effects at their IC\(_{50}\) for most of them, whose inhibitory activity toward \(\beta \)-catenin is therefore unlikely to be specific. However, carnosate and TNKS\(_{1}\) behaved as specific inhibitors of \(\beta \)-catenin in our hands, reducing its transcriptional activity in Wnt-stimulated cells.

Figure 6. Carnosate (CA) reduces \(\beta \)-catenin levels and outputs in the normal and neoplastic mouse intestine. A, qRT-PCR of transcripts in lysates from murine intestinal preparations at various times after carnosate administration, as indicated below panels; each symbol refers to one animal (from cohorts of 4–5 mice), from three independent experiments (see Supplementary Fig. S9; control values are from experiments II and III); statistical significance: **, \(P < 0.0025; \), \(P < 0.0005 \), \(* \), \(P < 0.0025 \). B, quantification of Western blots (Supplementary Fig. S9) by densitometry of intestinal lysates obtained as in A; symbols and statistical significance as in A. C, numbers of intestinal tumors in 105-day old \(\text{Apc}\text{}\text{\text{\textit{Min}}} \) mice fed with control or supplemented diet; \(P \) values (from \(t \) tests) are relative to controls.

Discussion

While comparing the potencies of recently identified \(\beta \)-cate
nin inhibitors in cell-based assays, we encountered substantial cell toxicity and unspecific off-target effects at their IC\(_{50}\) for most of them, whose inhibitory activity toward \(\beta \)-catenin is therefore unlikely to be specific. However, carnosate and TNKS\(_{1}\) behaved as specific inhibitors of \(\beta \)-catenin in our hands, reducing its transcriptional activity in Wnt-stimulated cells.

Figure 7. Overexpression of LEF1 is prevalent and progressive in colorectal cancer. A–C, immunofluorescence of representative tissue cores from normal mucosa (A), adenomas (B), and carcinomas (C), costained for \(\beta \)-catenin (red), LEF1 (green), and DAPI (blue in merge, to mark nuclei) as indicated; magnifications of boxed areas are on the right. Arrows in A indicate putative crypt progenitor cells; size bars, 25 \(\mu \)m. D, boxplots of the TMA scoring results, indicating LEF1 expression levels (see Materials and Methods); statistical significance: **, \(P < 0.0001; \), \(P < 0.001 \) (Wilcoxon rank sum tests).
They also destabilized ABC in APC-mutant colorectal cancer cells, but despite this, the activity of β-catenin in these cells was barely responsive to TNKSi. Importantly, β-catenin activity also became refractory to TNKSi in APC-wt cells following Wnt stimulation for 4 to 6 hours. We presented evidence that this TNKSi insensitivity in cells with chronic Wnt pathway activity is conferred predominantly by high levels of LEF1 and, to a lesser degree, of B9L—both products of Wnt target genes that accumulate in these cells. Our data imply that LEF1 and B9L cooperate to lock a transient burst of β-catenin–dependent signaling into a stable state of chronic Wnt/β-catenin pathway activity.

High LEF1 and B9L levels divert β-catenin from TNKSi-induced Axin degradasomes

Our experimental evidence, based on preexpressing or depleting TCF/LEF and B9L/BCL9 factors, indicates that the TNKSi insensitivity of β-catenin in cells with chronic Wnt pathway activity is determined primarily by high levels of LEF1 and, to a lesser degree, of B9L. Both factors are unique amongst their family members in that they are Wnt inducible and thus tend to accumulate in cells with chronic Wnt pathway activity. They also show a marked tendency to be overexpressed in colorectal carcinomas (20; Fig. 7) and in colorectal cancer cell lines (Fig. 4A) albeit to varying degrees. It is possible that the observed TNKSi insensitivity of β-catenin in these cell lines is due to the cumulative expression levels of all their LEF/TCF and BCL9/B9L family members (some of which can also be overexpressed in carcinomas, e.g., BCL9; ref. 41).

