Histone H1.3 inhibits \(H19 \) and ovarian cancer cell growth

Histone H1.3 suppresses \(H19 \) noncoding RNA expression and cell growth of ovarian cancer cells

Magdalena Medrzycki\(^{1,2,*}\), Yunzhe Zhang\(^{1,2}\), Weijia Zhang\(^3\), Kaixiang Cao\(^{1,2}\), Chenyi Pan\(^{1,2}\), Nathalie Lailler\(^4\), John F. McDonald\(^{1,2}\), Eric E. Bouhassira\(^5\), Yuhong Fan\(^{1,2,\#}\)

\(^1\)School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332, USA; \(^2\)The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; \(^3\)Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; \(^4\)Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; \(^5\)Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;

*: Current address: School of Medicine, Emory University, Atlanta, GA 30322

Running title: Histone H1.3 inhibits \(H19 \) and ovarian cancer cell growth

Key words: Linker histones, H1 variants, H1.3, \(H19 \), noncoding RNA, ovarian cancer, epigenetic marks

Financial support: NIH grant GM085261 (to Y.F.), Georgia Cancer Coalition Distinguished Scholar award (to Y.F.), and Georgia Institute of Technology.

Corresponding author:

Yuhong Fan, PhD

School of Biology and the Petit Institute for Bioengineering and Bioscience

Georgia Institute of Technology

IBB 2313, 315 Ferst Drive, Atlanta, GA 30332-0363, USA

Email: Yuhong.fan@biology.gatech.edu; Phone: 404-385-1312; Fax: 404-894-0519

The authors disclose no potential conflicts of interest

Word count (excluding references): 4607

Total number of figures and tables: 7; (Supplemental figures and tables: 9)
Histone H1.3 inhibits $H19$ and ovarian cancer cell growth

Abstract

Ovarian cancer is a deadly gynecological malignancy for which novel biomarkers and therapeutic targets are imperative for improving survival. Previous studies have suggested the expression pattern of linker histone variants as potential biomarkers for ovarian cancer. To investigate the role of histone H1 in ovarian cancer cells, we characterize individual H1 variants and overexpress one of the major somatic H1 variants, H1.3, in OVCAR-3 epithelial ovarian cancer cell line. We find that overexpression of H1.3 decreases the growth rate and colony formation of OVCAR-3 cells. We identify histone H1.3 as a specific repressor for the non-coding oncogene $H19$. Overexpression of H1.3 suppresses $H19$ expression and knockdown of H1.3 increases its expression in multiple ovarian epithelial cancer cell lines. Furthermore, we demonstrate that histone H1.3 overexpression leads to increased occupancy of H1.3 at the $H19$ regulator region encompassing the imprinting control region (ICR), concomitant with increased DNA methylation and reduced occupancy of the insulator protein CTCF at the ICR. Finally, we demonstrate that H1.3 overexpression and $H19$ knockdown synergistically decreases the growth rate of ovarian cancer cells. Our findings suggest that H1.3 dramatically inhibits $H19$ expression which contributes to the suppression of epithelial ovarian carcinogenesis.
Introduction

Ovarian cancer has the highest mortality rate among gynecological malignancies, and is currently the fourth most common cancer in women. Each year, more than 22,000 women are diagnosed with ovarian cancer in the US and about 15,000 women die of the disease, primarily due to difficulties in early diagnosis and poor prognosis (1, 2). The etiology of ovarian cancers involves both genetic and epigenetic alterations, although the underlying mechanisms are not well understood ((3-5) and references therein). Recently, the expression of linker histone variants has been suggested as potential biomarkers for ovarian cancers (6). However, the role of linker histone variants in ovarian cancer cells has not been explored.

H1 linker histones interact with the nucleosomes at the entry and exit sites of the nucleosomal DNA and facilitate the folding of chromatin into higher order structures (7). In mammals, there are 11 H1 variants identified, including 7 somatic H1 variants (H1.0 to H1.5, and H1.x), and 4 tissue specific H1s (testis-specific H1t, H1T2, HILS1, and oocyte-specific H1oo) (8). H1.1 to H1.5, are 5 major somatic H1 variants in both dividing and non-dividing cells, whereas H1.0 mainly accumulates in differentiated cells. H1x is present in very low amount and found to have a higher expression in neuroendocrine cells (8). The heterogeneity and expression pattern of H1s are conserved from mouse to human, suggesting that the individual variants may have unique properties and functions.

