The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation

Debasish Raha¹, Timothy R. Wilson¹, Jing Peng², David Peterson², Peng Yue³, Marie Evangelista¹, Catherine Wilson¹, Mark Merchant² and Jeff Settleman*¹
Departments of Discovery Oncology¹, Translational Oncology², and Bioinformatics³, Genentech, Inc., South San Francisco, California 94080, USA.

* Corresponding author: settleman.jeffrey@gene.com
Phone: 650-467-7140; Fax: 650-225-5770

Keywords: cancer stem cells, drug resistance, aldehyde dehydrogenase, reactive oxygen species

Running title: Aldehyde dehydrogenase contributes to cancer drug resistance

Financial support: This work was supported by Genentech, Inc., a member of the Roche group.

COI declaration: All authors were employees of Genentech at the time studies were performed, and may be shareholders of Roche.

Word Count: 6363

Figures: 7

Supplementary Figures: 9

Supplementary Tables: 3
Abstract

Selective kinase inhibitors have emerged as an important class of cancer therapeutics, and several such drugs are now routinely used to treat advanced stage disease. However, their clinical benefit is typically short-lived due to the relatively rapid acquisition of drug resistance following treatment response. Accumulating pre-clinical and clinical data pointing to a role for a heterogeneous response to treatment within a subpopulation of tumor cells that are intrinsically drug–resistant, such as “cancer stem cells”. We have previously described an epigenetically-determined reversibly drug-tolerant subpopulation of cancer cells that share some properties with cancer stem cells. Here, we define a requirement for the previously established cancer stem cell marker ALDH (aldehyde dehydrogenase) in the maintenance of this drug-tolerant subpopulation. We find that ALDH protects the drug-tolerant subpopulation from the potentially toxic effects of elevated levels of reactive oxygen species (ROS) in these cells, and pharmacologic disruption of ALDH activity leads to accumulation of ROS to toxic levels, consequent DNA damage, and apoptosis specifically within the drug-tolerant subpopulation. Combining ALDH inhibition with other kinase-directed treatments delayed treatment relapse in vitro and in vivo, revealing a novel combination treatment strategy for cancers that might otherwise rapidly relapse following single agent therapy.
Introduction

Targeted cancer therapies that exploit the ‘oncogene addiction’ phenomenon observed in many tumor cells can be highly effective in the clinic (1-3). However, responding tumors invariably recur due to acquired drug resistance, probably reflecting the outgrowth of a subpopulation of treatment-refractory cells. The maintenance of many cancers appears to require a subpopulation of tumor cells called cancer stem cells (CSCs) (4), which have been identified in hematopoietic and solid malignancies (5), and several studies have described a role for CSCs in drug resistance (6).

Cancer cells are continuously exposed to extrinsic and intrinsic stresses that promote increased reactive oxygen species (ROS) and DNA damage (7-9). The consequent accumulation of mutations in CSCs may render them more vulnerable to stress, especially as they enter S-phase. The activation of DNA damage response (10,11), increased expression of anti-apoptotic genes (12), activation of the β-catenin pathway observed in leukemic stem cells (13), and Notch and hedgehog pathways in prostate cancer cells (14), are some of the mechanisms reported to underlie drug resistance in CSCs.

CSCs express various “markers”, including CD44, CD133, and ALDH1A1, at levels substantially different from the bulk tumor cell population, and these markers are often used to isolate and functionally characterize CSCs. The association of CSC markers such as CD44 and CD133 with drug resistance has thus far been largely based on studies demonstrating reduced sensitivity of CSC marker-positive cells to chemotherapeutic drugs (15) or increased expression of these markers in treatment-resistant tumors (16,17). There
have also been functional roles in drug resistance reported for these markers, including activation of ABC transporters and anti-apoptotic genes (18,19). Elevated ALDH1A1 is observed in CSCs of multiple cancer types (20). ALDH proteins controls the oxidation of aldehydes to corresponding acids, and ALDH-mediated detoxification of toxic aldehyde intermediates produced in cancer cells treated with certain chemotherapy agents has been proposed to confer drug-resistant properties to ALDH1-positive tumor cells (21). Here, we report that cancer cell subpopulations that tolerate the otherwise toxic drug exposures express elevated ALDH, which is critical for their survival. Inhibition of ALDH activity effectively eradicates this drug-tolerant subpopulation, revealing a potential beneficial effect of combination therapy that includes ALDH inhibition to delay cancer relapse.

Materials and Methods

Cell Culture

Human cancer cell lines were grown in RPMI media supplemented with sodium pyruvate, 10% fetal bovine serum and the antibiotics penicillin and streptomycin at 37°C in 5% CO2. Cell line identity is routinely monitored by SNP-based genotyping in the Genentech cell bank facility.

The Incucyte HD imaging system (Essen BioScience) was used to monitor cell growth in culture, as measured by percent confluence. This instrument captures high definition
phase contrast images of cells and uses a contrast based confluence algorithm to compute monolayer confluence of each image over multiple specified time points.