How do LEF/TCF and BCL9/B9L factors protect the activity of ABC despite its continued conversion to PBC by the Axin complex and its consequent degradation? It seems likely that this is due to direct competitive binding: TCF/LEF exhibit a 20–50 times higher affinity for β-catenin than (unphosphorylated) Axin and APC (42), and thus have a competitive advantage over the latter in binding to β-catenin, as previously shown (43). This advantage could be increased considerably in the ternary complex with BCL9/B9L. TCF4 and BCL9 can bind simultaneously to β-catenin, together occupying a surface on β-catenin (44) larger than that occupied by Axin or APC (4, 13), and so the combined affinity of β-catenin for LEF and B9L is likely to exceed its affinity to the Axin complex by at least two orders of magnitude. We thus propose that high levels of LEF1 and B9L bind to and divert a significant fraction of the de novo synthesized β-catenin to the nucleus, before its access to Axin, thereby creating a continuous pipeline that fuels the pool of transcriptionally active β-catenin.

LEF1 and B9L, despite being predominantly nuclear at steady state (21, 45), are likely to shuttle rapidly in and out of the nucleus, like β-catenin itself (35, 36) and, on overexpression, shift cytoplasmic β-catenin into the nucleus (21, 45). Furthermore, these factors are partially cytoplasmic in APC-mutant cancer cell lines and in colorectal carcinomas (Fig. 7). It is therefore plausible that they can access de novo synthesized β-catenin in the cytoplasm, in competition with Axin. Of note, the nuclear export function of APC is disabled by most APC truncations found in colorectal cancer cell lines and carcinomas (46) and, therefore, the APC-mediated conveyance of nuclear β-catenin to the cytoplasmic Axin complex is attenuated in these APC-mutant cells.

Is LEF1 unique amongst TCF in conferring Ti insensitivity on β-catenin? Although this has not been assessed side-by-side, it seems that LEF1 has a slightly higher binding affinity to β-catenin than TCF4 (42, 47). Furthermore, LEF1 exhibits the same key (aspartic acid to glutamic acid) substitution as TCF3 that allows formation of a hairpin in its β-catenin–binding domain, thereby increasing its interface with β-catenin (12). Indeed, TCF3 was found to shield β-catenin from Axin by direct competition for binding in early Xenopus embryos (48). However, neither TCF3 nor other TCFs are likely candidates for conferring TNKSi insensitivity on β-catenin in cells with chronic Wnt pathway activity because (i) none of them accumulate in response to Wnt stimulation in APC-wt cells (Fig. 4A), (ii) neither TCF1 nor TCF4 protects β-catenin from Axin-dependent degradation in cells with chronic Wnt pathway activity (Fig. 4B and C), and (iii) TCF3 is not expressed in any of the APC-mutant cells we tested (Fig. 4A).

TNKSi-induced destabilization of β-catenin occurs downstream of its nuclear conveyance by LEF1 and B9L

Carnosate and TNKSi both destabilize ABC in colorectal cancer cells—TNKSi considerably more so than carnosate—but they achieve this by distinct mechanisms. TNKSi increase Axin degradasome activity, thus depleting ABC by converting it to PBC, the substrate for β-TrCP recognition and proteasomal degradation. In contrast, carnosate promotes selectively the proteasomal degradation of ABC (19), without affecting the levels of PBC or total β-catenin (Fig. 1B), suggesting that this route of ABC destabilization does not involve Axin. Importantly, only the carnosate- but not the TNKSi-induced destabilization of ABC proved effective in reducing its transcriptional activity.

The likely reason for this is that carnosate blocks the binding of BCL9/B9L to ABC, apparently by altering the conformation of a structurally labile N-terminal α-helix of β-catenin (abutting its BCL9-binding site); this α-helix constitutes an "Achilles' heel," which renders β-catenin aggregation-prone when disordered (19). Therefore, carnosate acts upstream of, or in parallel to, the nuclear conveyance of ABC by LEF1 and B9L. In contrast, the TNKSi-induced destabilization of ABC seems to occur downstream of this conveyance, following β-catenin’s nuclear exit.