Besides mediating higher order chromatin folding, linker histone H1 has been shown to regulate gene expression *in vivo* in a specific manner (9). However, it is not clear whether those genes are directly regulated by a specific H1 variant. Here, we report the identification of an important non-coding *H19* gene as a direct target specifically regulated by H1.3 in ovarian cancer cells.
Histone H1.3 inhibits H19 and ovarian cancer cell growth

Aberrant expression of H19 occurs in ovarian cancer and other types of cancers (10-12). H19 is often overexpressed in ovarian cancer, and has been suggested as a biomarker for ovarian cancer (13). Ample studies show that H19 is essential for tumor growth and H19 overexpression contributes to tumorigenesis (reviewed in (14)), although its role in ovarian cancer has not been well studied. H19 is an oncofetal gene located on human chromosome 11 and is highly expressed in fetal tissues but suppressed in most tissues after birth (15, 16). H19 belongs to an imprinted gene family controlled by the imprinting control region (ICR) which is important for mammalian development (17, 18). Expressed from the maternal allele, H19 encodes for a spliced, capped and polyadenylated non-coding RNA highly conserved in evolution (19). It is also a precursor for a microRNA, miR-675, which targets genes essential for growth, development and carcinogenesis, such as RB and Igf1r (20-22). The H19 locus was recently found to produce antisense transcripts, including H19 opposite tumor suppressor (HOTS) and a long intergenic transcript, 91H, indicating the complexity of this region (23, 24). Moreover, H19 expression has been shown to be regulated by chromatin structure and epigenetic mechanisms, including DNA methylation, CTCF insulator and enhancer activities (reviewed in (25, 26)).

In this study, we utilize overexpression and shRNA knockdown approaches to modulate the expression levels of H1s and H19 mRNA in OVCAR-3 cells. We find that linker histone H1.3 directly represses the expression of H19 gene in ovarian epithelial cancer cells by preferential occupancy at the ICR of H19 and regulating DNA methylation at this region. We also show that H1.3 overexpression suppresses the growth and clonogenicity in ovarian cancer cells, has synergistic effects with H19 knockdown on inhibition of epithelial ovarian cancer cells. These results suggest H1.3 as a potent epigenetic regulator for H19 and a novel mechanism by which H1.3 suppresses tumorigenesis in epithelial ovarian cancer cells.
Materials and Methods

Cell culture

OVCA-R-3 cells were cultured in RPMI-1640 (Fisher) media supplemented with 20% fetal bovine serum (FBS) (Gemini), 100 U/ml penicillin and 100 mg/ml streptomycin (Life Technologies). OV-90 cells were cultured in a 1:1 mixture of MCDB 105 medium (Sigma) and medium 199 (Sigma) supplemented with 15% FBS, 1.85 g/L sodium bicarbonate and 100 U/ml penicillin and 100 mg/ml streptomycin. SK-OV-3 cells were cultured in McCoy’s 5a Medium modified medium (Sigma) supplemented with 10% FBS, 2.2 g/L sodium bicarbonate and 100 U/ml penicillin and 100 mg/ml streptomycin. All cells were cultured in a humidified incubator with 5% CO2 at 37°C.

Vectors construction, cell transfection and stable cell lines generation

The coding sequences of human H1 variant genes were cloned into a modified pcDNA3 vector with FLAG sequence (5’-GACTACAAAGACGATGACGACAAG-3’) at the N-terminal to the start codon and sequence verified. The vector containing H19 gene was purchased from Genescript and the H19 gene was inserted into pcDNA3 vector and sequence verified.

OVCA-R-3 cells were transfected with pcDNA-H1s or pcDNA-H19 vectors by Lipofectamine 2000 (Life Technologies) according to the manufacturer’s manual. Two days post-transfection, the cells were treated with 400 μg/ml G418 (Genetin, Life Technologies) for 4 to 5 weeks and resistant clones were isolated and screened. OV-90 cells were transfected with H1.1 or H1.3 expression vectors by Nucleofector™ Kits (Lonza) following the manufacturer’s protocol and cells were harvested two days post transfection and analyzed.
pTRIPz (inducible), pGIPz (stable) shRNA vectors and TransLenti Viral Packaging systems were purchased from Thermo Scientific. Viral particles containing vectors expressing shRNA for \(H19 \) or H1.3 were produced according to the manufacturer’s manual, and used to transduce OVCAR-3, OV-3/H1.3(H), SK-OV-3 cells. The cells were subsequently sorted (BD FACS Aria III Cell Sorter, Beckman Coulter) by Red Fluorescence Protein (RFP) or Green Fluorescence Protein (GFP) expression to enrich the shRNA expressing cells.

RNA isolation and RT-PCR

RNAs were extracted with Trizol (Life Technologies) according to the manufacturer’s instructions and further cleaned using RNeasy Mini kit (Qiagen). 2.5 \(\mu \)g of total RNA were reverse transcribed using Superscript III kit (Life Technologies) according to the manufacturer’s protocol and cDNAs were subsequently analyzed by quantitative real-time PCR (qRT-PCR). \(H19 \) primers were as follows: F: 5’-ACCACTGCACACTGACTC-3’ and R: 5’-CCGCAGGGGTGGCCATGAA-3’. \(GAPDH \) primers were published previously (6). The relative expression of selected genes were quantified and analyzed by real-time PCR using iQ SYBR Green PCR Supermix kit (Bio-Rad Laboratories) as previously described (27). All samples were typically analyzed in triplicates in at least 3 independent runs.