ALDH Activity Assays

A bodipy-labeled ALDH substrate (Aldefluor Kit, Stem Cell Technology) was used to detect ALDH activity. The substrate was diluted in RPMI media (5μl substrate/ml media) and added to adherent cells. After 30 minutes of incubation cells were washed twice with RPMI media and microfluorescence images were captured using an IncuCyte HD System (Essen BioScience) with a 10x objective. The quantification of ALDHhigh cells (~5% for MKN-45) was based on 16 images captured using the IncuCyte System with a 10x objective.

Flow Cytometry

The Aldefluor assay was used to detect ALDH activity in MKN-45 parental cells. ALDHhigh and ALDHlow cells representing ~5% of parental cells with the highest and lowest ALDH activity respectively were sorted by flow cytometry. MKN-45 cells incubated with the bodipy-labeled substrate and DEAB, a cold competitive substrate, were compared as a negative control.

Gene Expression Analysis

MKN-45 cells were plated on ten 15 cm dishes at 30x106 cells per plate, and. Following grown until 70% confluence and treated with 1μM crizotinib every 3 days for 4 weeks until DTPs were established. Non-drug-treated cells in a 15 cm dish were harvested 3 days after plating. RNA was extracted using a Qiagen RNeasy kit and RNA was amplified in
both parental and DTP cells using the NuGen RNA amplification kit. Microarray analysis was carried out in triplicate as previously described (22). Total RNA was isolated from ALDHhigh and ALDHlow cells using a RNeasy column (Qiagen) and microarray based gene expression analysis was performed on triplicate samples.

Cell Viability Assays

Cells were fixed with 4% paraformaldehyde at the end of the assay period and viability was determined using the nucleic acid stain Syto60 (Life Technologies) diluted 1:5000 in water (23). Fluorescence was measured using a SpectraMax M5 instrument (excitation 635nm and emission 695nm; Molecular Device). Viability was expressed as fraction of a no treatment control.

Generation of Drug-Tolerant Cells

MKN-45- and GTL-16-derived DTPs were generated by treating parental cells with 1uM crizotinib for 15-30 days. PC-9 cells were treated with 1uM erlotinib for 6-9 days for DTP generation. Drug concentrations used for DTP generation for all cell lines except GTL-16, EBC-1, and A549 cells is based on previous studies (22). The appropriate concentration of each drug needed for DTP generation was established based on a dose response curve (Suppl. Table S3). The 200nM concentration of DS used for most of the cell lines used was based on an analysis of DS effects on MKN-45 and GTL-16 DTPs, where an effective cytotoxic DS concentration was empirically determined (Suppl. Fig. 3C). In all cases media +/- drug was changed every three days.
Immunoblotting

Proteins were extracted from cell pellets using NP-40 lysis buffer containing protease and phosphatase inhibitors. Protein concentration was measured using the Pierce BCA protein assay kit. Protein concentrations of samples were derived from a standard curve with BSA. Immunoblots were performed with equal amounts of protein for all samples. This assay generated erroneous concentration values for MKN-45 and GTL-16 DTPs. Therefore, immunoblots of DTP lysates were performed by loading gels with a maximum possible sample volume, and GAPDH levels were measured as a loading control. Proteins were separated using SDS-PAGE and immunodetection was performed using standard protocols. Antibodies were from various vendors: ALDH1A1 (R&D Systems); ALDH1A2 and ALDH8A1 (Santa Cruz Biotechnology); ALDH1A3, ALDH3A1 and phospho-EGFR (Abcam); GAPDH, cleaved PARP and phospho-ATM/ATR substrates (Cell Signaling Technology); GAPDH (Pierce) and phospho-γH2A.x (Millipore).

Gene Knockdown Studies

shRNA constructs were obtained from Sigma-Aldrich. Lentivirus production was carried out in 293T cells as previously described (23). For knockdown studies, GTL-16 cells were plated in 10 cm dishes (2 x10^6 cells per plate). Following adherence overnight, cells were infected with lentivirus or control virus in the presence of polybrene (Sigma-Aldrich) overnight. Forty-eight hours post-infection, cells re-plated, and following adherence overnight, cells were treated as described above and cell viability was assayed using the Syto 60 nucleic acid stain (LifeTechnologies).
Notably, we were unable to develop suitable transfection and lentivirus infection conditions for MKN-45 cells. Attempts to infect MKN-45 cells with lentiviruses, including the control GFP shRNA virus, resulted in cell death. Attempts to transfect MKN-45 cells with siRNAs using various transfection reagents also failed due to the unusually poor transfection efficiency of this cell line.

Quantitative PCR analysis

RNA was extracted from parental cells and DTPs using the RNeasy kit and 1µg RNA was reverse transcribed using the high capacity RNA-to-cDNA kit (Applied Biosystems). The amount of amplicon was determined using the Applied Biosystems 7500 quantitative PCR system using SYBR green as the fluorescence reporter and normalized to GAPDH. All samples were analyzed in triplicate and Ct values were determined.

ROS Assays

ROS measurement was performed by flow cytometry. The ROS detection reagent H2DCFH-DA (Molecular Probes) was added to cells in growth media (final concentration 5uM) and after 30 min at 37°C cells were harvested. FACS analysis was performed on 10,000 cells per sample. Parental cells not exposed to H2DCFH-DA served as negative control. ROS measurements from parental cells were used to normalize ROS levels for drug-treated cells.

