HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization

Ninel Azoitei1, Kristina Diepold1, Cornelia Brunner2, Arefeh Rouhi3, Felicitas Genze4, Alexander Becher1, Hans Kestler5, Johan van Lint6, Gabriela Chiosis7, John Koren III7 Stefan Fröhling8, Claudia Scholl3, Thomas Seufferlein1

Authors’ Affiliations
1Center for Internal Medicine I, University of Ulm, 89081 Ulm, Germany
2Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
3Center for Internal Medicine III, University of Ulm, 89081 Ulm, Germany
4Department of Urology, University of Ulm, 89081 Ulm, Germany
5Institute for Neuroinformatic, Ulm University, 89081 Ulm, Germany
6Department of Molecular Cell Biology, Katholieke Universiteit, B-3000 Leuven, Belgium
7Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Institute, New York, NY 10065
8Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany

Corresponding Author:
Ninel Azoitei
Center for Internal Medicine I, University of Ulm
Albert-Einstein-Allee 23, 89081-Ulm, Germany
ninel.azoitei@uni-ulm.de
Phone: +49-731-500 45726
Fax: +49-731-500 44665

Running title: PRKD2 modulates HSP90 tumor growth and angiogenesis

Keywords: PRKD2, HSP90, HIF-1α, hypoxia, tumor angiogenesis

Conflicts of interest: Memorial Sloan-Kettering Cancer Center holds the intellectual rights to PU-H71. Samus Therapeutics, of which G. Chiosis has partial ownership, has licensed PU-H71.
Abstract

The kinase PRKD2 is a crucial regulator of tumor cell-endothelial cell communication in gastrointestinal tumors and glioblastomas, but its mechanistic contributions to malignant development are not understood. Here we report that the oncogenic chaperone HSP90 binds to and stabilizes PRKD2 in human cancer cells. Pharmacologic inhibition of HSP90 with structurally divergent small molecules currently in clinical development triggered proteasome-dependent degradation of PRKD2, augmenting apoptosis in human cancer cells of various tissue origins. Conversely, ectopic expression of PRKD2 protected cancer cells from the apoptotic effects of HSP90 abrogation, restoring blood vessel formation in two preclinical models of solid tumors. Mechanistic studies revealed that PRKD2 is essential for hypoxia-induced accumulation of HIF-1α and activation of NF-κB in tumor cells. Notably, ectopic expression PRKD2 was able to partially restore HIF-1α and secreted VEGF-A levels in hypoxic cancer cells treated with HSP90 inhibitors. Taken together, our findings indicate that signals from hypoxia and HSP90 pathways are interconnected and funneled by PRKD2 into the NF-κB/VEGF-A signaling axis to promote tumor angiogenesis and tumor growth.
Introduction

Cancer development is a multistep process characterized by a multitude of genetic and epigenetic changes that induce resistance to pro-apoptotic stimuli, sustain angiogenesis and confer insensitivity to antigrowth signals and immune surveillance (1).

