Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase

Yanping Xu2, 3, Fulong Li2, 3, Lei Lv1, 2, Tingting Li2, 3, Xin Zhou2, 3, Chu-Xia Deng4, Kun-Liang Guan1, 2, 5*, Qun-Ying Lei1, 2* and Yue Xiong1, 2, 6*

(1) Ministry of Education Key Laboratory of Molecular Medicine, and Department of Biochemistry and Molecular Biology, Fudan University, Shanghai Medical College, Shanghai 200032, People’s Republic of China, (2) Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China, (3) School of Life Sciences, Fudan University 200032, People’s Republic of China. (4) Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. (5) Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093-0815, USA. (6) Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA.

*Correspondence should be addressed to K.L.G. at kuguan@ucsd.edu, Q.Y.L. at qlei@fudan.edu.cn or Y. X. at yxiong@email.unc.edu

Conflict of Interest: The authors declare that they have no conflict of interest.

Running title: K100 acetylation negatively regulates PGAM2 activity

Key words: PGAM, acetylation, SIRT2, ROS, tumorigenesis
Abstract

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNA interference or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacterial, to yeast, plant and mammals. K100 acetylation is detected in fly, mouse and human cells, and in multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 (SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species (ROS) stimulate PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell proliferation and tumor growth.
Introduction

Enhanced glycolysis, commonly referred to as the ‘Warburg Effect’ (1), is a distinctive and prominent feature of cancer cells. One prevalent belief on the benefits of the Warburg Effect to tumor cells holds that enhanced glycolysis accumulates glycolytic intermediates, providing substrates for biosynthetic reactions to support cell growth and division. An alternative, but not mutual exclusive view is that enhanced glycolysis limits the rate of oxidative phosphorylation, thereby helping cells within the tumor to adapt hypoxic condition and protecting them against oxidative damages (2, 3).

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG) (4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B) which is expressed in brain and most other tissues and PGAM2 (also known as PGAM-M) which is highly expressed in muscle. Their encoded products are similar in length (254 and 253 residues, respectively), share high degree of homology (81% identity) and form either homo- or heterodimers that are functionally indistinguishable. Both 3-PG and 2-PG are allosteric regulators; 3-PG inhibits 6-phosphogluconate dehydrogenase (6PGD) of pentose phosphate pathway (PPP) while 2-PG activates phosphoglycerate dehydrogenase (PHGDH) of glycine and serine synthesis pathway (5). By controlling the levels of its substrate (3-PG) and product (2-PG), therefore, PGAM may play a role in coordinating the energy production through glycolysis with generation of reducing power and biosynthesis of amino acids and five-carbon sugar, the precursors of nucleotides for the synthesis of both RNA and DNA. Supporting a critical role of PGAM activity in cell growth, an unbiased screen for genes that can immortalize mouse...
embryonic fibroblasts (MEFs) identified PGAM2 which when expressed at 2-fold higher level renders MEFs to indefinite proliferation and resistance to ras-induced senescence (6). Conversely, inhibition of PGAM, by either small RNA interference or small molecule, attenuates cell proliferation and tumor growth (5).

The regulation of PGAM is poorly understood. Like other glycolytic enzymes, the activity of PGAM is upregulated in tumor cells, including tumors of lung, colon, liver, breast and leukemia (5, 7, 8). Most glucose transporter and glycolytic enzymes are transcriptionally regulated by the hypoxia-inducible transcriptional factor HIF-1α (9). Notably, however, of a panel of 18 glucose transporter and glycolytic genes examined, the transcription of two genes, PGAM and glucose-6-phosphate isomerase (GPI) were found not to be induced by HIF-1α (9), suggesting that the activity of these two glycolytic enzymes may be post-transcriptionally regulated. In tumors where an increased PGAM activity has been demonstrated, the steady state levels of PGAM protein appear to be similar to that of normal tissues compared, suggesting the possibility that the activity of PGAM is subjected to a post-translational regulation.

Protein acetylation has been recently found as an evolutionarily conserved modification that regulates diverse cellular pathway, including notably the metabolic enzymes (10-15). Studies on individual enzymes have subsequently demonstrated that acetylation regulates the activity of metabolic enzymes via a variety of different mechanisms (16). In this study, we report that the activity of PGAM is inhibited by lysine acetylation and this mechanism of regulation plays a critical role in oxidative stress response and tumorigenesis.
Materials and methods

Plasmid construction

Full-length cDNA of PGAM2 was amplified by PCR and cloned into indicated vectors including pRK7-N-FLAG and pQCXIH, SIRT1 and SIRT2 were cloned to pCDNA3-HA vector. Point mutations for PGAM2 were generated by site-directed mutagenesis. The PGAM2 shRNA plasmid (Origene) and the SIRT2 shRNA plasmid (Sigma) were commercially purchased.

Cell culture and transfection

HEK293T and MEF cells were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% fetal bovine serum (HyClone), 100 units/ml penicillin and 100 μg/ml streptomycin (Gibco). Human lung carcinoma A549 cells were cultured in Nutrient Mixture F-12 Ham Kaighn’s Modification (F12K) medium (Sigma) with 10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin. Cell transfection was carried out by Lipofectamine 2000 according to the manufacturer’s protocol (Invitrogen).