Xenograft Tumor Studies
PC-9 cells were suspended in a 1:1 mixture of Hank's Balanced Salt Solution (HBSS) with matrigel [growth factor reduced; catalog #356231 (BD Biosciences, West Grove, PA)] to a final concentration of 5×10^7 cells/ml. Nude (nu/nu) mice (Charles River Laboratories, Hollister, CA) were inoculated subcutaneously (s.c.) with 5×10^6 PC-9 cells in 100 µL in the dorsal right flank. When tumor volumes reach ~100-200 mm3, mice were separated into groups of 10 or 15 animals with similarly sized tumors, and treatment was initiated the following day. Mice were dosed via daily (QD) oral gavage (PO) with erlotinib (50 mg/kg in 7.5% Captisol) and/or disulfiram (Sigma-Tetraethylthiuram, Catalog # 86720, dosed at 200 mg/kg formulated in safflower oil 95%, benzyl alcohol 5%), or with vehicle only. Tumor volumes were determined using digital calipers (Fred V. Fowler Company, Inc.) using the formula $(L \times W \times W)/2$. Tumor growth inhibition (%TGI) was calculated as percentage of the area under the fitted curve (AUC) for the respective dose group per day in relation to the vehicle: %TGI = $100 \times 1 – (AUC \text{ treatment/day})/(AUC \text{ vehicle/day})$. Curve fitting was applied to Log2-transformed individual tumor volume data using a linear mixed-effects model using the R package nlme, version 3.1–97 in R v2.12.0 (24,25). Mean time to tumor progression (TTP) was measured as the time (days) to reach twice (2×) or five times (5×) initial tumor volume. Partial regressions (PRs) are defined as greater than or equal to a 50% decrease from initial tumor volume and complete regression (CR) is defined as a 100% decrease in tumor volume. Plots were generated and statistical analysis was run using Graph Pad Prism 6 (GraphPad Software, La Jolla, CA).

Metabolic Assays
Approximately 5,000 parental cells and 15,000 DTPs cells were plated per well in XF 96-well microplates (SeahorseBioscience) and incubated for 24 h at 37 °C in 5% CO₂. Disulfiram and NAC treatment was for 48h in the presence of kinase inhibitor. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measurements were performed in bicarbonate-free, serum-free, 37°C media. Cells were then fixed with 4% paraformaldehyde, stained with Hoechst, and 4 quadrants/well were imaged using a Molecular Devices ImageXpress HCS. Average nuclei number/quadrant was determined. Bar graphs represented the mean +/- SEM of normalized (cell number) OCR and ECAR measurements from six wells.

Results

Drug-tolerant cancer cells express the CSC marker ALDH1A1

To identify gene expression differences in the drug-tolerant subpopulation, we analyzed the MET-amplified gastric cancer cell line, MKN-45, before and after treatment with the MET kinase inhibitor crizotinib, to which these cells are highly sensitive (Fig. 1A). Following several days of treatment, ~5% of the cells remain viable and largely quiescent indefinitely in continuous crizotinib. Among the gene expression differences (Suppl. Table 1), ALDH1A1, one of several ALDH isoforms, was relatively highly expressed in the drug-tolerant subpopulation. Therefore, we further investigated ALDH activity in MKN-45 cells and in a second MET-amplified gastric carcinoma cell line, GTL-16.
The ALDH substrate Aldefluor was used to detect ALDH activity in individual cells. We observed clear heterogeneity in ALDH activity within untreated MKN-45 and GTL-16 cell populations, even though they were derived from single cell clones. ~5% of MKN-45 cells expressed detectable ALDH activity (ALDHhigh) prior to treatment. Following several days of crizotinib treatment, ALDHhigh MKN-45 cells were clearly enriched among those that remained viable (“drug-tolerant persisters” or DTPs)(Fig. 1B), and after 30 days, most DTPs were Aldefluor-positive (Supp. Fig.1A). Similar findings were made in GTL-16 cells (Supp. Fig.1B). These results indicate significant overlap between the Aldefluor-positive and the drug-tolerant subpopulations.

To confirm that the ALDHhigh cells present prior to treatment correspond to the drug-tolerant population, we used two approaches. First, viability of MKN-45 ALDHhigh and ALDHlow cells, separated by fluorescence-activated cell sorting (FACS) (Supp. Fig. 2A), was measured following 72h crizotinib treatment. The second assay involved treating ALDHhigh and ALDHlow cells with crizotinib for three weeks and then allowing DTPs to expand as colonies in the absence of drug. Both assays revealed increased crizotinib tolerance by MKN-45 ALDHhigh cells compared to ALDHlow cells (Suppl. Fig. 2B), while there was no difference in growth rates of ALDHhigh and ALDHlow cells (Supp. Fig. 2C). ALDHhigh cells yielded more colonies of larger size (Supp. Fig. 2D), and ALDHhigh –derived colonies consist of both ALDHhigh and ALDHlow cells, indicating that ALDHhigh cells can give rise to ALDHlow cells (Supp. Fig. 2E).
Although Aldefluor is the preferred substrate for the ALDH1A1 isoform (26), Aldefluor can be converted by other ALDH isoforms (27). To determine which ALDH family member(s) contribute to increased ALDH activity in ALDH^{high} cells we FACS-sorted MKN-45 cells into ALDH^{high} and ALDH^{low} cells, and observed ~8-fold up-regulation of ALDH1A1 levels in ALDH^{high} cells, but no significant expression difference for 18 other ALDH isoforms (Supp. Fig. 1C). Similarly, ALDH1A1 protein expression was higher in ALDH^{high} cells (Fig. 1C). Increased ALDH1A1 was also observed in crizotinib-treated MKN-45 within 24h (Fig. 1D), before drug-induced apoptosis was detected (Fig. 1E). ALDH1A1 protein was induced in ALDH^{high} and ALDH^{low} MKN-45 cells, albeit at much lower levels in ALDH^{low} cells (Fig. 1C). Consistent with the enrichment of ALDH^{high} cells in the drug-tolerant subpopulation, increased ALDH1A1 was observed in MKN-45 and GTL-16 DTPs (Fig. 1F). These results indicate that ALDH^{high} cells, present prior to treatment, and crizotinib-tolerant DTPs, are largely overlapping populations, both expressing elevated ALDH1A1.