Rapid tumor growth often results in hypoxia, which triggers the stabilization of the transcription factor hypoxia-inducible factor-1 (HIF-1), an oxygen sensor that controls the expression of multiple target genes implicated in angiogenesis, metabolism and cell survival (2, 3). A prominent target of HIF-1α is the vascular endothelial growth factor A (VEGF-A) which induces tumor angiogenesis by stimulating proliferation, survival and migration of endothelial cells (4). HIF-1α has been reported to physically interact with heat shock protein 90 (HSP90) (5, 6) which can be targeted by small molecule inhibitors of chaperone, a growing class of clinically utilized anti-tumorigenic agents. HSP90 is a highly conserved and ubiquitously expressed molecular chaperone involved in the correct folding and final maturation of a plethora of proteins, so-called HSP90 clients, in an effort to maintain cellular homeostasis (7, 8). There are more than 200 HSP90 clients known including protein kinases, transcription factors and steroid hormone receptors (9 - 11). HSP90 is recruited to its kinase clients through interactions with kinase-specific co-chaperone CDC37 (12, 13), which stabilizes the HSP90/kinase (14). In tumor cells, HSP90 aids in folding dysregulated oncoproteins helping to sustain their aberrant activity. Amongst the most known client kinases of HSP90 are SRC (15), AKT (16), PDK-1 (17) and PKC (18). The latter was shown to directly activate protein kinase D (PRKD) family members via phosphorylation at two critical serine residues within the activation loop of the kinase catalytic domain (19). Recently, an affinity-based proteomic screen conducted to identify cancer-specific networks coordinated by HSP90 revealed PRKD2 as a potential client for the chaperone in chronic myeloid leukemia (CML) cells (20). The serine-threonine kinase PRKD2 and its sister isoforms PRKD1 and PRKD3 belong to the calcium/calmodulin-dependent protein kinase superfamily (21) and are activated by various stimuli including phorbol esters, reactive oxygen species (ROS), receptor tyrosine kinases and hypoxia (22 - 24). PRKD2 expression and activity correlates positively with the state of de-differentiation in lymphoma (25) and was demonstrated to be involved in myeloid
leukemia by activating NF-κB transcription factors (26). Furthermore, PRKD2 is involved in migration, invasion and growth of glioblastoma and pancreatic cancer cells (27-29). We have recently identified PRKD2 as a crucial mediator of hypoxia-induced VEGF-A expression and secretion in pancreatic cancer cells (24).

The aim of this study was to interrogate the contribution of PRKD2 to HSP90-mediated tumor growth and tumor angiogenesis. In addition, the involvement of PRKD2 in the regulation of hypoxia-mediated HIF-1α stabilization, NF-κB activation and VEGF-A production in the context of pharmacologic inhibition of HSP90 represented a major focus of our work. We identified PRKD2 as a novel client of HSP90 and revealed its requirement for tumor viability and tumor angiogenesis during abrogation of chaperone activity in vitro and in vivo. The fact that HSP90 regulates the stability of PRKD2, which acts as a two-pronged protein mediating tumor blood vessel formation via hypoxia-induced HIF-1α stabilization, VEGF-A production and tumor vascularization on the one hand and cancer cell viability on the other, makes HSP90 inhibition a strategy to target two cancer characteristics with one drug.

Our work shows that PRKD2 represents a crucial molecule that appears to orchestrate hypoxia/HIF-1α and chaperone’s molecular signals in epithelial tumors through the activation of NF-κB and their target gene VEGF. Furthermore, our data indicate that HSP90 inhibitors (PU-H71 and STA-9090) currently undergoing clinical evaluation in patients might be used to target cancer growth and blood vessel formation particularly in hypoxic tumors with high expression of PRKD2. Given current efforts to develop PRKD2 kinase inhibitors, we envision the combined use of HSP90 and PRKD2 kinase inhibitors to achieve synergistic effects.
Material and Methods

For details, see Supplementary Data.

Cell lines and inhibitors
Cancer cell lines originating from ATCC were cultured in early passages in DMEM (Invitrogen, Germany) supplemented with 10% fetal calf serum (FCS: PAA, Germany), 1% penicillin/streptomycin and 5 µg/ml Plasmocin Prophylactic (InvivoGen). HCT-116 colon cancer cells were maintained in McCoy media supplemented with 10% FCS. Cell lines were authenticated using Multiplex Cell Authentication by Multiplexion (Heidelberg, Germany). MG-132 was obtained from Sigma-Aldrich, bortezomib was purchased from LC Laboratories. PU-H71 was synthesized as reported (30). STA-9090 was purchased from SelleckChem.