Western blotting

The cells were lysed in Lysis buffer (30 mM Tris pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% Na-deoxycholate, 0.1% NP-40, Proteinase Inhibitor tablet (Roche)) and total histones were extracted as previously described (27). Western blotting assays were performed according to the manufacturer’s manual (Bio-Rad). The primary antibodies used are against: FLAG-tag (Sigma, F1804), H1.2 (Abcam, ab4086), H1.3 (Abcam, ab24174), phospho-H1.4 (Sigma, H7664), H1.5 (Abcam, ab24175), H1.0 (Santa Cruz, sc-56695), beta-actin (Sigma, A5441). The secondary
antibodies are: IRDye680 Goat anti-Rabbit (Li-COR, 926-32221), IRDye800 Goat anti-Rabbit (Rockland, 611-0132-122) or Goat anti-Mouse (Molecular Probes, A21058). Signals were visualized using Odyssey Infrared Imaging System (LI-COR Biosciences).

Growth curves, MTT and clonogenic assays

For growth curves and MTT cell proliferation assays, 3x10^4 cells per well in 12 well plate and 1500 cells per well in 96-well plate were seeded in triplicates, respectively. Cell numbers were counted with Multisizer Coulter Counter (Beckman Coulter) and MTT assay were performed every two days for indicated days. Values are expressed as mean ± SD and statistical analyses were performed using GraphPad Prism statistical software. For MTT assay, two hours after incubation with MTT compound (Sigma), mitochondrial succinate dehydrogenase in metabolically active cells formed insoluble formazan crystals, which were resolubilized with stop solution (10% SDS, 0.1% HCl). The amount of formazan crystals produced by the cells was proportional to metabolic activity, which was measured by spectrometer at 570 nm wavelength.

For colony forming assay, 100, 300, and 1000 cells were seeded on 3.5-cm dishes in triplicates and were cultured in a humidified incubator with 5% CO₂ for 4 weeks as previously described with modifications (28). Medium was changed every 3 days. After incubation, the cell colonies were fixed with PBS:Methanol (1:1 ratio) for 2 minutes, then incubated in Methanol for 10 minutes, and air dried. The colonies were stained by adding 3 ml 1% Crystal violet for 10 minutes and counted.

Microarray and data analysis

Total RNAs were isolated with TRIzol reagent (Life Technologies), purified, labeled and used for microarray hybridization to human Affymetrix ST1.0 array at Einstein Genomic Facility. Data were analyzed using RMA normalization in Expression Console (Affymetrix). Selected
gene changes were confirmed using qRT-PCR. The results were normalized over the housekeeping gene *GAPDH* and compared with the controls. Cluster analysis was performed to group genes with altered expression more than 2-fold into subgroups according to their expression patterns (Cluster 3.0). Differentially expressed genes were analyzed with Ingenuity Pathway Analysis (IPA) Software (Qiagen) to determine the pathways or functional groups of genes involved. Gene ontology analysis was performed using DAVID (29) to obtain enriched biological processes categories of statistical significance.

High Performance Liquid Chromatography

Histone proteins were extracted using 0.2 N sulfuric acid as previously described (27). 100 μg of total histone preparations were injected into a C18 reverse phase column (Vydac) on an AKTA UPC10 system (GE Healthcare). Fractions corresponding to the H1.2/H1.3/H1.4 peak from HPLC analysis were collected and subjected to mass spectrometry analysis on a Qstar XL MS/MS system (Applied Biosystems) with electrospray ionization (ESI) as the ionization method. Analyst QS software (Applied Biosystems) was used for data acquirement and analysis.

Chromatin Immunoprecipitation, qChIP and ChIP-seq

ChIP assays were performed as previously described (30) with modifications. The following antibodies were used: anti-FLAG (Sigma, F1804), anti-CTCF (Santa Cruz, Sc15914), and anti-IgG (Millipore, 12-370). Purified ChIP-DNA quantified using Qubit Fluorometer (Life Technologies). For qChIP, the amount of each specific DNA fragment in immuno-precipitates was determined by real-time PCR. PCR reactions were prepared with the iQ SYBR Green Supermix (Bio-Rad) and were analyzed in a MyIQ Real-Time PCR Detection System (Bio-Rad). All samples were typically analyzed in triplicates in three independent experiments. For ChIP-seq, the libraries for massive parallel sequencing were prepared with the ChIP-seq Sample
Histone H1.3 inhibits H19 and ovarian cancer cell growth

Preparation Kit (Illumina) according to the manufacturer’s instructions. Sequencing was performed with Illumina HiSeq 2000 systems. Sequence reads processing, alignment and metagene analysis were performed as previously described (31).

Bisulfite sequencing analysis

Genomic DNA was isolated from cells with QIAamp DNA kit (Qiagen). 1 μg of DNA was treated with the CpGenome™ DNA Modification kit (Millipore) according to the manufacturer’s manual. Treated DNA was dissolved in 25 μl H2O, and 1 μl of treated DNA was used in each PCR reaction as previously described (9). The following primers were used: H19 region 1: forward, 5’-TTGTAAGTGTGGGATTTAAAAGT-3’, reverse, 5’-ACAATTATCAATTCAAA AAAAA-3’; H19 region 2: 5’-TTTTGGAGGTTTTTTTTTTA-3’, 5’-AAACCCTACAA CACCTAACT-3’; H19 region 3: 5’-GGTGGTAGGAAGGGGTTTTT-3’, 5’-CCCAACACACCCA TCCTAAAAT-3’. The PCR products were subsequently cloned using the TOPO TA cloning kit (Life Technologies), and clones containing the converted DNA inserts were selected for sequencing. DNA sequences were analyzed with BiQ analyzer.
Results