Cell lysis, Immunoprecipitation, Immunoblotting and Antibody

Cells were lysed in NP40 buffer containing 50mM Tris pH 7.5, 150mM NaCl, 0.3% Nonidet P-40, 1μg/ml aprotinin, 1μg/ml leupeptin, 1μg/ml pepstatin, 1mM Na3VO4 and 1mM PMSF. Cell lysates were incubated with anti-Flag beads (Sigma) for 3 hr at 4°C, the beads were washed with NP-40 buffer three times, and then subjected to SDS-PAGE or eluted by Flag peptides for enzyme activity assay. Western blotting was performed according to standard protocol. Antibodies specific to Flag (Sigma), HA (Santa Cruz), PGAM2 (Abcam) and β-actin (Sigma) were
commercial. Rabbit anti-pan-acetyllysine antibody and anti-acetyl-PGAM2 K100 antibody (antigen peptide sequence: TGLNKAETAACKH) were generated at Shanghai Genomic Inc.

PGAM2 enzyme activity assay

Purified Flag-PGAM2 protein were incubated with the buffer containing 79mM triethanolamine, 0.70mM ADP, 0.15mM NADH, 6.6 mM 3-phosphoglycerate, 1.3 mM 2,3-diphosphoglycerate, 2.5 mM MgSO₄, 99 mM KCl, 4 units pyruvate kinase, 20 units L-lactate dehydrogenase and 3 units enolase. Activity was measured by the change of absorbance resulting from NADH oxidation in F-4600 Fluorescence Spectrophotometer (HITACHI). All the regents described above were purchased from sigma.

In vitro deacetylation assay

His-CobB (10 μg/ml) purified from *E.coli* or HA-SIRT1 and HA-SIRT2 purified from HEK293T cells were incubated with Flag-PGAM2 (10 μg/ml) in a HEPES buffer (40 mM HEPES; 1mM MgCl₂, 1mM DTT, 5mM NAD⁺) at 37°C for 1h. The effect of CobB deacetylation of PGAM2 was analyzed by western blotting and measurement of PGAM2 activity.

Preparation of K100-acetylated PGAM2 protein

K100-acetylated PGAM2 was generated by a method described previously (23, 24). Briefly, the clone pTEV8-PGAM2 was constructed to replace the Lys100 with an amber codon which was then co-transformed with pAcKRS-3 and pCDF PylT-1 to BL21. Bacterial cells were grown in LB supplemented with kanamycin (50 mg/ml), spectinomycin (50 mg/ml) and ampicillin
(150 mg/ml) and induced with 0.5mM IPTG, 20mM NAM and 2mM Nε-acetyllysine (Sigma) when the concentration of E.coli cells reached to OD600 of 0.6 (early logarithmic phase). After induction overnight, E.coli cells were harvested. Both the wild-type and K100-acetylated PGAM2 protein were purified by nickel beads for enzyme activity analysis.

Measurement of intracellular ROS level

ROS production was determined by incubating the A549 stable cells in serum-free medium containing 10 μM fluorescent dye 2',7'-dichlorofluorescein diacetate (DCF, Sigma) at 37°C for 30 min, washing by serum-free medium for three times, followed by fluorescence analysis.

Establishment of knocking-down and putting-back stable cell lines

All retroviruses were produced by co-transfecting the package vector expressing gag and vsvg genes with the indicated plasmids into HEK293T cells and harvested 48h after transfection. A549 cells were transduced with the retrovirus in the presence of 8 μg/ml polybrene. The shRNA plasmids produced retrovirus infected cells were selected in puromycin (2μg/ml) for knocking down and the pQCXIH plasmids produced retrovirus infected cells were selected in hygromycin (350 mg/ml) for putting back. After 7-12 days of selection, the expression levels of PGAM2 were determined by western blot.

Cell Proliferation and xenograft studies

5×10⁴ indicated stable cells were seeded in triplicate in 6-well plates and cell numbers were counted every day over a 4-day period. Nude mice (nu/nu, male 6 to 7-week-old) were
injected subcutaneously with 3×10^6 A549 PGAM2 knocking-down and wild-type or K100Q mutant putting-back stable cells. Seven weeks later, the tumors were harvested, and the volume and weight of tumors were measured.
Results

PGAM2 is acetylated at an evolutionarily conserved residue, Lys100

We and others recently discovered that most enzymes in the cellular metabolic pathways are acetylated by large scale mass spectrometry studies (10, 13, 14). Among these, Lysine 100 (K100) was identified as a putative acetylation site in a peptide (HYGGLTGLNK_AETAAK, with K100 underlined) that could correspond to either PGAM1 or PGAM2 and is highly conserved during the evolution (10) (Figure 1A). K100 binds to substrate 3-PG as well as intermediate 2,3-PG (17, 18). Molecular modeling suggests that acetylation at K100, if it occurs, could significantly neutralize the charge on the lysine side chain, likely causing a steric hindrance to the binding with substrate 3-PG and thereby inhibiting PGAM activity (Figure 1B).

To confirm the acetylation of PGAM, we expressed Flag-PGAM2 in HEK293T cells and then treated cells with trichostatin A (TSA) and nicotinamide (NAM), two commonly used deacetylase inhibitors that inhibit histone deacetylase HDAC I and II (19) and the SIRT family deacetylases (20), respectively. We found that PGAM2 was indeed acetylated (Figure 1C), and its acetylation level was enhanced approximately 2.3 folds after treatment of cells with combined NAM (4 hrs) and TSA (16 hrs). We then mutated K100 to either arginine (K100R) or glutamine (K100Q) and found that both mutations evidently decreased the overall acetylation level of PGAM2 by 58.7% and 62.5% respectively, (Figure 1D). K100 mutation did not completely abolish the acetylation of PGAM2, indicating that there might be other acetylated sites in PGAM2. As the mutation of K100 reduced 60% of total acetylation level, we concluded that K100 is the major acetylation site of PGAM2.