Plasmids, transfection and lentiviral transduction
The Block-IT Pol II miR RNAi sequences (#NM_016457.3-1295 and #NM_016457.3-1295-2019, Invitrogen) targeting human PRKD2 cloned into pLenti6.4CMV/R4R2/V5-DEST vector via Gateway technology (Invitrogen) used for lentiviral mediated knock-down were described previously (24) pLKO.1 lentiviral shRNA vectors were obtained from the TRC-Hs 1.0 (Human) shRNA library through Open Biosystem: HSP90A (TRCN0000001025), HSP9090B (TRCN00000008748), AKT1 #1 ((TRCN00000039794), AKT1 #2 (TRCN00000039797), RAF1 (TRCN0000001067). The pLenti6.2-V5-DEST-PRKD2, pLenti6.2-V5-DEST-AKT1 and pLenti6.2-V5-DEST-RAF1 overexpression vectors were generated using the pDONR-223-PRKD2, pDONR-223-AKT1 and pDONR-223-RAF1 entry clones from Addgene (PRKD2, #23490; AKT1, #23752 and RAF1, # 23832). High-titer virus-containing supernatants of 293FT after transient co-transfection of lentiviral vectors with pMD2 and psPAX2 viruses were used for lentiviral mediated transduction of cancer cells.

CAM assay
HCT-116 or MDA-MB231 cancer cells (1 x 10^6) were xenografted within 5 mm silicon rings on the surface of the chorionallantoic membrane (CAM) 8 days after fertilization. HSP90 inhibitor was delivered ectopically 24 and 48 hours after tumor xenograft at a concentration of 1 µM in serum-free media in a volume of 20 µl serum-free antibiotics-free DMEM media. Four days after implantation (day 12 after fertilization), tumors were retrieved, fixed in formalin and further subjected to immunohistochemistry.

Immunohistochemistry of CAM and mouse tumors

Formalin-fixed tumors were embedded in paraffin using standard procedures. The 5 µm sections were processed and stained with antibodies directed against PRKD2 (1:250; Abcam #ab51250); pan-cytokeratin (1:80; Dako, clone AE1/AE3); desmin (1:80; Dako, clone D33); von Willebrand Factor VIII (1:100; Biocare Medical, #CP039B); and Ki67 (1:100; Dako, clone MIB-1). Apoptotic cells were detected by TUNEL using the In Situ Cell Death Detection Kit, POD (Roche, # 11684817910) and quantified by counting >700 cells from at least four microscopic fields.

Mouse xenotransplantation experiments

All animal experiments were conducted according to German Animal Welfare and research protocols were approved by the Animal Care and Use Committee at the Regierungspräsidium Tübingen, Germany (TV-1153). MDA-MB231 breast cancer and HCT-116 colon cancer cells (5 x 10^6 each) were subcutaneously inoculated at the left and right dorsal sides of 6 week old female athymic mice (NMRI-(nu/nu), Janvier Labs, Le Genest-Saint-Isle, France. Each experimental group consisting of 9 animals received either 75 mg per kg body weight PU-H71 i.p. three times/week or PBS as vehicle. Tumor size was monitored and measured for the next 3 weeks. After tumor retrieval, tumor volume was calculated according to the formula 0.5xLxWxT (L, length; W, width; T, thickness). Tumors were further processed for immunohistochemistry.

Statistics
Analyses were performed with GraphPad Prims 5.0. Statistical significance was assessed by an unpaired student t test. p<0.05 was considered significant.

Results

Using an affinity-based proteomic assay followed by chemical precipitation and western blotting validation, Moulick and colleagues (20) identified PRKD2 as a putative HSP90 client in K562 CML cells. In order to assess whether HSP90 is able to bind to PRKD2 in solid tumors, co-immunoprecipitation experiments with lung cancer (A549), breast cancer (MDA-MB-231) and pancreatic cancer (PaTu2) cells were performed (Fig. 1A). While PRKD2 interacted with HSP90 in all three cancer cell lines (Fig. 1A), an interaction between PRKD2 and HSP27 or HSP70 chaperones could not be observed (data not shown). To investigate whether the stability of PRKD2 requires HSP90, we performed knock-down experiments using short hairpin RNAs (shRNAs) targeting HSP90α (shHSP90α) or HSP90β (shHSP90β) respectively. shRNA-mediated abrogation of both HSP90 isoforms resulted in a decrease of PRKD2 protein levels in A549, MDA-MB-231 and PaTu2 cell lines (Fig. 1B and 1C) and this was associated with induction of apoptosis as revealed by enhanced PARP cleavage in western blot analysis (Fig. 1B and 1C) or TUNEL assay (S.1A).