Analysis of individual H1 variants in OVCAR-3 cells

OVCAR-3 cell line is a well-characterized epithelial ovarian cancer cell line frequently used to study molecular mechanisms of ovarian cancer malignancies. This cell line was derived from a patient with epithelial ovarian adenocarcinomas, which represent about 90% of all ovarian cancer malignancies. We first characterized the expression of individual histone H1 variants by HPLC, Mass Spectrometry and Western blotting assays. Total histones were isolated from OVCAR-3 cells by sulfuric acid extraction and subjected to RP-HPLC (Fig. 1A). Three fractions of putative H1 variants were collected, lyophilized and analyzed by Mass spectrometry and Western blotting. The fraction 3 was identified as a mixture of histones H1.2, H1.3 and H1.4 (Fig. 1A and B), three major somatic H1 variants abundantly expressed in adult tissues and cells. However, we noted that H1.3 protein level is much lower than H1.2 and H1.4 in OVCAR-3 cells, which is unusual given that histone H1.3 is ubiquitously expressed among different cell types and that H1.3 mRNA transcripts were present at high levels in OVCAR-3 (data not shown). To verify the identity of individual peaks of the HPLC fractions, we generated 6 stable cell lines with each overexpressing one of the six somatic histone H1 variants (H1.0-H1.5) in OVCAR-3 cells (designated as OV-3/H1 lines) (Fig. 1C). All 6 overexpressed somatic H1 variants were tagged by FLAG at the N-terminus, which was expected to maintain biochemical properties and functions of the respective H1 variants (31). The total histones were extracted and analyzed by HPLC and the eluted fractions were collected and verified by Western blotting (Fig. 1C). These results demonstrate the peak identity and the relative amount of each linker histone variant in HPLC profile from OVCAR-3/H1 cell lines.
Overexpression of histone H1.3 inhibits cell growth and colony formation

Histone H1.3 is one of the major somatic H1 variants abundantly present in both dividing and non-dividing cells. The very low expression of endogenous H1.3 in OVCAR-3 cells provides a good experimental system for us to investigate the role of H1.3 in ovarian cancer cells using an overexpression approach. We generated multiple OV-3/H1.3 stable clones by overexpressing FLAG-H1.3 in OVCAR-3 cells and screened 48 clones by Western blotting using an anti-FLAG antibody (Supplementary Fig. S1A). HPLC/MS analysis of the histone extracts from the clone with the highest FLAG-H1.3 level (designated as OV-3/H1.3(H)) as well as Western blotting assays using anti-H1 variant antibodies demonstrated that FLAG-H1.3 co-eluted in the same fraction as the endogenous H1.3, suggesting similar biochemical properties of FLAG-H1.3 as the endogenous H1.3 (Fig. 1A, B, and D). Western blotting and calculation of the individual H1 to nucleosome ratio from HPLC analysis indicated that the protein level of FLAG-H1.3 in OVCAR-3/H1.3(H) cells was significant, reaching ~16% of the total H1s in these cells (Fig. 1D and E).

To characterize the phenotypic changes caused by H1.3 overexpression, we compared the growth rate, metabolic activity, and colony forming abilities of OVCAR-3 and OV-3/H1.3(H). OV-3/H1.3(H) cells displayed reduced growth rate by growth curve and MTT assays (Fig. 2A). Knocking down H1.3 in OV-3/H1.3(H) cells by shRNA (Supplementary Fig.S1B) reverted this effect (Fig. 2A). These results indicated that overexpression of H1.3 variant reduces cell proliferation and affects the metabolic activity in OVCAR-3. In addition, the clonogenic capacity of OV-3/H1.3(H) cells was severely impaired, forming 10 to 15 times fewer colonies than OVCAR-3 cells (Fig. 2B). This inhibitory effect of overexpression of H1.3 on colony
Histone H1.3 inhibits *HI9* and ovarian cancer cell growth

formation was partially abolished by H1.3 knockdown using shRNA in OV-3/H1.3(H) cells (Fig. 2B).

Overexpression of H1.3 leads to specific changes in gene expression

To identify genes and pathways affected by H1.3 overexpression, we performed gene expression profiling using Affymetrix Human Gene 1.0 ST Arrays. Comparison of the transcriptomes of OV-3/H1.3(H) cells with control cell lines of OVCAR-3 transfected with vectors without H1.3 (designated as OV-3/V.O.) showed that 164 genes had altered gene expression more than 2 fold in both replicated experiments. Among these genes, 76 were upregulated and 88 were downregulated in OV-3/H1.3(H) cells (Fig. 2C and Supplementary Table S1). Results from RT-PCR of several differentially expressed genes showed expression changes comparable to that from microarrays (Supplementary Fig. S2). Analysis of the molecular pathways and cellular processes altered in OV-3/H1.3(H) cells using Ingenuity Pathway Analysis (IPA) software indicated that cell proliferation, cell adhesion, programmed cell death, cell migration and immune response were all affected. A representative IPA hit map of cell function and maintenance including *HI9* gene is shown in Figure 2D. Gene ontology classification using DAVID (29) revealed that upregulated genes are mainly enriched in immune response and antigen presentation whereas downregulated genes are involved in a variety of biological processes, such as regulation of cell proliferation, cell communication, signal transduction and various metabolic processes (Fig. 2E and Supplementary Table S2).