ALDH is required by drug-tolerant cancer cells

To examine a functional role for ALDH in drug tolerance we utilized the drug Disulfiram (DS), which irreversibly inhibits ALDH enzymatic activity (28,29). DS-treated MKN-45 and GTL-16 cells exhibited no significant viability effects (Supp. Fig. 3), but when combined with crizotinib, DS potently eliminated crizotinib-tolerant MKN-45 and GTL-16 cells (Fig. 2A,B). Although a brief pre-exposure to DS modestly reduced DTPs for some cell lines it did not eliminate all DTPs, indicating that continuous DS exposure is required to substantially reduce the drug-tolerant subpopulation (Supp. Fig. 4A). When MKN-45- and GTL-16-derived DTPs, established by treatment with crizotinib, were subsequently
exposed to DS, they were effectively eliminated (Supp. Fig. 4B), confirming a critical requirement for ALDH for DTP survival. Multiple ALDH isoforms are increased in GTL-16 DTPs (Supp. Fig. 5A,B), and knockdown of *ALDH1A1* had no effect on drug sensitivity or DTP formation (Supp. Fig. 6A,B), implicating role of additional ALDH enzymes. Although we were unable to knockdown ALDH1A1 in MKN-45 cells for technical reasons, expression of 12/19 ALDH isoforms was detected in MKN-45 parental cells and DTPs (Suppl. Fig.5D), implicating potential redundancy.

We also tested DS with the ALDH1A1-negative *EGFR* mutant lung carcinoma cell line PC-9 (Supp. Fig. 5C), which expresses other ALDH isoforms (Supp. Fig. 5A,B). PC-9 cells are EGFR-addicted and very sensitive to treatment with the EGFR inhibitor erlotinib (22). DS plus erlotinib effectively killed erlotinib-tolerant PC-9 cells (Fig. 2C). PC-9-derived DTPs begin expanding as colonies when treated with erlotinib beyond 10 days (Supp. Fig. 3 A,B), while maintaining drug-tolerance. We previously described these expanded clones as drug-tolerant expanded persisters (22), which, unlike DTPs, are relatively refractory to DS (Fig. 2C). Consistent with the observed effects of DS on PC-9-derived DTPs, expression of several ALDH family members was increased (Suppl. Fig.5A,B). These results implicate multiple ALDH family members in drug tolerance, and suggest that the role for ALDH in maintaining the viability of this subpopulation is most critical prior to their expansion as drug-tolerant clones.

We extended these findings to additional kinase-dependent cancer cells. In 8 cancer cell lines derived from breast, colon and lung tumors, with previously established kinase
dependency, combining DS with kinase inhibition substantially reduced drug-tolerant clones (Fig. 3 A,B). DS alone did not cause significant cell death in any tested cell lines.

A similar effect of DS was observed on DTPs derived from treating GTL-16 cells with the DNA damaging agent, etoposide (Suppl. Fig. 4C). Gossypol, another ALDH inhibitor (30), also showed effectiveness, although with less potency than DS, in killing drug-tolerant cells (Suppl. Fig. 7A). To exclude the possibility that the cytotoxic effect of DS reflects activity on low density cultures (DTPs), we plated GTL-16 cells and DTPs at different densities and treated with DS. Irrespective of plating density, DS effectively killed most DTPs, whereas no cytotoxic effect was observed on parental cells plated at the same densities (Suppl. Fig. 6C). A similar analysis of PC9 parental cells revealed DS sensitivity only in DTPs (Suppl. Fig.6D). These results collectively support the potentially broad ALDH requirement in a drug-tolerant subpopulation of cancer cells.