To confirm K100 acetylation in vivo, we generated an antibody specific to the acetylated
K100. We first performed dot-blot to characterize the specificity of this antibody and found that the anti-AcPGAM2(K100) antibody preferentially recognized the K100-acetylated peptide, but not the unmodified peptide (Supplementary Figure S1A). Pre-incubation of the anti-AcPGAM2(K100) antibody with the K100-acetylated antigen peptide, but not the unmodified peptide, abolished the signal (Supplementary Figure S1B), confirming the specificity of the antibody in recognition of the K100-acetylated PGAM2. Western blotting using this antibody detected strong signal of ectopically expressed wild-type PGAM2, but only weakly recognized the K100R mutant (Figure 1E). Endogenous K100-acetylated PGAM2 could be readily detected by this antibody, including A549 adenocarcinomic human alveolar basal epithelial cells and HEK293T human embryonic kidney cells (Supplementary Figure S1C and Figure 1F). Knocking down PGAM2 abolished the signals detected by the anti-AcPGAM2(K100) antibody (Supplementary Figure S1C) and conversely treatment of cells with combined deacetylase inhibitors TSA and NAM increased the signals (Figure 1F). Taking together, we conclude that PGAM is acetylated in vivo at lysine 100.

K100 is evolutionarily conserved in PGAM from bacterial, yeast, plant to mammals (Figure 1A). To determine whether acetylation of K100 is evolutionarily conserved, we treated human A549 lung cancer cells, mouse embryonic fibroblasts and Drosophila S2 cells with deacetylase inhibitors and determined K100 acetylation of endogenous PGAM (Figure 1G). This experiment demonstrates that K100-acetylated PGAM is readily detected in mouse and fly cells and that K100 acetylation is dynamically affected by the deacetylase activity in these cells. Finally, taking the advantage of the anti-AcPGAM(K100) antibody, we demonstrate that PGAM is acetylated at K100 differentially in multiple different tissues, highly acetylated in several tissues such as liver,
brain and kidney and substantially lower in other tissues such as lung, heart, muscle and spleen (Figure 1H). Collectively, these experiments demonstrate that K100 acetylation represents an evolutionary conserved regulation on PGAM.

Acetylation at K100 inhibits PGAM2 enzyme activity

To determine the effect of K100 acetylation on PGAM2 enzyme activity, we immunopurified ectopically expressed Flag-PGAM2 from cells that were either untreated or treated with combination of TSA and NAM, then assayed enzyme activity. We found that the activity of PGAM2 decreased approximately 40% after TSA and NAM treatment (Figure 2A). When purified PGAM2 was incubated with bacterial deacetylase CobB in vitro, the activity of PGAM2 increased by as much as 85% (Figure 2B). These results indicate that K100 acetylation has an inhibitory effect on PGAM2 activity. To further test this notion, we transfected HEK293T cells with wild-type, K100R or K100Q mutants PGAM2, then immunopurified to measure their activity. We found that mutation of Lys100 to Arg substantially reduced the activity of PGAM2, while notably the acetylation mimic mutant PGAM2^{K100Q} nearly completely (97%) abolished PGAM2 activity (Figure 2C). Moreover, treatment of TSA and NAM or incubation with bacterial deacetylase CobB, while significantly affected the activity of wild type PGAM2, had little effect on the activity of either PGAM2^{K100R} or PGAM2^{K100Q} mutants (Figure 2D and 2E). Taking together, these results indicate that Lys100 is critically important for PGAM's activity. To determine how K100 acetylation affects PGAM2 activity, we expressed wild-type PGAM2 and acetylation mimetic K100Q mutant in the cells and then did the gel-filtration assay and binding assay. We found that K100 acetylation does not affect PGAM dimerization (Supplementary
Figure S3), suggesting that acetylation at K100 could neutralize the charge on the lysine side chain, likely causing a steric hindrance to the binding with substrate 3-PG and thereby inhibiting PGAM activity as the modeling showed (Figure 1B). We also found that there is an inverse correlation between K100 acetylation and PGAM activity in different mouse tissues. For example, both lung and muscle have relatively high PGAM enzymatic activity and low K100 acetylation, while the brain, liver and kidney have relatively low activity and high K100 acetylation level (Figure 1H and Supplementary Figure S2). This result is consistent with the notion that the K100 acetylation negatively regulates the activity of PGAM in vivo.

To provide definitive evidence that acetylation at K100 inhibits PGAM activity, we employed the genetic-encoding system that can generate homogeneous acetylated recombinant protein at specific lysine (21, 22). We found that K100-acetylated PGAM2 protein has substantially reduced (by 96%) enzymatic activity when compared with the wild-type PGAM2 (Figure 2F). Collectively, these observations supported the conclusion that acetylation at K100 inhibits PGAM2 activity.

SIRT2 is responsible for deacetylation of PGAM2 at K100

Lysine acetylation is a reversible process, which is catalyzed by the acetyltransferases and deacetylases. To identify the deacetylase responsible for PGAM2 K100 acetylation, we treated HEK293T cells with TSA or NAM separately, and found that levels of K100 acetylation were unchanged in HDAC inhibitor TSA treated cells, but were increased in cells treated with SIRT inhibitor NAM (Figure 3A). Treatment of cells with combination of TSA and NAM did not further increase K100 acetylation appreciably compared with that in cells treated with NAM.
alone. These results indicate that an NAD\(^+\)-dependent sirtuin family deacetylase is likely involved in K100 deacetylation.