Oncogene HI9 is a direct target of H1.3.
Histone H1.3 inhibits H19 and ovarian cancer cell growth

One of the most dramatically dysregulated genes in OVCAR-3 cells is H19, which was repressed 9-fold in OV-3/H1.3(H) cells, ranked #2 in the most highly repressed genes (Supplementary Table S1). Expressing FLAG-H1.3 to low-medium level in OV-3/H1.3(L) cells (Supplementary Fig. S1A) resulted in a medium reduction in H19 expression (Fig. 3A), indicating a dosage-dependent effect of H1.3 on H19 expression. Knockdown histone H1.3 levels by stably expressing shRNA against H1.3 in OV-3/H1.3(H)/shH1.3 cells (Supplementary Fig. S1B) alleviated the repression of H19 by H1.3, whereas scrambled shRNA did not have any effects (Fig. 3A). To further test if the expression of H19 is directly dependent on the amount of histone H1.3, we generated OV-3/shH1.3(i) cell line in which the expression of endogenous H1.3 in OVCAR-3 cells was knocked down more than 60% upon induction of the expression of H1.3 shRNA by Doxycycline (Fig. 3B). This knockdown led to a 50% elevation in H19 mRNA transcripts (Fig. 3B). To investigate if H19 expression is affected specifically by H1.3 or by all H1 variants, we analyzed H19 expression in all 6 OV-3/H1 cell lines which exhibited comparable levels of exogenous FLAG-H1s for each respective H1 variant (Fig. 3C). H19 transcript level was dramatically suppressed in OV-3/H1.3 line as measured by RT-PCR, but remained unchanged in cell lines overexpressing other FLAG-H1 variants in OVCAR-3 cells (Fig. 3C). These results indicate that H19 is strongly and specifically repressed by H1.3 variant in OVCAR-3 cells.

Overexpression of H1.3 in OV-90, another ovarian epithelial cancer cell line with low expression of H1.3, also dramatically inhibited H19 expression and cell growth, whereas these effects were not observed when H1.1 was overexpressed in OV-90/H1.1 cells (Supplementary Fig. S3A). In contrast, knockdown of H1.3 by shRNA in SK-OV-3, an ovarian epithelial cell line with higher H1.3 protein levels, resulted in a two-fold increase of H19 expression as well as
Histone H1.3 inhibits H19 and ovarian cancer cell growth

a modest increase in cell growth rate (Supplementary Fig S3B). Collectively, these results further support a specific inhibitory role of H1.3 on H19 expression and cell growth in ovarian epithelial cancer cells.

Epigenetic mechanisms of H19 repression mediated by H1.3

Chromatin structure and epigenetic mechanisms play a key role in H19 expression regulation (32). To investigate the potential mechanisms by which H1.3 regulates H19 expression in OVCAR-3 cells, we first analyzed the binding profiles of H1.3 across the entire H19 gene locus, including a 5.2 kb upstream regulatory region, by chromatin immunoprecipitation (ChIP). H1.3 overexpression resulted in preferential accumulation of H1.3 at the entire H19 regulatory region, but H1.3 remained absent at the house keeping gene GAPDH (Fig. 4). While H1.1 exhibited similarly low endogenous expression as H1.3 in OVCAR-3 cells (Fig. 1E), overexpression of FLAG-H1.1 in OVCAR-3 cells to comparable levels of FLAG-H1.3 in OV-3/H1.3(H) cells did not lead to such enriched occupancy at H19 locus (Supplementary Fig. S4A). Genome-wide analysis of H1.3 occupancy in OV-3/H1.3(H) cells by ChIP-seq confirmed the depletion of H1.3 at active promoters and the overrepresentation of H1.3 at H19 upstream regulatory region compared with neighboring regions (Supplementary Fig. S5).

H19 expression is controlled by the imprinting control region (ICR) located within the H19 upstream regulatory region. In humans, this region contains 7 CTCF binding sites, of which methylation status regulates binding of the insulator binding protein CTCF (33, 34) and H19 expression. To determine if increased H1.3 binding at H19 ICR leads to changes in DNA methylation at H19 ICR and CTCF binding status, we analyzed the levels of DNA methylation and CTCF occupancy at this region by bisulfite sequencing and ChIP, respectively. Such
Histone H1.3 inhibits H19 and ovarian cancer cell growth

analysis indicated that H19-ICR region is hypomethylated in OVCAR-3 (Fig. 5A). While the global DNA methylation levels were not changed by H1.3 overexpression, as indicated by unchanged sensitivity to methylation-sensitive enzymes (Fig. 5B), DNA methylation levels of CpG sites surrounding CTCF binding sites were significantly increased in OV-3/H1.3(H) cells by 2.3- and 5.8-fold for region 1 and region 2 respectively (Fig. 5). This level of increase in DNA methylation in OV-3/H1.3(H) cells was diminished by knockdown of H1.3 by shRNA (Fig. 5), indicating that the increased occupancy of H1.3 at H19 distal promoter region leads to hypermethylation of the H19-ICR. In addition, compared with OVCAR-3 cells, CTCF occupancy at H19-ICR was reduced at region 1 and region 2 in OV-3/H1.3(H) cells, but not in OV-3/H1.1(H) cells (Fig. 6 and Supplementary Fig. S4B). The reduced occupancy of CTCF protein on H19-ICR in OV-3/H1.3(H) cells suggests that overexpression of histone H1.3 may prevent CTCF from binding to the H19 ICR region and regulating H19 expression in OVCAR-3 cells.