Altogether these data infer PRKD2 as a putative novel HSP90 client in epithelial tumor cells and suggest PRKD2 depletion via HSP90 inhibition as a potential strategy to target cancer cells.

HSP90 is highly expressed in many tumors and allows the activation of tumor-specific signaling pathways and buffering stress conditions in the tumor microenvironment (31). Therefore, several ATP-competitive HSP90 inhibitors targeting a wide range of malignant tumors are currently under clinical investigation (1, 20, 32). To investigate whether PRKD2 stability is affected after pharmacologic HSP90 inhibition, eight human cancer cell lines representing six different tumor types (breast cancer, pancreatic cancer, lung cancer, colon cancer, acute myeloid leukemia (AML) and glioblastoma) were incubated for 24 hours with increasing concentrations of two different compounds: PU-H71, an optimized water soluble member of the purine class of HSP90 inhibitors (20) and STA-9090, a resorcinol-containing triazole molecule with a novel chemical structure, both unrelated to the
geldanamycin class of HSP90 inhibitors (1). Both inhibitors caused dose-dependent degradation of PRKD2 in all tumor cell lines (Fig. 1D and S.1B). HSP90 inhibition-mediated PRKD2 degradation was associated with increased apoptosis as revealed by augmented PARP and caspase 9 cleavage in all tumor cell lines (Fig. 1D and S.1B). The enhanced cleaved caspase 9 indicates apoptosis induction via mitochondrial pathway. To prove that HSP90 inhibition-mediated depletion of PRKD2 contributes to the induction of cell death in tumor cells, we first sought to investigate whether down-regulation of PRKD2 preceded the induction of apoptosis. Pancreatic, breast and lung cancer cell lines were incubated with PU-H71 for 4, 8, 12, 16, 20 and 24 hours and PRKD2 and cleaved PARP protein levels were assessed by western blotting (Fig. 1E). Degradation of PRKD2 commenced after 4 hours in PaTu2, 8 hours in MDA-MB-231 and 12 hours in A549 and was followed by PARP cleavage at around 12 hours in all tumor cell lines, indicating causality between the reduction of PRKD2 protein levels and induction of apoptosis (Fig. 1E). To further substantiate that PRKD2 is crucial for killing cancer cells after HSP90 inhibition, we ectopically expressed a GFP-PRKD2 construct in three cancer cell lines (MDA-MB-231, A549 and PaTu2), treated them with PU-H71 and analyzed PRKD2 levels and PARP cleavage by western blotting. Both endogenous and overexpressed PRKD2 were subject of degradation; however the higher remaining PRKD2 protein levels partially rescued cell viability after HSP90 inhibition (Fig. 2A). We confirmed these results involving additional approaches such as determination of apoptosis by annexin V staining in MDA-MB-231 cells and MTT assay for PaTu2 and MDA-MB-231 cancer cells after incubation with PU-H71 for 24 hours. Enforced expression of PRKD2 resulted in partial rescue of cell viability (Fig. 2B, S.2A and S.2B). Conversely, overexpression of a kinase-inactive mutant of PRKD2 (GFP-PRKD2-KD) did not prevent cell death triggered by pharmacologic abrogation of HSP90 activity in MDA-MB-231 and PaTu2 cancer cells, suggesting the involvement of PRKD2 kinase activity in tumor cell viability (Fig. 2C). Furthermore, the examination of the abundance of PRKD2 protein in control or PU-H71-treated A549 and MDA-MB-231 cells after incubation with 5 µM cycloheximide (CHX) showed that HSP90 inhibition accelerated the PRKD2 protein decay after protein translation blockade by CHX (S.2C). We next characterized the mechanism of PRKD2 degradation after treatment with PU-H71. To assess whether PRKD2 is
degraded via the lysosomal pathway, we treated MDA-MB-231 breast cancer and A549 lung cancer cells with the lysosome inhibitor NH₄Cl before PU-H71 incubation. Western blot analysis testing the abundance of PRKD2 protein in the detergent-soluble and detergent-insoluble fractions showed that preincubation with NH₄Cl did not result in an increase of PRKD2 levels compared with the HSP90 inhibitor treatment alone, indicating that PRKD2 is not degraded via the lysosomal pathway (S.2D). In contrast, pretreatment of A549 and MDA-MB-231 cell lines with two different proteasome inhibitors, bortezomib or MG-132, followed by incubation with PU-H71 rescued PRKD2 levels and resulted in redistribution of PRKD2 to the detergent-insoluble fraction (Fig. 2D and S.2E). Consistent with its degradation via the proteasomal pathway, PRKD2 was extensively ubiquitinated in 293T cells transiently overexpressing PRKD2 after treatment with PU-H71 in combination with bortezomib (Fig. 2E). Together, these findings indicated that degradation of PRKD2 upon HSP90 inhibition occurs via the proteasomal pathway. Further, we analyzed whether the effect of HSP90 inhibition might be caused by depletion of other proteins such as serine/threonine kinases AKT1 and RAF1 that have been reported to be HSP90 clients. Pharmacologic inhibition of HSP90 in A549, MDA-MB-231 and HCT-116 cancer cells triggered the abrogation of AKT1 and RAF1 protein expression (S.3A and S.3B). Interestingly, shRNA-mediated deletion of AKT1 or RAF1 was associated with increased apoptosis in HCT-116 but not in A549 and MDA-MB-231 cancer cells (S.3C and S.3D). As previously shown, the ectopic expression of either AKT1 or RAF1 was not sufficient to restore, the cell viability after HSP90 inhibition (S.3E, S.3F and 33). While all these results argue against AKT1 and RAF1 to be responsible for the apoptotic effect of PU-H71 across different tissues, it is of course possible that other clients (33) contribute to the observed effects in addition to PRKD2.