Given that PGAM2 is a cytosolic protein, we first determined the interactions between PGAM2 and the two cytoplasmic localized SIRTs—SIRT1 and SIRT2, and found that SIRT2, but not SIRT1, binds to PGAM2 (Figure 3B). Upon expression of SIRT1, SIRT2, and the SIRT2 catalytic inactive mutant H187Y in HEK293T cells, only the wild-type SIRT2 could decrease the levels of K100 acetylation of both exogenously and endogenously expressed PGAM (Figure 3C and Supplementary Figure S4), supporting that SIRT2 is a deacetylase for PGAM2. To further strength this finding, we treated cells with SIRT2 specific inhibitor, Salermide (23), and found that Salermide treatment increased the K100 acetylation level in a dose-dependent manner (Figure 3D). Similarly, knocking down SIRT2 significantly increased K100 acetylation (Figure 3E). Moreover, Sirt2 knock-out mouse embryonic fibroblasts (MEFs) have higher acetylation levels at K100 of PGAM than wild-type MEFs. Putting-back of human SIRT2 partially restored K100 acetylation of PGAM (Figure 3F). The K100 acetylation level is conversely correlated with the SIRT2 protein level. Taken together, these results demonstrated that SIRT2 is the main deacetylase that acts on PGAM K100 deacetylation.

SIRT2 regulates PGAM2 activity via K100 acetylation

Because K100 acetylation inhibits PGAM activity, SIRT2 may therefore act as a positive regulator of PGAM. To test this possibility, we examined the role of SIRT2 in regulation of PGAM2 enzyme activity. First, we immunopurified ectopically expressed Flag-PGAM2 from HEK293T cells treated with deacetylase inhibitors and measured the activity. Consistent with
the suggestion that SIRT2 stimulates PGAM2 activity, treatment of cells with NAM, but not TSA, decreased the activity of PGAM2 (Supplementary Figure S5). Next, we co-expressed PGAM2 with either SIRT1 or SIRT2 in HEK293T cells, and found that SIRT2, but not SIRT1, decreased K100 acetylation and increased the activity of PGAM2 approximately by 60% (Figure 4A). Conversely, knocking down SIRT2 or inhibiting SIRT2 with Salermide reduced PGAM2 activity (Figure 4B and 4C). Together, these data show that SIRT2 activates PGAM2 activity.

SIRT2 co-expression, however, had little effect on the activity of PGAM2K100R and PGAM2K100Q mutants (Figure 4D), suggesting that SIRT2 activates PGAM2 mostly via deacetylating K100. To further support this notion, we carried out \textit{in vitro} deacetylation assay and then measured PGAM2 activity. We found that SIRT2, but not SIRT1, deacetylated and activated PGAM2 in an NAD+-dependent manner (Figure 4E), providing a direct evidence supporting SIRT2 in PGAM2 activation.

Oxidative stress induces PGAM2 activity through decreasing K100 acetylation levels

Ectopic overexpression of PGAM2 has been reported to cause immortalization of MEFs, and this process is attributed to the reduced reactive oxygen species (ROS) production that protects cells from oxidative damage (6). To determine whether the K100 acetylation of PGAM is regulated \textit{in vivo}, we treated cells with hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) to induce oxidative stress and examined PGAM acetylation and enzymatic activity. We observed that endogenous levels of K100 acetylation was decreased in a time dependent manner both in HEK239T and A549 cells (Figure 5A). We immunopurified ectopically expressed Flag-PGAM2 from H\textsubscript{2}O\textsubscript{2} treated cells and found that along with a reduction of K100 acetylation, PGAM2 activity was increased more
than 2-folds upon H$_2$O$_2$ treatment. Moreover, H$_2$O$_2$ treatment had no significant effect on the activity of PGAM2K100Q and PGAM2K100R mutants (Figure 5C), indicating that oxidative stress enhanced PGAM2 activity via K100 deacetylation. To determine whether the endogenous PGAM activity is regulated by oxidative stress, we treated HEK293T and MEF cells with H$_2$O$_2$ or another oxidative stressor, menadione, a polycyclic aromatic ketone that generates intracellular ROS at multiple cellular sites through futile redox cycling. We found that either H$_2$O$_2$ or menadione treatments reduced K100 acetylation of endogenous PGAM which is associated with an increase of PGAM activity (Figure 5D). We therefore conclude that oxidative stress enhanced PGAM activity via reducing K100 acetylation.

To elucidate how K100 acetylation was changed in response to oxidative stress, we determined the interaction of PGAM2 and SIRT2 in the cells after H$_2$O$_2$ treatment. Immunoprecipitation and western blot analyses demonstrated that increased oxidative stress promoted the SIRT2 binding to PGAM2 (Figure 5E). Notably, H$_2$O$_2$ treatment did not affect K100 acetylation in Sirt2 knocking-out MEFs, but decreased K100 acetylation after putting back human SIRT2 in Sirt2/-/- MEFs (Figure 5F). These results demonstrate that the oxidative stress-induced reduction of PGAM2 K100 acetylation is SIRT2-dependent.