The drug-tolerant subpopulation experiences increased oxidative stress

The ALDH requirement in drug-tolerant cells might reflect increased levels of toxic aldehydes, resulting from peroxidation of membrane lipids (31), due to oxidative stress associated with increased reactive oxygen species (ROS). The drug-resistant properties of CSCs may reflect, in part, the activation of adaptive responses to continuous exposure to low level stress (32), often associated with increased ROS and a DNA damage response (33). Since mitochondria are the major source of ROS, we examined the bioenergetics of ALDH^{high} cancer cells by measuring their oxygen consumption rate (OCR), an indicator of mitochondrial electron transport chain (ETC) activity, and their extracellular acidification
rate (ECAR), an indicator of glycolytic activity. While the extent of energy production through the glycolytic pathway is similar between GTL-16 ALDHhigh and ALDHlow cells, the basal OCR in ALDHhigh cells is significantly higher (Fig. 4A, Suppl. Fig. 8A). These results reveal increased mitochondrial respiration in ALDHhigh cells, which might lead to increased ROS. Indeed, we detected relatively high ROS levels (ROShigh) in ALDHhigh cells (Suppl. Fig. 8C). We then sorted cells based on ROS levels and measured ALDH1A1 (Fig. 4B, Supp. Fig. 8B). Consistent with flow cytometry results, ROShigh cells expressed higher ALDH1A1 than ROSlow cells. Increased DNA damage, a consequence of increased ROS, was also observed in ROShigh cells, measured as increased phospho-\(\gamma\)H2A.x and phospho-substrates of ATM/ATR, indicators of double-stranded DNA breaks and DNA damage response, respectively (Fig. 4B, Supp. Fig. 8B). Both indicators were higher in ROShigh cells, further supporting the CSC-like properties of ALDHhigh cells. Furthermore, as in ALDHhigh cells, DTPs exhibit increased dependence on mitochondrial respiration (Fig. 4C), suggesting elevated oxidative stress in DTPs. Increased DNA damage sensor and transducer activity was also observed in DTPs (Fig. 4D). These results suggest that ALDHhigh cells and DTPs utilize specific mechanisms to maintain viability under conditions of increased oxidative stress.

Disulfiram-induced killing of drug-tolerant cells requires increased ROS

ALDH enzymes function as detoxifying agents by reducing toxic aldehydes resulting from lipid peroxidation in cells undergoing oxidative stress (34,31). To determine whether selectively killing of drug-tolerant cells by DS reflects ALDH’s role in suppressing ROS-induced DNA damage, we used the ROS scavenger, N-acetyl cysteine (NAC). In PC-9
cells, erlotinib alone caused a 6-fold increase in ROS in DTPs, and an additional 3-fold ROS increase was observed in cells co-treated with erlotinib and DS. Significantly, the DS effect on ROS was almost completely abrogated when NAC was added (Fig. 5A). Similar results were obtained with GTL-16-derived DTPs. A small but significant increase in ROS was observed in crizotinib/DS co-treated cells, and the addition of NAC caused a ~75% drop in ROS. NAC also reduced ROS in GTL-16 DTPs by ~60% but failed to reduce erlotinib-induced ROS in PC-9-derived DTPs (Fig 5A). These results suggest that while kinase inhibitor treatment elevates ROS in kinase-addicted cancer cells, the drug-tolerant subpopulation utilizes ALDH to protect against ROS-mediated cell death.

We then examined DNA damage in DTPs in the presence or absence of DS and NAC. We observed significantly increased DNA damage in DTPs exposed to kinase inhibitors plus DS compared to kinase inhibitor alone, and the effects of DS on DNA damage were abrogated by NAC (Fig. 5B). Notably, ALDH inhibition increased the turnover of some of the ALDH isoforms (Fig. 5B, Suppl. Fig. 7B). The ROS increase in cells co-treated with kinase inhibitor and DS also triggered apoptosis of DTPs, as revealed by increased cleaved PARP in GTL-16-derived DTPs and BimS in PC-9-derived DTPs. Consistent with NAC’s ability to suppress DS-induced DNA damage, NAC co-treatment also decreased cleaved PARP and BimS (Fig. 5B). NAC is also sufficient to rescue DTPs from the lethal effects of DS (Fig. 5C). Collectively, these results suggest that increased ALDH in the drug-tolerant subpopulation maintains sufficiently low levels of ROS to prevent apoptosis.

ALDH inhibition delays tumor relapse in xenograft mouse models
To investigate the ability of DS to delay tumor relapse in vivo, we used a PC-9 xenograft model. The treatment regimen was first tested in vitro; thus, cells were treated with either erlotinib or DS alone or in combination, and after six days, cells were maintained with or without DS for four more days. We observed a significant growth delay in cells treated with erlotinib+DS compared to erlotinib alone, and a further delay in erlotinib+DS-treated cells that continued to receive DS (Fig. 6A). A pharmacodynamic study of treated tumors indicated decreased p-EGFR in both erlotinib and erlotinib+DS-treated tumors (Fig. 6C).

In the xenograft tumor growth study mice were divided into four groups; namely, vehicle control, DS control, erlotinib alone and erlotinib+DS groups. As expected, erlotinib was highly effective while single agent DS caused minimal efficacy (Fig. 6B, Supp. Table 2). After eleven days of erlotinib alone or in combination with DS, most tumors were substantially reduced. Therefore, to assess the added effect of DS, all treatments were stopped, except for DS, which was continued until the end of the study. No significant loss in body weight was observed in mice as a result of any of the treatments (Supp. Table 2).