We previously reported a crucial role for PRKD2 in tumor angiogenesis and cancer cell proliferation (24, 27). We therefore sought to investigate whether PRKD2 depletion via HSP90 inhibition might impair tumor growth and blood vessel formation using a CAM xenotransplantation assay. MDA-MB-231 breast cancer and HCT-116 colon cancer cells stably expressing PRKD2 or empty vector were xenografted on the surface of chicken CAM eight days after egg fertilization. The in vivo efficacy of PU-H71 has been previously tested (33). PU-H71 was ectopically applied 24 hours and 48 hours after
implantation and tumor growth was monitored. Four days after implantation tumors were excised, photographed and analyzed by immunohistochemistry (IHC). Treatment with PU-H71 of cancer cell lines expressing empty vector resulted in a significant decrease in tumor size (Fig. 3A and 3B). IHC analysis showed pronounced PRKD2 degradation upon HSP90 inhibition, which was associated with a significantly reduced proliferation rate as measured by Ki67 staining, and increased apoptosis as determined by TUNEL analysis (Fig. 3C, 3D, 3E and S.4A and S.4B). Examination of tumor-driven vascularization in xenografts revealed a marked reduction of blood vessel density, as determined by desmin and von Willebrand Factor (vWF) staining upon PU-H71 treatment compared to tumors treated with vehicle (Fig. 3C, 3F and 3G). Overexpression of PRKD2 was able to revert all PU-H71-induced effects as demonstrated by restored tumor formation (Fig. 3A and 3B), enhanced tumor proliferation (Fig. 3C, 3D and S.4A), impaired apoptosis (Fig. 3C, 3E and S.4B) and restored blood vessel formation (Fig. 3C, 3F and 3G).