Acetylation mimetic K100Q mutant reduces NADPH and impairs oxidative stress response

3-PG and 2-PG are the substrate and product of phosphoglycerate mutase, respectively, and are two important metabolites in cell metabolism. 3-PG can bind to and inhibit the activity of 6-phosphogluconate dehydrogenase (6PGD), which is a critical enzyme for NADPH production in the pentose phosphate pathway (PPP) and function to protect cells from oxidative damage
(5). To explore the physiological significance of acetylation in the regulation of PGAM, we established stable cell lines in A549 cells with knockdown of endogenous PGAM2 and putting back of Flag-tagged WT or K100Q mutant of PGAM2, respectively (Figure 6A), followed by the measurement of NADPH. We found that the NADPH level decreased 48% in A549 cells expressing PGAM2\(^{K100Q}\) compared with cells expressing wild-type PGAM2 (Figure 6B). This data indicates that acetylation-mimetic mutation at Lys100 impaired the function of PGAM2 in NADPH production, possibly by accumulating its substrate, 3-PG, and thereby increasing the inhibitory effect toward 6PGD. We also compared reactive oxygen species (ROS) levels in these two cell lines by 2', 7'-dichlorofluorescin (DCF), a chemically reduced form of fluorescein that upon cleavage of the acetate groups by intracellular esterase and oxidation can be used as an indicator for reactive oxygen species (ROS) in cells. Consistent with the notion that acetylation mimetic K100Q mutant impaired the function of PGAM2 in NADPH production, the A549 cells expressing PGAM2\(^{K100Q}\) mutant showed 73% increased DCF staining (Figure 6C). Supporting the functional importance of K100 acetylation in regulating cellular response to oxidative response, A549 cells expressing PGAM2\(^{K100Q}\) mutant were much more sensitive to hydrogen peroxide than that cell expressing wild-type PGAM2 (Figure 6D). Collectively, the above data show that acetylation at K100 of PGAM2 impaired the ability of cells to respond to oxidative stress.

As SIRT2 catalyzes K100 deacetylation of PGAM2, next we examined the oxidative stress response of both \(sirt2\) KO MEFs. We found that \(sirt2\) KO MEFs are more sensitive to oxidative stress than human \(SIRT2\) putting-back MEFs (Figure 6E). To test whether this observation is due to PGAM2 K100 acetylation, we overexpressed wild-type or K100Q mutant PGAM2 in \(sirt2\) KO MEFs and found that cells overexpressing wild-type PGAM2, but not cells
overexpressing K100Q mutant, could partially rescue the viability of sirt2 KO MEF cells after oxidative stress (Figure 6F). These results demonstrate that the sensitivity of sirt2 KO MEFs to oxidative stress at least partially due to PGAM2 K100 acetylation.

Acetylation mimetic K100Q mutant suppressed cell proliferation and tumor growth

Given the high activity of phosphoglycerate mutase in cancer cells, we examined the effect of K100 acetylation of PGAM2 on cell proliferation and tumor growth. We found that A549 cells that were knocked down endogenous PGAM2 and ectopically expressed acetylation-mimetic PGAM2K100Q proliferated significantly slower than cells expressing wild-type PGAM2, indicating that acetylation of K100 regulates cell growth (Figure 7A). To further determine whether K100 acetylation of PGAM2 plays a critical role in tumor growth, we performed xenograft assay in immunodeficient nude mice using the A549 stable cell lines described above. Three million cells with putting-back of either wild-type or K100Q mutant PGAM2 were injected into nude mice subcutaneously, and tumors were dissected after around 7 weeks. The expression levels of putting-back Flag-tagged wild-type PGAM2 and K100Q mutant in xenograft tumors were verified by western blot analysis (Figure 7B). We found that cells expressing PGAM2K100Q developed tumors much slower than cells expressing wild-type PGAM2, as determined by both tumor volume (Figures 7C, 7D) and tumor weight (Figure 7E). Taken together, these results demonstrate that PGAM2 K100 acetylation inhibits tumor cell growth *in vivo*.
Discussion

In this paper, we provide four lines of evidence to demonstrate that acetylation plays a critical role in the regulation of PGAM enzyme activity. First, K100, a highly conserved residue in PGAM, is acetylated *in vivo* in multiple tissues and K100 acetylation is an evolutionarily conserved modification from fly to mammals. Second, K100 acetylation inhibits the activity of PGAM. Third, SIRT2 directly binds to and deacetylates PGAM, leading to its activation and importantly, oxidative stress promotes SIRT2-PGAM binding, induces deacetylation at K100 and activates PGAM activity. Lastly, replacement of endogenous PGAM with an acetylation mimetic mutant, like the inhibition of PGAM by RNAi-mediated depletion or pharmacological inhibitor, suppresses cell proliferation and tumor growth.

PGAM catalyzes the 3-PG-to-2-PG isomerization via a two-step, as opposed to a direct transfer of a phosphate; first a transfer of phosphate group from phosphohistidine (H11 in human PGAM) in the active site to the C-2 carbon of 3-PG to form 2, 3-bisphosphoglycerate (2,3-PG), and then the transfer of the phosphate group linked on C-3 carbon of 2,3-PG to the catalytic histidine, resulting in the regeneration of phosphohistidine and the release of product, 2-PG. Due to this prominent enzyme-substitution catalytic feature and its critical role in metabolic pathway, PGAM has been the subject of extensive investigation by X-ray crystallography. These studies have demonstrated a highly conserved structure of PGAM, in particular the active site (17, 18, 24). Lys100 is a key residue of the active-site and contacts directly with both the substrate, 3PG, and the intermediate, 2, 3-PG (25). As acetylation would neutralize the positive charge of the lysine side chain, a likely molecular basis for the inhibition of PGAM activity by K100 acetylation is that covalent linkage of the acetyl group
on K100 interferes with the binding of PGAM with both the substrate and the intermediate. An alternative possibility is that acetylation of K100, which is close to the His11, could conceivably affect either the phosphorylation of the catalytic histidine or the transfer of phosphate group to the substrate.