We observed near complete regression of tumors with erlotinib--11/15 mice responding [10 partial regressions (PRs; defined by >50% decrease in tumor volume) and 1 complete regression (CR; no measurable tumor)]. Tumors quickly rebounded following treatment cessation, with a mean time to tumor progression of 41 days to reach twice the starting tumor volume (Supp. Table 2). Treatment with erlotinib+DS was more effective, with 15/15 animals responding (9 PRs and 6 CRs). Significantly, the
combination treatment resulted in a prolonged response, with tumors not progressing beyond the initial tumor volume (Supp. Table 2). These data indicate a highly significant (P<0.0007) delay in tumor relapse in the erlotinib+DS-treated mice compared to those treated with erlotinib alone, consistent with a role for ALDH in drug tolerance in tumors.

Discussion

We have described a drug tolerance mechanism associated with a cancer cell subpopulation derived from various tissues of origin, which involves the ALDH enzyme family. Our observations highlight similar properties of ALDHhigh CSCs and drug-tolerant cancer cells, consistent with previously reported findings supporting a role for CSCs in drug resistance (4-6). These observations suggest potential benefit of combining ALDH inhibition with targeted cancer therapeutics as a strategy to prevent or delay cancer relapse.

Our studies initially focused on the CSC marker, *ALDH1A1*, which is enriched in a subpopulation of MET-addicted gastric cancer cells that display crizotinib tolerance. This difference in crizotinib sensitivity between ALDHhigh and ALDHlow gastric carcinoma cells perhaps provides a mechanism by which CSCs can maintain viability upon an initial onslaught of a cytotoxic drug. The observed crizotinib-induced ALDH expression in ALDHhigh cells may provide a survival advantage over ALDHlow cells during prolonged drug exposure. Significantly, we observed DS sensitivity among DTPs derived from many cell line models, regardless of whether they specifically expressed elevated levels of the
ALDH1A1 isoform. Indeed, we observed consistently increased expression of multiple ALDH family members in drug-tolerant cells, pointing to the effectiveness of DS in inhibiting multiple ALDH isoforms. Our results are consistent with the previous observation that simultaneous knockdown of two ALDH members results in increased cyclophosphamide sensitivity of lung cancer cells compared to knockdown of individual members (35). These findings may explain why ALDH1A1 alone, as a prognostic biomarker for worse clinical outcome and metastasis in cancer, has at best, yielded mixed results (20). In metastatic breast cancer, such a correlation improved significantly when expression of ALDH1A3, ALDH2 and ALDH6A1 isoforms, as well as ALDH1A1, was considered (36). Together, these results point to a likely role for multiple ALDH family members in drug resistance.

The ALDH requirement in drug-tolerant cells for survival under prolonged drug exposure implicates a drug-induced increase in aldehyde levels. We speculate that increased oxidative stress in drug-tolerant cells, leading to membrane lipid peroxidation, is a likely cause of increased aldehyde levels. The observed increased dependence on mitochondrial respiration, measured as increased OCR/ECAR ratio, is probably a major source of increased ROS in drug-tolerant cells. Interestingly, CSCs identified from gastric cancer cells, defined by high ALDH1A1 expression, also exhibit elevated ROS and increased OCR/ECAR, similar to what is seen in the drug-tolerant cells, and further supporting the presence of a subpopulation of pre-existing (prior to treatment) cancer cells that exhibit characteristics of drug-tolerant cells.
One of the major consequences of increased oxidative stress levels is the accumulation of DNA lesions, which can lead to apoptosis. The activation of DNA damage response (DDR) in glioma-derived CSCs at a level higher than that seen in non-CSCs may contribute to the observed resistance to ionizing radiation therapy (10). Similarly, we detected increased double-stranded DNA breaks in our model systems, suggesting that activation of DDR may be a widely used mechanism of survival of a subpopulation of cancer cells during cancer therapy.

Other reported mechanisms of action of DS, including inhibition of P-glycoproteins involved in drug efflux, and proteasome inhibition, are seen at relatively higher DS concentrations (37,38). However, our findings indicating complete inhibition of phosphor-MET in MKN-45 and GTL-16 DTPs (Suppl. Fig.9A) by crizotinib (even in the presence of DS), together with no apparent effect of a proteasome inhibitor MG132 on DTP formation (Suppl. Fig.9B), would seem to exclude these alternative potential mechanisms of DS action on DTPs. A recent study of paclitaxel-resistant MDA-MB-231 cells (39) demonstrated cytotoxic effect of DS/Cu++ on the resistant cells; however, in contrast to our observation of a lethal effect of DS specific to drug tolerant cells, DS/Cu++ was equally toxic to parental MDA-MB-231 cells.

We propose a model (Fig. 7) implicating ALDH family members in maintaining intracellular aldehyde levels (and consequently, ROS levels) below the threshold beyond which an apoptotic response is engaged. Our findings with NAC co-treatment emphasize the critical importance of managing ROS levels for the survival of drug-tolerant cells and raise the
possibility of discovering additional therapeutics that can specifically elevate ROS levels within the drug-tolerant cells to delay tumor relapse. Notably, NAC does not protect drug-sensitive cells from the lethal effects of targeted therapies, consistent with a unique role in the CSC-like subpopulation.