Taken together, these findings suggest that linker histone H1.3 directly regulates H19 expression in ovarian cancer cells by binding to H19-ICR, increasing DNA methylation and preventing CTCF from binding to CTCF sites in H19 ICR.

Overexpression of histone H1.3 and reduction of H19 synergistically suppress ovarian cancer cell growth

Expression of H19 mRNA promotes proliferation and enhances tumorigenesis in several types of cancer cells (35-38). To determine if the inhibitory effect of H1.3 on OVCAR-3 growth rate is mediated through its repression on H19 expression, we first investigated the effects of modulation of H19 expression on OVCAR-3 growth. Overexpressing H19 in OVCAR-3 by
Histone H1.3 inhibits H19 and ovarian cancer cell growth

transflecting the cells with a pcDNA-H19 vector dramatically increased H19 transcripts (Fig. 7A). This upregulation resulted in significant increase in cell growth rate in OVCAR-3 (Fig. 7B). We were only able to moderately overexpress H19 in OVCAR-3/H1.3(H) cells, which led to a moderate increase in growth rate of OVCAR-3/H1.3(H) cells, indicating that the growth inhibition in OVCAR-3 by H1.3 overexpression can be partially rescued by H19 upregulation.

We next determined whether overexpression of H1.3 and depletion of H19 transcript would synergistically impair the growth of ovarian cancer cells by further knocking down H19 transcript in OV-3/H1.3(H) cells using H19 shRNA. Induction of H19 shRNA led to a 75% and a 92% reduction of H19 expression in OVCAR-3 and OV3/H1.3(H) cells, respectively (Fig. 7C). Depletion of H19 significantly reduced growth rate (Fig. 7D), suggesting that overexpression of linker histone H1.3 and depletion of H19 transcript synergistically suppress the growth of OVCAR-3 cells.
Histone H1.3 inhibits *H19* and ovarian cancer cell growth

Discussion

H19 is an oncofetal gene whose expression is frequently elevated in many solid tumors (10, 11, 13, 39). Its upregulation has been associated with increased proliferation, tumorigenesis, cell cycle progression and cell migration (35, 36, 40, 41). In this study, we uncovered a novel function of H1.3 in inhibiting ovarian cancer cell growth, likely mediated through repression of *H19* gene (Supplementary Fig. S6). By utilizing overexpression and knockdown approaches, we generated cell lines with modulated expression of histone H1 variants and *H19* transcript. Systematic analysis of generated clones demonstrates that linker histone H1.3 is the specific somatic H1 variant capable of effective suppression of *H19* in ovarian epithelial cancer cells. Our results also suggest that this regulation is likely to be a direct effect. In addition, overexpression of histone H1.3 represses the growth rate and colony formation ability in OVCAR-3 cells, suggesting its tumor suppressor properties. In contrast, similarly overexpressing H1.1 cells did not change the growth rate and clonogenicity of OVCAR-3 (Supplementary Fig. S4). The synergistic effect of H1.3 overexpression and *H19* depletion in ovarian cancer cells suggests a potential strategy of combining H1.3 modulation with *H19* for therapeutic intervention.

We have investigated the mechanism by which *H19* is suppressed by H1.3 and found that H1.3 preferentially accumulates at *H19* ICR, leading to increased DNA methylation and reduced binding of CTCF insulator binding protein at *H19*-ICR. These results suggest that H1.3 epigenetically represses *H19* expression through DNA methylation as well as an antagonism between H1 and CTCF. Although a link between H1 and DNA methylation at regulating specific genes has been revealed in several previous studies (9, 42, 43), our study is the first one demonstrating a highly specific regulation of *H19* expression by a single H1 variant, H1.3 *in vivo*.
in ovarian cancer cells. Other H1 variants, when expressed to similar levels does not repress the expression of H19 in OVCAR-3 cells (Fig. 3C). Likewise, stably overexpressing H1.3, but not H1.1, leads to dramatic reduction in H19 expression and cell growth in OV-90 ovarian epithelial cancer cell line, and expressing H1.3 shRNA, but not scrambled shRNA, in SK-OV-3 ovarian epithelial cancer cells, increases H19 expression and cell growth (Supplementary Fig. S3). The mechanism by which H19 is specifically repressed by H1.3 through DNA methylation cannot be fully accounted by the interaction between H1 variants and DNA methyltransferases (DNMTs) ((44), and Cao, Ho, and Fan, unpublished observation), because multiple H1 variants are found to interact with DNMTs. Chromatin immunoprecipitation analysis demonstrates a preferential binding by H1.3 at H19 locus and a reduced binding of CTCF at CTCF binding sites in OV-3/H1.3(H) cells (Fig. 4 and Fig.6). These binding patterns appear to be elicited specifically by overexpression of H1.3, as overexpression of H1.1 to similar levels does not lead to marked changes at this locus in OV-3/H1.1(H) cells (Supplementary Fig. S4A and B), suggesting a critical role of preferential binding of H1.3 at this locus in the H19 inhibition. H1 variants have distinct biochemical properties and differ significantly in their residence time on chromatin and ability to promote chromatin condensation in vitro, which is likely to contribute to their specificity in vivo (45, 46). Other mechanisms may also contribute to the regulation of H19 by H1.3. For example, linker histone H1 has been shown to interact with SirT1, promoting gene silencing (47). In vitro studies have shown that H1 interacts with heterochromatin protein HP1α (48) and stimulates polycomb repressive complex 2 (PRC2) activity (49). Therefore, the direct effect of H1.3 on H19 gene silencing may be due to interactions between linker histone H1 and other chromatin proteins or factors. Additionally, histone H1 was found to inhibit human SWI/SNF nucleosome remodeling activity, (50), thus it is also conceivable that histone H1.3 acts...
as a specific repressor of $H19$ gene by blocking the chromatin-remodeling complex to access the $H19$ regulatory region.