Increased expression of PGAM, by a mere of two folds, results in MEFs immortalization and, conversely, inhibition of PGAM, by either small RNA interference or small molecule, attenuates cell proliferation and tumor growth (5, 6). Supporting the role of PGAM in limiting cell proliferation, we show in this study that replacement of endogenous of PGAM with an acetylation-mimetic K100Q mutant results in significant decrease in cell proliferation and tumor growth in a nude mice xenograft tumor model. Our study further links the regulation of PGAM activity to cellular response to oxidative stress. This is evidenced by the findings that oxidative stress increases the PGAM-SIRT2 binding, leading to a decrease of K100 acetylation and enhanced PGAM enzyme activity. Cellular response to oxidative stress, including angiogenesis and tumorigenesis, is mediated by the HIF-1α (26, 27), which is required for the upregulation of mRNAs encoding glucose transporters and glycolytic enzymes, with notably exception of PGAM (9). Our study, therefore, not only reveals a previously unrecognized regulatory mechanism on PGAM via a posttranslational modification, but also a distinctive regulation of PGAM that would allow cells to coordinatively regulate glycolytic pathway genes for metabolic adaptation.
Acknowledgements

We thank the members of the Fudan Molecular and Cell Biology laboratory for discussions throughout this study. We thank Brenda Temple of R. L. Juliano Structural Bioinformatics Core facility at the University of North Carolina at Chapel Hill for the molecular modeling.

This work was supported by 973 (Grant No. 2011CB910600, 2009CB918401), NSFC (Grant No. 31071192, 81225016), Shanghai Key basic research program (12JC1401100), “100 Talents” Program of Shanghai Health (Grant No. XBR2011041), Scholar of “Dawn” Program of Shanghai Education Commission, and Shanghai Outstanding Academic Leader (Grant No.13XD1400600) to Q.Y. L. This work was also supported by the 985 Program, the Shanghai Leading Academic Discipline Project (project number B110), Biomedical Core Facility, Fudan University; Fudan University Interdisciplinary Research Program of outstanding Ph.D. students Funds (to Y-P.X.), and NIH grants (Y.X. and K.L.G.).
Reference

Figure legend

Figure 1. PGAM2 is acetylated at K100

(A) Sequence alignment of PGAM surrounding K100 from various species, including human (H. sapiens, NCBI reference number: NP_002620.1), mouse (M. musculus, NP_0075907), chicken (G. gallus, NP_001026727), frog (X. laevis, NP_001084996), and zebrafish (D. rerio, NP_942099.1), fruit fly (Drosophila melanogaster, AAF56866.2), thale cress (Arabidopsis thaliana, 004499), budding yeast (Saccharomyces cerevisiae, P00950), fission yeast (Schizosaccharomyces pombe, P36623), and bacterial (Escherichia coli, WP_001333397.1). The lysine 100 is bold. (B) Molecular modeling of acetylation of K100 in PGAM. The 3-PG binding site of PGAM (from Burkholderia Pseudomallei which shares 60% sequence identity with human PGAM) is rendered in the slate blue cartoon. The phosphorylated H11 is shown in slate blue (carbons), blue (nitrogens), red (oxygen) and orange (phosphorus), 3-PG is shown in sticks with carbon atoms colored white, oxygen atoms colored red, and phosphorus atoms colored orange. The green dashed lines represent critical electrostatic interactions between the lysine side chain and the oxygens of the phosphate of 3-PG. The acetyl group is colored in yellow (carbons). (C) PGAM2 is acetylated. Flag-PGAM2 was transfected into HEK293T cells followed by treatment with TSA and NAM for indicated time. PGAM2 acetylation and protein levels were analyzed by western blot with indicated antibody. (D) K100 is the primary acetylation site of PGAM2. The indicated plasmids were transfected into HEK293T cells and proteins were immunoprecipitated, followed by western blot for acetylation analysis. (E) The plasmids were transfected into HEK293T cells, acetylation levels of immunoprecipitated Flag-PGAM2 and K100R mutant were probed with the site-specific
K100 acetylation antibody (α-K100Ac). (F) Endogenous PGAM2 is acetylated at K100. The HEK293T cells lysate were prepared after TSA and NAM treatment. Endogenous PGAM2 protein and K100 acetylation levels were determined by western blot with indicated antibodies. (G) K100 acetylation is evolutionarily conserved. The A549, MEF and S2 cells lysate were prepared after TSA and NAM treatment, respectively. Endogenous PGAM2 protein and K100 acetylation levels were determined by western blot with indicated antibodies. (H) K100 acetylation is broadly distributed in different tissues. The indicated tissues were isolated from C57BL6 mouse, the lysate were prepared after homogenized. Endogenous PGAM2 protein and K100 acetylation levels were determined by western blot with indicated antibodies.