Carnosate attenuates β-catenin activity and intestinal tumorigenesis in mice

We have shown inhibitory effects of carnosate on transcriptional outputs of β-catenin in the normal intestine, and on intestinal tumorigenesis, confirming its bio-activity in murine tissues (27). The tumor-attenuating effects of carnosate in the ApcMin model are relatively modest, but they are equivalent to those of its chemical relative, carnosol (28). The latter have been attributed to reduced phosphorylation of tyrosine 142 within β-catenin’s "Achilles' heel" (ref. 28; see also ref. 19), broadly consistent with our own evidence that carnosate acts through this structurally labile α-helix of β-catenin to interfere with its binding to BCL9 (19). Targeting this interaction thus...
seems a promising strategy for developing inhibitors of β-catenin–driven intestinal neoplasia.

Limited application of TNKSi in β-catenin–dependent neoplasia

Our study confirms that TNKSi are highly effective in blocking β-catenin–dependent transcription in transiently Wnt-stimulated cells. However, the latter become refractory to TNKSi after 4 to 6 hours of prestimulation with Wnt, once Lef1 has accumulated sufficiently. Intriguingly, a similar lag period of approximately 4 hours following Wnt stimulation was observed before the Axin complex plateaud and stabilized at its inhibited state (49). It thus seems that the activity of the Axin complex is only susceptible to perturbations, such as TNKSi-induced Axin levels, during this initial period of reequilibration after Wnt stimulation.

Our data imply that TNKSi are only effective in blocking β-catenin activity in tissues that experience transient bursts of Wnt signaling, and/or express low levels of Lef1 and B9L. They suggest that the combined levels of Lef1 and B9L overexpression in normal and cancerous tissues determine the TNKSi responsiveness of their β-catenin. However, most colorectal carcinomas express high levels of both proteins (20, 41; Fig. 7), which are expected to render their oncogenic β-catenin unresponsive to TNKSi. Therefore, the therapeutic value of TNKSi in colorectal cancer is somewhat limited, and crucially depends on identifying those carcinomas with low levels of these protective factors (e.g., those resembling LDL1 cells, which exhibit a partial response to TNKSi).

Implications for targeting oncogenic β-catenin

Our study provides a proof-of-concept that oncogenic β-catenin can be targeted directly by a small inhibitory molecule not just in cell assays (19), but also in an animal model. Importantly, we have shown that merely destabilizing oncogenic β-catenin is not sufficient for inhibiting its activity. Our study highlights the importance of targeting the transcriptionally active β-catenin directly or its interface with Lef1, and/or with BCL9/B9L, as successfully achieved recently (50). These insights should guide the future development or application of small-molecule inhibitors of oncogenic β-catenin.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. de la Roche, M. Bienz

Development of methodology: M. de la Roche, J. Mieszczanek

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. de la Roche, A.E.K. Ibrahim, J. Mieszczanek

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. de la Roche, A.E.K. Ibrahim, M. Bienz

Writing, review, and/or revision of the manuscript: M. de la Roche, M. Bienz

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. de la Roche, A.E.K. Ibrahim, J. Mieszczanek

Study supervision: M. de la Roche, M. Bienz

Acknowledgments

The authors thank Cara Gottardi and Hans Clevers for plasmids, Andrew Merritt and his staff at MRC Technology for chemical synthesis, and Tracey Butcher and her staff for help with the animal experiments.

Grant Support

This work was supported by the Medical Research Council (U105192713) and Cancer Research UK (grant 13779/A3709 to M. Bienz, Clinical Fellowship C10112/A11388 to A.E.K. Ibrahim). The Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 19, 2013; revised November 20, 2013; accepted December 11, 2013; published OnlineFirst January 13, 2014.

References

Published OnlineFirst January 13, 2014; DOI: 10.1158/0008-5472.CAN-13-2682
Acquiring Resistance to Tankyrase Inhibitors