To further substantiate the data obtained in the CAM model, we examined the effects of HSP90 inhibition-mediated PRKD2 degradation in an additional in vivo model. HCT-116 colon carcinoma and MDA-MB-231 breast cancer cells stably overexpressing PRKD2 or empty vector were injected subcutaneously into both flanks of nude mice. One week later when tumors were palpable, mice received either 75 mg PU-H71 per kg body weight or vehicle (PBS) i.p. three times per week. After three weeks, mice were sacrificed and tumors were analyzed. In line with the CAM experiments, pharmacologic inhibition of HSP90 resulted in substantially decreased tumor growth, increased apoptosis and impaired angiogenesis in tumors expressing control vector (Fig. 4A-F, S.5A, S.5B, S.6A and S.6B). Conversely, administration of PU-H71 to mice that received cancer cells overexpressing PRKD2 showed little effect. Tumors from PBS treated mice and tumors overexpressing PRKD2 from PU-H71 treated mice were associated with less TUNEL-positive cells (Fig. 4D, 4F and S.5B), increased vWF expression (Fig. 4D, 4E, S.5A), augmented VEGF expression (S.5A) and higher number of Ki67-positive tumor cells as compared to tumors transduced with empty vector and treated with PU-H71 (S.6A and S.6B). These data are in line with our previous finding that
PRKD2 plays a major role in tumor growth and tumor angiogenesis and suggest that these properties can be counteracted by HSP90 inhibition-mediated PRKD2 depletion.

VEGF-A is one of the most potent mediators of the formation of blood vessels both under physiological and pathological conditions. We have previously reported that PRKD2 ablation impairs hypoxia-induced VEGF-A expression and secretion in pancreatic cancer cells (24). Since hypoxic upregulation of VEGF-A occurs mainly via the stabilization of HIF-1α, we sought to investigate whether PRKD2 might regulate VEGF-A via this sensor protein. Specific PRKD2 suppression via RNA interference in pancreatic (PaTu2) and lung (A549) cancer cells abrogated hypoxia-induced accumulation of HIF-1α protein (Fig. 5A and 5B). Accumulation of hypoxia-induced HIF-1α was also prevented when A549 and MDA-MB-231 cancer cells were treated with the PRKD inhibitor Gö6976 (S.7A). In addition, depletion of PRKD2 in tumor cells was associated with a significant reduction of transcriptional activation of the HIF-response element (HRE), a HIF-1α docking site present in promoters that contain the RCGTG sequence (Fig. 5C). HIF-1α has been reported to be an HSP90 client (6, 33). In line with this, shRNA-mediated depletion of HSP90 and pharmacologic HSP90 inhibition in breast cancer cells resulted in impaired hypoxia-induced HIF-1α accumulation (Fig. 5D and 5F). In both cases, abrogation of HIF-1α protein accumulation was associated with decreased hypoxia-induced intracellular and secreted VEGF-A levels (Fig. 5D, 5E, 5F and 5G).