Histone H1 is increasingly being suggested to contribute to epigenetic regulation in cancer cells. Understanding the underlying molecular mechanisms may lead to new approaches to manipulate gene expression. In this study we generated stable cell lines with tagged H1 variants and we established inducible system in which protein levels of histone H1 variants can be readily modulated. Those cell lines will serve as valuable tools to study the role of H1 in epigenetic regulation in cancer cells. The identification of H1.3 being a potent repressor for $H19$ also suggests a novel function of H1.3 as a tumor suppressor in ovarian epithelial cancer cells.
Acknowledgements

This work is supported by NIH grant GM085261 (to YF) and Georgia Cancer Coalition Distinguished CancerClinicians and Scientists Award (to YF), and Georgia Tech. We thank Nikita Wright and Leonid Aksenov for technical support and colleagues for helpful discussions. We thank Georgia Tech Mass Spectrometry facility, Albert Einstein Epigenomics Shared Facility and Genomics Core Facility.
Histone H1.3 inhibits \textit{H19} and ovarian cancer cell growth

References

Histone H1.3 inhibits H19 and ovarian cancer cell growth

Figure Legends

Figure 1. Generation and characterization of OVCAR-3/H1 cells.

A) Reverse phase HPLC and mass spectrometry analysis of linker histone H1 variants in OVCAR-3 and OV-3/H1.3(H) cells. Insets: ESI-TOF mass spectrometry profiles of fraction 3 eluted from HPLC.

B) H1 variants in fractions 1, 2, and 3 eluted from HPLC (A) determined by Western blotting. FLAG-H1.3 co-elutes in the same fraction 3 as the endogenous H1.3 protein. H1.1 and H1.5 were not detected by Western blotting.

C) Characterization of peaks eluted from HPLC of histones extracted from OVCAR-3/H1 clones. Histone extracts from stable clones with overexpressed H1 variants were analyzed by HPLC (left). Individual peaks were collected and analyzed by Coomassie and Western blotting using indicated antibodies. Coomassie staining (panels labeled with *) and Western blotting assays for the fractions indicated by arrows are shown (right). Fractions from HPLC peaks not indicated by arrows did not give signals in Western blotting using the respective antibodies. Coomassie staining and Western blotting assays of the corresponding fraction from OVCAR-3 cells are included as controls.

D) The comparison of individual H1 variants in OV-3/H1.3(H) and OVCAR-3 by Western blotting.

E) The percent of total H1. The percentage was determined by the ratio of the A214 of respective individual H1 variant to the sum of all H1 peaks. The A214 values were adjusted to account for the differences in the number of peptide bonds in each H1 variant.

Figure 2. Characterization of OVCAR-3 cells overexpressing H1.3.
Histone H1.3 inhibits H19 and ovarian cancer cell growth

A) Growth curves and MTT assay of OVCAR-3, OV-3/H1.3(H), and OV-3/H1.3(H)/shH1.3 cells. Data are presented as mean ± SD. P<0.05 for OV-3/H1.3(H) Vs. OV-3/H1.3(H)/shH1.3 as well as other comparisons.

B) Colony formation assay of OVCAR-3, OV-3/H1.3(H), and OV-3/H1.3(H)/shH1.3 cells. Representative results of colony formation assay are shown in insets. The quantitation of colonies formed 4 weeks post seeding (in triplicates). Data are presented as mean ± SD. P values: * < 0.05, **<0.01, ***<0.001.

C) Comparison of global gene changes in OV-3/H1.3(H) and OVCAR-3/V.O. cells. Genes with more than 2-fold expression difference were selected for analysis. The duplicates of OV-3/H1.3(H) and OV-3/V.O. were analyzed and genes were clustered by Cluster 1.0 software.

D) A selected network map with genes altered in OV-3/H1.3(H) clone analyzed by Ingenuity Pathway Analysis. H19 marked as a gene of interest.