Figure 2. Acetylation at K100 reduces PGAM2 activity

(A) Inhibition of deacetylases decreases PGAM2 enzyme activity. Flag-tagged PGAM2 was expressed in HEK293T cells, which were treated with or without TSA and NAM, followed by immunoprecipitation and enzyme activity was measured and normalized against protein levels. The protein levels and acetylation levels were determined by western blot. Mean values with standard deviation (±SD) of relative enzyme activity of triplicate experiments are presented. (B) PGAM2 is activated by *in vitro* deacetylation. Flag-PGAM2 was expressed in HEK293T cells, purified and incubated with recombinant CobB. Samples were analyzed for acetylation levels and PGAM2 enzyme activity. Relative enzyme activities of triplicate experiments ±SD are presented. (C) K100 mutation decreases PKM2 enzyme activity. Flag-tagged wild-type and mutant PGAM2 proteins were expressed in HEK293T cells and
purified by immunoprecipitation. The enzyme activity was measured and normalized against protein level. Error bars represent ±SD for triplicate experiments. (D) Inhibition of deacetylases with TSA and NAM treatment decreases the activity of wild-type, but not K100 mutant PGAM2. Flag-tagged wild-type and mutant PGAM2 proteins were expressed in HEK293T cells, followed by treatment with TSA and NAM, and then purified by immunoprecipitation. The PGAM2 enzyme activity was measured and normalized against protein level. The mean value of triplicates and standard deviation (±SD) are presented. (E) Wild-type PGAM2, but not K100 mutant PGAM2, is activated by in vitro deacetylation. Flag-tagged wild-type and mutant PGAM2 proteins were expressed in HEK293T cells, then purified and incubated with recombinant CobB, followed by enzyme activity assay. Relative enzyme activities of triplicate experiments ± SD are presented. (F) K100-acetylated PGAM2 has lower enzyme activity. Recombinant wild-type and K100-acetylated PGAM2 protein were purified in E. coli. The enzyme activity was measured and normalized against protein level. Mean values of relative enzyme activity of triplicate experiments with standard deviation (±SD) are presented.

Figure 3. SIRT2 deacetylates PGAM2 at K100

(A) NAM, but not TSA increases PGAM2 K100 acetylation. HEK293T cells were treated with either NAM or TSA, endogenous PGAM2 protein and K100 acetylation levels were determined by western blot with PGAM2 antibody or anti-acetyl-K100 antibody, respectively. (B) SIRT2 interacts with PGAM2. HEK293T cells were transfected with indicated plasmids and interactions between PGAM2 and SIRT1 or SIRT2 were examined by IP and western analysis.
(C) Wild-type SIRT2 overexpression decreases PGAM2 K100 acetylation. K100 acetylation levels of PGAM2 in HEK293T cells expressing indicated plasmids were detected by western blotting. (D) Salermide, the SIRT2 inhibitor, increases the K100 acetylation of PGAM2. HEK293T cells were cultured at different concentrations of Salermide. The K100 acetylation levels were probed by anti-acetyl-K100 antibody. (E) Knocking down SIRT2 increases endogenous K100 acetylation of PGAM2. HEK293T cells were infected with retrovirus targeting SIRT2 and the levels of PGAM2 protein and K100 acetylation were determined by western blotting. SIRT2 knockdown efficiency was determined by q-PCR. Error bars represent ±SD for triplicate experiments. (F) The K100 acetylation level of PGAM2 is increased in \textit{sirt2} knock-out MEFs and decreased in h\textit{SIRT2} putting-back MEFs. The indicated cell lysate were prepared and levels of PGAM2 protein and K100 acetylation were detected by western blotting using indicated antibodies.

Figure 4. SIRT2 activates PGAM2

(A) SIRT2 increases PGAM2 activity. HEK293T cells were transfected with indicated plasmids, Flag-PGAM2 was immunoprecipitated, and PGAM2 activity was assayed. Mean values of relative enzyme activity of triplicate experiments with standard deviation (±SD) are presented. (B) SIRT2 knockdown decreases PGAM2 activity. Scramble and SIRT2 knocking-down stable HEK293T cells were transfected with Flag-PGAM2, and PGAM2 protein was immunoprecipitated and activity was assayed. Error bars represent ±SD for triplicate experiments. (C) Inhibition of SIRT2 decreases PGAM2 activity. HEK293T cells were transfected with Flag-PGAM2, followed by treatment with Salermide. Flag-PGAM2 was immunoprecipitated, and PGAM2 activity was measured. Relative enzyme activities of
triplicate experiments ±SD are presented. (D) SIRT2 overexpression does not activate K100 mutants of PGAM2. Wild-type and mutant PGAM2 were co-expressed in HEK293T cells with SIRT2 respectively and purified by Flag beads, followed by enzyme assay and western blotting. The mean value of triplicates and standard deviation (±SD) are presented. (E) SIRT2 deacetylates and activates PGAM2 in vitro. Flag-PGAM2, HA-SIRT1 and HA-SIRT2 were purified from HEK293T cells respectively, and the in vitro deacetylation assay was performed as described. Samples were determined by western blotting with indicated antibodies.

Figure 5. Oxidative stress decreases K100 acetylation levels and induces PGAM2 activity