We next asked whether PRKD2 is involved in hypoxia-induced stabilization of HIF-1α during HSP90 inhibition. Therefore, cancer cell lines stably transduced with PRKD2 or empty vector were incubated in low-oxygen atmosphere in the presence or absence of HSP90 inhibitor. As expected, treatment of tumor cells containing empty vector with PU-H71 impaired hypoxia-stabilized HIF-1α levels (Fig. 6A, 6B). Overexpression of PRKD2 was able to partially rescue the hypoxia-induced accumulation of HIF-1α protein (Fig. 6A and 6B) and HRE promoter activity (Fig. 6C), resulting in restored VEGF-A levels secreted by MDA-MB-231 and HCT-116 cells (Fig. 6D). Together, these data suggest that hypoxia-induced stabilization of HIF-1α protein is mediated by HSP90 directly and through PRKD2, supporting a concept where PRKD2 links chaperone and hypoxia signaling pathways. VEGF-A can be secreted
by tumor cells upon activation of HIF-1α and NF-κB transcription factors (35). Furthermore, low oxygen environment was reported to promote not only the accumulation of HIF-1α but also to activate NF-κB transcription factors via TAK1/IKK signaling (36). HSP90 was shown to interact with the kinase domain of IKKα/IKKβ, and inhibition of HSP90 by geldanamycin prevented TNF-induced activation of IKK and NF-κB (37). We therefore wanted to know whether NF-κB signaling might be connected to the hypoxic response regulated by PRKD2 and HSP90. Our experiments show that NF-κB promoter activity is increased upon incubation of MDA-MB-231 cells in low oxygen atmosphere (Fig. 6E and 6F). HSP90 inhibition resulted in impaired hypoxia-induced NF-κB promoter and reduced binding activity (Fig. 6E and data not shown). Similarly, shRNA-mediated suppression of PRKD2 resulted in decreased luciferase production of the NF-κB reporter (Fig. 6F). We previously demonstrated that hypoxia-induced VEGF-A promoter activity, and intracellular and secreted VEGF-A levels are also impaired upon PRKD2 knock-down in cancer cells (24). Since hypoxia and HSP90 mediate their signals through the IKK complex towards NF-κB which is also activated by PRKD2 (26, 46), we asked whether PRKD2 plays any role in this scenario. A triple active mutant of PRKD2 (PRKD2-S244/706/710E, PRKD2-3SE) was sufficient to enhance both, the NF-κB and VEGF-A promoter activity (Fig.6G and 6H). Conversely, co-expression of a dominant negative IκBα (TD-IκBα) mutant was associated with the blockade of hypoxia and hypoxia/PRKD2-3SE-induced NF-κB and VEGF-A transcriptional activity (Fig. 6G and 6H). Altogether these data suggest that activation of NF-κB by PRKD2 involves the phosphorylation and proteasomal degradation of IκBα. Notably, the activation of VEGF-A promoter by hypoxia and/or active PRKD2 is suppressed upon blockade of NF-κB signaling which would suggest a hypoxia → PRKD2 → NF-κB → VEGF-A signaling axis. However, enforced expression of PRKD2 was able to marginally restore the hypoxia-induced NF-κB promoter activity affected by the inhibition of HSP90 (S.7B). Taken together, these results favor PRKD2 as a kinase acting in both NF-κB and HIF-1α pathways thereby connecting hypoxic signals and HSP90 chaperone function to promote tumor growth and tumor angiogenesis.
Discussion

HSP90 serves as an ATP-dependent stabilizer of diverse signaling proteins, including many kinases that are involved in cell proliferation and survival. Chaperone inhibitors were recently shown to effectively inhibit tumor cell growth and angiogenesis in hematologic and solid-organ malignancies. However, it remains elusive whether cancer cell killing or disruption of vasculature network supplying tumor cells is mediated by depletion of a single molecule or simultaneous degradation of multiple client proteins that are overexpressed and/or mutated in cancer (38).

In this study, we have identified PRKD2 as a novel client of the HSP90 chaperone. We could demonstrate that PRKD2 interacts with HSP90 in several cancer cell lines. Depletion of PRKD2 protein following pharmacologic inhibition of HSP90 was associated with tumor cell death \textit{in vitro} in various human cancer cell lines, as well as in two \textit{in vivo} xenograft models. These data not only confirm the role of PRKD2 as an anti-apoptotic signaling molecule (39, 40), but also implicate PRKD2 in the cell death evoked by HSP90 inhibition. Our earlier findings demonstrated that PRKD2 is a crucial mediator of tumor angiogenesis involving upregulation and secretion of VEGF-A (24). This prompted us to investigate whether HSP90 might contribute to tumor angiogenesis through PRKD2 protein stabilization. We demonstrated that pharmacologic inhibition of HSP90 impaired blood vessel formation \textit{in vivo}. The fact that PRKD2 overexpression restored vascularization and cell viability after HSP90 inhibition points to the involvement of PRKD2 in these HSP90 inhibitor-induced effects. Our data support PRKD2 degradation through HSP90 inhibition as a putative strategy to hit two important cancer characteristics - angiogenesis and cell viability - with one drug.