E) Gene Ontology and Functional Annotation Analysis. Genes with increased and decreased expression (≥2-fold) in OV3/H1.3(H) cells were subject to DAVID Gene Ontology analysis and enriched functional categories with P value <0.01 are shown.

Figure 3. Repression of H19 expression by H1.3.

A) H1.3 overexpression inhibits H19 expression and knockdown of H1.3 levels in OV-3/H1.3(H) cells mitigates the repression effects on H19 by H1.3 in OVCAR-3 cells. H19 expression unit was normalized over GAPDH, and H19 relative expression of each indicated cell line was normalized over OVCAR-3 cells. Bar: SD.

B) Induction of H1.3 knockdown in OV-3/shH1.3(i) cells with Doxycycline increases H19 expression. Bars: SD. Top: Schematic diagram of pTRIPz-shH1.3 inducible vector. Middle: H19
expression unit measured by RT-PCR and normalized to GAPDH expression. Bottom: Western blots of cell lysates using an anti-H1.3 antibody indicating knockdown of H1.3. Western blotting using an anti-β-ACTIN antibody indicates equal loading of cell lysates.

C) Relative expression of the H19 mRNA transcript level in each indicated cell line measured by qRT-PCR (upper). H19 expression was measured by qRT-PCR and normalized as described in the legend to A). Bar: SD. 15 μg of total histones were extracted from each cell line and overexpressed exogenous FLAG-H1 levels were analyzed by immunoblotting using an anti-FLAG antibody (middle). Equal loading of histone extracts is indicated by core histones (lower, Commassie stain). OV-3/V.O. cells are OVCAR-3 cells transfected with pcDNA vector without inserted H1 genes.

Figure 4. Overexpression of histone H1.3 leads to preferential increases in H1.3 occupancy at H19-ICR.

qChIP analysis of FLAG-H1.3 along H19 regulatory regions (left) and GAPDH (right) in OV-3/H1.3(H) and OV-3/V.O. cells. Bars: SD.

Figure 5. Increased expression of H1.3 leads to DNA methylation elevation at H19-ICR in OVCAR-3 cells.

A) Bisulfite sequencing analysis of DNA methylation (i) and % of methylated CpG (ii) at CTCF containing regions (Region 1 and 2) and H19 proximal promoter regions (Region 3) in indicated cell lines. *: p<0.05, **: p<0.01, ***: p<0.001.

B) Global DNA methylation unchanged by H1.3 overexpression. 500 ng of genomic DNA was digested by indicated restriction endonucleases, separated by agarose-gel electrophoresis, and
Histone H1.3 inhibits H19 and ovarian cancer cell growth visualized by ethidium-bromide staining. 1: OVCAR-3; 2: OV3/H1.3(H); and 3: OV3/H1.3(H)/shH1.3. All samples have similar sensitivities to DNA methylation sensitive enzymes HpaII and MaeII, which recognize CCGG and ACGT respectively. Undigested genomic DNA (uncut) and DNA digested by the CCGG recognizing / DNA methylation non-sensitive MspI were included as controls.

Figure 6. CTCF is partially depleted from H19-ICR in OV-3/H1.3(H) cells.

qChIP analysis of CTCF in OVCAR-3 and OV3/H1.3(H) cells. The dashed line indicates the highest level of signals detected by qChIP with IgG antibody. The c-myc promoter region (5’myc) containing CTCF binding site and the c-myc downstream region (3’myc) were included as respective positive and negative control sites for CTCF binding. **: p<0.01, ***: p<0.001.

Figure 7. Synergistic effects of H1.3 overexpression and H19 depletion on OVCAR-3 growth rate.

A) RT-PCR analysis of H19 expression in indicated cell lines. H19 expression was normalized over GAPDH, and H19 relative expression of each indicated cell line was normalized over OVCAR-3 cells.

B) The growth curves of OV-3/H19, OVCAR-3, OV-3/H1.3(H)/H19, and OV-3/H1.3(H) cells. Bars: SD; P values < 0.05 for OV-3/H1.3(H)/H19 Vs. OV-3/H1.3(H) as well as other comparisons.

C) qRT-PCR analysis of H19 expression in indicated cell lines. H19 expression was normalized over GAPDH. H19 expression was measured by qRT-PCR and normalized as described in the legend to A). Bar: SD.
D) The growth curves of OVCAR-3, OV-3/shH19, OV-3/H1.3(H), OV-3/H1.3(H)/shH19 cell lines. Medium was supplemented with 1 ug/ml Doxycycline for the entire experiment duration. Bars: SD.
Figure 4

H1.3 ChIP

% Input

H19 distal promoter

H19 proximal promoter

GAPDH

OV-3/V.O.

OV-3/H1.3(H)
Figure 6

CTCF ChIP

- **OVCAR-3**
- **OV-3/H1.3(H)**

% Input

- CTCF site 3
- CTCF site 4
- 5' myc
- 3' myc
Histone H1.3 suppresses H19 noncoding RNA expression and cell growth of ovarian cancer cells

Magdalena Medrzycki, Yunzhe Zhang, Weijia Zhang, et al.

Cancer Res Published OnlineFirst September 9, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-2922

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/09/09/0008-5472.CAN-13-2922.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.