(A) Hydrogen peroxide (H$_2$O$_2$) treatment decreases endogenous K100 acetylation level. HEK293T and A549 cells were treated with hydrogen peroxide for different lengths of time as indicated. The levels of K100 acetylation were determined by western blotting with anti-acetyl-PGAM2 (K100) antibody. (B) Hydrogen peroxide induced oxidative stress increases PGAM2 activity. HEK293T cells were transfected with Flag-PGAM2, and then treated with hydrogen peroxide for indicated time, followed by immunoprecipitation and enzyme activity was measured and normalized against protein levels. Mean values of relative enzyme activity of triplicate experiments with standard deviation (±SD) are presented. (C) Hydrogen peroxide increases wild-type PGAM2 activity, but not K100 mutants. HEK293T cells were transfected with indicated plasmids, followed by hydrogen peroxide treatment for 2h, immunoprecipitated, and then PGAM2 activity was assayed. Relative enzyme activities of triplicate experiments ± SD are presented. (D) Oxidative stress increases the endogenous PGAM activity via reducing the K100 acetylation level. HEK293T cells or wild-type MEF cells
were treated with hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) for 2h or Menadione (Mena) for 30min respectively, and then endogenous PGAM activity was assayed. The K100 acetylation levels of PGAM2 were determined by western analysis. Relative enzyme activities of triplicate experiments ± SD are presented. (E) Oxidative stress increases the interaction between SIRT2 and PGAM2. HEK293T cells were transfected with indicated plasmids and the SIRT2-PGAM2 association was examined by IP-western analysis. (F) Sirt2 mediates K100 deacetylation in response to oxidative stress. Sirt2-/- MEFs and Sirt2-/- MEFs stably expressing human SIRT2 were treated with hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) for indicated time. The change of K100 acetylation levels of PGAM2 were determined by western analysis.

Figure 6. Acetylation mimetic K100Q mutant reduces NADPH amount and impairs the ability of cells protection from oxidative damage

(A) Identification of PGAM2 knocking-down and putting-back cell lines. Whole cell lysate were prepared from PGAM2 knocking-down and putting-back stable cells, PGAM2 knockdown efficiency and re-expression were determined by western blotting with indicated antibodies. (B) A549 cells stably expressing acetylation mimetic K100Q mutant reduces NADPH production. Stable cells identified above ware prepared, and NADPH was measured using a NADPH kit. Error bars represent ±SD for triplicate experiments. (C) A549 cells expressing acetylation mimetic K100Q mutant accumulates reactive oxygen species (ROS). The same stable cells identified above were prepared and DCF staining was performed to measure ROS levels. Error bars represent ±SD for triplicate experiments. (D) Acetylation mimetic K100Q mutant impairs the ability of cells protection from oxidative damage. Stable
cells were exposed to different concentrations of H$_2$O$_2$ for 24h, and the viability of cells was measured by trypan blue exclusion. Error bars represent ±SD for triplicate experiments. (E) sirt2 knock-out MEFs are more sensitive to oxidative stress. sirt2 KO MEFs and human SIRT2 putting-back MEFs were exposed to different concentrations of H$_2$O$_2$ as indicated for 24h, and the viability of cells was measured applying trypan blue exclusion. Error bars represent ±SD for triplicate experiments. (F) Overexpression of wild-type PGAM2 in sirt2 knock-out MEFs can partially rescue the viability of sirt2 knock-out MEFs in response to oxidative stress. Indicated cells were infected with virus expressing PGAM2 wild type or K100Q mutant for 30hr, dispersed to six-well plates, and then exposed to different concentrations of H$_2$O$_2$ for 24h. The viability of cells was measured by trypan blue exclusion. Error bars represent ±SD for triplicate experiments.

Figure 7. Acetylation mimetic K100Q mutant inhibits cell proliferation and tumor growth

(A) Acetylation mimic mutant K100Q suppresses cell proliferation. 5x104 indicated stable cells were seeded in each well. Cell numbers were counted every 24 h. Error bars represent cell numbers ±SD for triplicate experiments. (B) The expression of PGAM2 and PGAM2K100Q in stable cell lines and xenograft tumors. Whole cell extracts were prepared from either original A549 stable cell pools or xenograft tumors, followed analysis by western blot. (C) Acetylation mimic mutant K100Q inhibits xenograft tumor growth in vivo. Nude mice were injected with A549 PGAM2 cells or PGAM2K100Q cells. The xenograft tumors were dissected and measured after 7 weeks and shown. (D, E) Quantification of average volume and weight of xenograft tumors are shown in (D) and (E) respectively. Error bars represent ±SD for seven tumors.
Xu et al. Figure 1

A

<table>
<thead>
<tr>
<th>Species</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>Xenopus laevis</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>S. pombe</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>A. thaliana</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
<tr>
<td>E. coli</td>
<td>HYGLTGLNKKAETAAK</td>
</tr>
</tbody>
</table>

B

C

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NAM</th>
<th>TSA (16h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2h</td>
<td>4h</td>
</tr>
<tr>
<td></td>
<td>6h</td>
<td>8h</td>
</tr>
</tbody>
</table>

D

E

F

G

H

Mouse tissues

Lung, Liver, Heart, Muscle, Brain, Spleen, Kidney
Xu et al. Figure 2
Xu et al. Figure 3
Figure 5

A

<table>
<thead>
<tr>
<th>H$_2$O$_2$(0.5mM)</th>
<th>HEK 293T</th>
<th>A549</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30min</td>
</tr>
<tr>
<td>α-K100Ac</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>α-PGAM2</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

B

Relative PGAM2 activity

C

Relative PGAM2 activity

D

Relative PGAM activity

E

Flag-PGAM2

HA-SIRT2

H$_2$O$_2$(0.5mM)

0h | 0h | 0.5h | 1h | 2h | 3h

α-HA

α-Flag

α-PGAM2

F

Sirt2-/- MEF

Sirt2-/- MEF + hSIRT2

H$_2$O$_2$(h)

0 | 0.5 | 1 | 2

α-K100Ac

α-PGAM2

α-sirt2

α-β-actin
Xu et al. Figure 6
Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase

Yanping Xu, Fulong Li, Lei Lv, et al.

Cancer Res Published OnlineFirst May 1, 2014.