Our *in vivo* findings demonstrate a beneficial effect of the combination of DS and erlotinib in significantly delaying treatment relapse. Significantly, a Phase II clinical trial performed almost two decades ago demonstrated an increased survival rate of breast cancer patients who received chemotherapy plus an active DS metabolite compared to chemotherapy alone (40). Altogether, these observations suggest a potential benefit of ALDH inhibition for the treatment of breast and other cancers. If the cell culture findings with DS co-treatment can be similarly translated to the clinic, there may be broad opportunities to employ this therapeutic strategy to delay tumor relapse in various cancer treatment contexts.

Acknowledgements

The authors thank members of Settleman laboratory, especially Ho-June Lee, for helpful discussions, R. Soriano and G. Fedorowicz for microarray services, the Genentech Laboratory Animal Resource, and the gCELL and FACS core laboratories for support.
References

35. Moreb JS, Mohuczy D, Ostmark B, Zucali JR. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol. 2007; 59:127-36.

Figure Legends

Figure 1. Drug-tolerant gastric cancer cells express relatively high levels of ALDH1A1. A, Gene expression analysis of MKN-45 parental and crizotinib-tolerant cells revealed ALDH1A1 as one of the most differentially expressed genes. B, ALDH activity (green) was measured in MKN-45 parental and crizotinib-tolerant cells using Aldefluor. Red arrows mark examples of ALDHhigh cells in the parental population. C, Immunoblots illustrating higher basal and crizotinib-induced ALDH1A1 protein in ALDHhigh cells compared to ALDHlow cells. D, Immunoblots demonstrating kinetics of ALDH1A1 induction in crizotinib-treated MKN-45 cells. E, Immunoblots illustrating induction of ALDH1A1 in crizotinib-treated MKN-45 cells before apoptosis, measured as cleaved PARP. F, Immunoblots illustrating elevated ALDH1A1 in MKN-45- and GTL-16-derived DTPs.

Figure 2. The ALDH inhibitor disulfiram (DS) eliminates drug-tolerant cells. A, MKN-45 and B, GTL-16 cells were treated with 1\textmu M crizotinib for 25 days (d1-d25) and 200nM disulfiram was added either on d1 along with crizotinib or at later time points (d5, d8, d12 and d15), and treatment was continued until d25. C, Parental PC-9 cells were treated with 1\textmu M erlotinib for 21 days (d1-d21) and 200nM disulfiram was added at several time points (d1, d4, d7, d11 and d14) during erlotinib treatment, and the treatment continued until d21. Cell viability was determined using the Syto60 assay. Bar graphs represent quantitative measurements of the lethal effect of DS on drug-tolerant cells as measured by Syto60 viability assay after treatment for 15 days for MKN-45 and GTL-16 cells and 10 days for
PC-9 cells. Cell viability from triplicate wells is expressed as a fraction of untreated control; the error bars reflect SEM values.

Figure 3. Drug-tolerant cancer cells of various tissue origins are sensitive to disulfiram.

A, The lethal effect of disulfiram and kinase inhibitor combinations on cancer cells addicted to various oncogenes. The cancer cell lines sensitive to erlotinib (HCC827 and HCC4006), lapatinib (HCC1419, SKBR3 and MDA-MB-175 v2), MEK inhibitor AS703026 (A549 and EBC-1) or BRAF inhibitor PLX0432 (Colo-205) were treated with the appropriate kinase inhibitors, either alone or in combination with 200-300nM disulfiram. The duration of treatment varied from 11 to 25 days depending on the time it took for the combination treatment to kill most of the drug-tolerant cells.

B, The bar graphs represent quantitative measurements (triplicate wells per treatment) of the disulfiram effect on cell viability as measured by the Syto60 assay and expressed as a fraction of the untreated control; the error bars reflect SEM values.

Figure 4. Similar mitochondrial activity and DNA damage response in ALDHhigh and drug-tolerant cells.

A, Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), reflective of energy production by mitochondrial respiration and glycolysis respectively, were measured using a Seahorse XF 96 in ALDHhigh and ALDHlow GTL-16 cells sorted by flow cytometry.

B, Immunoblots illustrating increased expression level of the DNA damage sensor phospho-\(\gamma\)H2A.x and phospho-ATM/ATR substrates in ALDHhigh cells.

C, OCR and ECAR analysis performed on GTL-16 DTPs treated with 1uM crizotinib for 15 days and PC-9 DTPs treated with 1uM erlotinib for 7 days reveal mitochondrial
respiration as the main source of energy production in DTPs. D, Immunoblot data indicating increased DNA damage and activation of a DNA damage response in DTPs.

Figure 5. ALDH functions as a ROS regulator. A, ROS levels were detected using the fluorescein-based H2DCFH-DA reagent and measured by flow cytometry. PC-9 and GTL-16 cells were treated with erlotinib and crizotinib for 8 days and 15 days, respectively. DTPs were exposed to disulfiram (200nM) and NAC (5mM) for 48h during kinase inhibitor treatment. The bar graphs represent the fold change in ROS levels for each treatment (three replicates) compared to untreated parental cells. B, Immunoblot data demonstrate a DS-induced increase in double-stranded DNA breaks (phospho-γH2A) (long and short exposures of the same immunoblot are shown) and apoptosis, as measured by cleaved PARP and BimS levels in DTPs, and reversal of these effects in the presence of the ROS scavenger NAC. C, PC-9 and GTL-16 cells were treated with erlotinib and crizotinib, respectively, either alone or in combination with DS and NAC. Cell viability was determined after 10 days of treatment for PC-9 cells and 17 days for GTL-16 cells by the Syto60 assay. Bar graphs represent quantitative measurements of the effect of each treatment from three replicates, expressed as cell viability relative to the untreated control.