33. Acquiring Resistance to Tankyrase Inhibitors

34. Acquiring Resistance to Tankyrase Inhibitors

35. Acquiring Resistance to Tankyrase Inhibitors

36. Acquiring Resistance to Tankyrase Inhibitors

37. Acquiring Resistance to Tankyrase Inhibitors

38. Acquiring Resistance to Tankyrase Inhibitors

39. Acquiring Resistance to Tankyrase Inhibitors

40. Acquiring Resistance to Tankyrase Inhibitors

41. Acquiring Resistance to Tankyrase Inhibitors

42. Acquiring Resistance to Tankyrase Inhibitors

43. Acquiring Resistance to Tankyrase Inhibitors

44. Acquiring Resistance to Tankyrase Inhibitors

45. Acquiring Resistance to Tankyrase Inhibitors

46. Acquiring Resistance to Tankyrase Inhibitors

47. Acquiring Resistance to Tankyrase Inhibitors

48. Acquiring Resistance to Tankyrase Inhibitors

49. Acquiring Resistance to Tankyrase Inhibitors

50. Acquiring Resistance to Tankyrase Inhibitors

51. Acquiring Resistance to Tankyrase Inhibitors

52. Acquiring Resistance to Tankyrase Inhibitors

53. Acquiring Resistance to Tankyrase Inhibitors

54. Acquiring Resistance to Tankyrase Inhibitors

55. Acquiring Resistance to Tankyrase Inhibitors

56. Acquiring Resistance to Tankyrase Inhibitors

57. Acquiring Resistance to Tankyrase Inhibitors

58. Acquiring Resistance to Tankyrase Inhibitors

59. Acquiring Resistance to Tankyrase Inhibitors

60. Acquiring Resistance to Tankyrase Inhibitors

61. Acquiring Resistance to Tankyrase Inhibitors

62. Acquiring Resistance to Tankyrase Inhibitors

63. Acquiring Resistance to Tankyrase Inhibitors

64. Acquiring Resistance to Tankyrase Inhibitors

65. Acquiring Resistance to Tankyrase Inhibitors

66. Acquiring Resistance to Tankyrase Inhibitors

67. Acquiring Resistance to Tankyrase Inhibitors

68. Acquiring Resistance to Tankyrase Inhibitors

69. Acquiring Resistance to Tankyrase Inhibitors

70. Acquiring Resistance to Tankyrase Inhibitors

71. Acquiring Resistance to Tankyrase Inhibitors

72. Acquiring Resistance to Tankyrase Inhibitors

73. Acquiring Resistance to Tankyrase Inhibitors

74. Acquiring Resistance to Tankyrase Inhibitors

75. Acquiring Resistance to Tankyrase Inhibitors

76. Acquiring Resistance to Tankyrase Inhibitors

77. Acquiring Resistance to Tankyrase Inhibitors

78. Acquiring Resistance to Tankyrase Inhibitors

79. Acquiring Resistance to Tankyrase Inhibitors

80. Acquiring Resistance to Tankyrase Inhibitors

81. Acquiring Resistance to Tankyrase Inhibitors

82. Acquiring Resistance to Tankyrase Inhibitors

83. Acquiring Resistance to Tankyrase Inhibitors

84. Acquiring Resistance to Tankyrase Inhibitors

85. Acquiring Resistance to Tankyrase Inhibitors

86. Acquiring Resistance to Tankyrase Inhibitors

87. Acquiring Resistance to Tankyrase Inhibitors

88. Acquiring Resistance to Tankyrase Inhibitors

89. Acquiring Resistance to Tankyrase Inhibitors

90. Acquiring Resistance to Tankyrase Inhibitors

91. Acquiring Resistance to Tankyrase Inhibitors

92. Acquiring Resistance to Tankyrase Inhibitors

93. Acquiring Resistance to Tankyrase Inhibitors

94. Acquiring Resistance to Tankyrase Inhibitors

95. Acquiring Resistance to Tankyrase Inhibitors

96. Acquiring Resistance to Tankyrase Inhibitors

97. Acquiring Resistance to Tankyrase Inhibitors

98. Acquiring Resistance to Tankyrase Inhibitors

99. Acquiring Resistance to Tankyrase Inhibitors

100. Acquiring Resistance to Tankyrase Inhibitors
LEF1 and B9L Shield β-Catenin from Inactivation by Axin, Desensitizing Colorectal Cancer Cells to Tankyrase Inhibitors

Marc de la Roche, Ashraf E.K. Ibrahim, Juliusz Mieszczanek, et al.

Cancer Res Published OnlineFirst January 13, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-13-2682

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2014/01/13/0008-5472.CAN-13-2682.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2014/02/21/0008-5472.CAN-13-2682. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.