Figure 6. Disulfiram delays tumor relapse associated with acquired drug resistance. A, PC-9 parental cells were treated with erlotinib (1uM) alone or in combination with disulfiram (200nM) for 6 days and the DTPs were then allowed to grow in erlotinib-free growth media, with or without disulfiram, for four more days (d7-d10). The bar graph reflects the quantitative measurements of the effect of DS on PC-9-derived DTPs from
triplicate wells; the error bars reflect SEM values. **B**, *In vivo* data demonstrating a significant delay in tumor relapse in disulfiram-treated PC-9 xenografts. Mice (numbers per group are indicated in the legend) were treated with erlotinib for 11 days; however, disulfiram treatment was continued in the erlotinib+disulfiram-treated animals until the end of the experiment. Group mean tumor volume with standard error of the means (SEM) is plotted. **C**, Pharmacodynamic data illustrating the effect of erlotinib and erlotinib+disulfiram treatments on phospho-EGFR levels in xenograft tumors.

Figure 7. Models depicting the proposed mechanism underlying the specific cytotoxic effect of disulfiram (DS) on DTPs. Accumulation of toxic aldehydes in kinase inhibitor-treated cancer cells increases ROS levels particularly in the drug-tolerant population. ALDH activity is required to maintain ROS levels sufficiently low to prevent triggering of apoptosis. Inhibition of ALDH activity by DS increases ROS levels above a threshold, consequently triggering apoptosis, a process that can be suppressed by the ROS scavenger N-acetyl cysteine (NAC).
A

MKN-45 Parental

Drug Tolerant Persisters (DTP)

RNA

CSC marker gene ALDH1A1 is overexpressed in drug-tolerant MKN-45 cells

B

Untreated MKN-45

Crizot-72h MKN-45

Crizot-144h MKN-45

C

MKN-45

Untsorted

ALDH^{high}

ALDH^{low}

ALDH^{high}/6days

ALDH^{low}/6days

ALDH1A1

GAPDH

D

MKN-45

Untsorted

crizot.

24h

48h

72h

ALDH1A1

GAPDH

E

MKN-45

crizot 24h

crizot 48h

crizot 72h

Cleaved PARP

GAPDH

F

MKN-45

GAPDH

ALDH1A1

Fig. 1
Fig. 2
A

<table>
<thead>
<tr>
<th>DS</th>
<th>300 nM</th>
<th>200 nM</th>
<th>200 nM</th>
<th>200 nM</th>
<th>300 nM</th>
<th>200 nM</th>
<th>300 nM</th>
<th>200 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKI/KI+DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKI/KI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCC827</th>
<th>HCC4006</th>
<th>MDA-MB-1</th>
<th>75 V2</th>
<th>HCC1419</th>
<th>SK-BR-3</th>
<th>Colo-205</th>
<th>A549</th>
<th>EBC-1</th>
</tr>
</thead>
</table>

Erlotinib, 2uM Lapatinib, 2uM PLX4032 2uM MekI 5uM MekI 1uM

B

Fig. 3
Fig. 4
Fig. 5

A

Fold Change in ROS level

Erlot. Erlot.+DS Erlot.+NAC Erlot.+DS+NAC

GTL-16

Fold Change in ROS level

Crisot. Crisot.+DS Crisot.+NAC Crisot.+DS+NAC

B

γH2A.x
Cleaved PARP
ALDH1A1
Actin

γH2A.x

γH2A.x

BimEL
BimS
Actin

GTL-16

PC9

C

Relative Cell Viability

PC9

GTL-16

Erlot. Erlot.+DS Erlot.+NAC

Crizot. Crizot.+DS Crizot.+NAC

PC9

GTL-16

NT DS NAC

Erlot. Erlot.+DS Erlot.+NAC

Crizot. Crizot.+DS Crizot.+NAC
Fig. 6

A

No Treatment
Erlot d1-d6
DS alone
d7-d10

Erlot+DS d1-d6
No Drug d7-d10

PC9

B

Vehicle (n=10)
erlotinib (50 mg/kg, PO, QD) (n=15)
disulfiram (200 mg/kg, PO, QD) (n=10)
erlotinib + disulfiram (n=15)

C

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>DS</th>
<th>Erlot</th>
<th>Erlot+DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-EGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGAPDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mouse euthanized
DTP

↑ ROS

↓ Lipid Peroxidation

↑ Aldehydes

↓ Acids

ALDH

DNA damage

DTP+DS

↑↑↑ ROS

↓ Lipid Peroxidation

↑↑↑ Aldehydes

↓ Acids

ALDH

Disulfiram

DNA damage

DTP+DS+NAC

↑↑↑ ROS

↓ Lipid Peroxidation

↑↑↑ Aldehydes

↓ Acids

ALDH

Disulfiram

DNA damage

Fig. 7
The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation

Debasish Raha, Timothy R Wilson, Jing Peng, et al.

Cancer Res Published OnlineFirst May 8, 2014.