HSP90 inhibitors have been reported to indirectly regulate HIF-1\(\alpha\) (41 - 44). Furthermore, the HSP90 inhibitor geldanamycin reduced hypoxia-mediated HIF-1\(\alpha\) activation, indicating that chaperone activity is needed for this activation (6). The fact that HSP90 interacts both with HIF-1\(\alpha\) (6) and PRKD2 (this study) prompted us to evaluate the contribution of PRKD2 with respect to HIF-1\(\alpha\) stabilization in hypoxic tumors. We found that abrogation of PRKD2 in cancer cells prevented hypoxia-mediated HIF-1\(\alpha\) accumulation and HIF-1\(\alpha\) promoter activity. In line with several reports, reduced HSP90
expression and/or activity resulted in impaired hypoxia-triggered HIF-1α accumulation and decreased VEGF-A expression. Notably, ectopically expressed PRKD2 was able to partially restore HIF-1α protein levels, HIF-1α transcriptional activity and secreted VEGF-A levels after pharmacologic HSP90 inhibition. Together, these findings suggest that PRKD2 is required for hypoxia-induced HIF-1α accumulation and that HSP90-supported angiogenesis is modulated by PRKD2 in hypoxic tumors by regulating HIF-1α protein levels and subsequent VEGF-A secretion.

VEGF-A can be produced by tumor cells upon activation of HIF-1α and NF-κB (35). Hypoxia drives the accumulation of HIF-1α but also activates NF-κB transcription factors (36). Furthermore, inhibition of HSP90 was shown to promote apoptosis through suppression of AKT/NF-κB signaling (45). Thus, NF-κB represents a downstream effector of two major signaling routes: the hypoxia-induced HIF-1α and HSP90 pathways. Since PRKD2 was reported to mediate stress-induced NF-κB activation and cell survival (46), we reasoned that PRKD2 acts upstream of NF-κB and might be a possible important molecule involved in hypoxia/HIF-1α and HSP90 signaling down to NF-κB and subsequently to VEGF-A expression/secretion. We found that hypoxia-induced NF-κB activation was blocked by HSP90 inhibition and shRNA-mediated suppression of PRKD2. The finding that PRKD2 was able to just marginally restore hypoxia-induced NF-κB promoter activity affected by the inhibition of HSP90 suggests that other factors might be required as well for the HSP90 angiogenic signals through NF-κB pathway.

In conclusion, our data suggest a central role for PRKD2 to enhance HIF-1α accumulation in low-oxygen environment. Stabilization of PRKD2 by HSP90 also results in the activation of NF-κB and its target VEGF-A, which promotes cancer cell growth and increases blood vessel formation in hypoxic tumors (Fig. 7). Whether and how PRKD2 activates NF-κB / VEGF-A via upregulation of HIF-1α in hypoxic tumors or whether and how it contributes to the parallel activation of distinct HIF-1α / VEGF-A or NF-κB / VEGF-A pathways remains to be elucidated. This study may also have clinical implications since several HSP90 and PRKD2 inhibitors are currently in clinical trials or under development. The
combination of HSP90 and PRKD2 inhibitors might have synergistic effects in patients with hypoxic tumors expressing high levels of PRKD2.

Disclosure of Potential Conflicts of Interest

Memorial Sloan-Kettering Cancer Center holds the intellectual rights to PU-H71. Samus Therapeutics, of which G. Chiosis has partial ownership, has licensed PU-H71.

Authors’ Contributions

Conception and design: N. Azoitei, T. Seufferlein, C. Scholl, S. Fröhling
Acquisition of data: N. Azoitei, K. Diepold, F. Genze, A. Rouhi, C. Brunner
Analysis and interpretation of data: N. Azoitei, A. Rouhi, C. Brunner, G. Chiosis, T. Seufferlein
Writing, review, and/or revision of the manuscript: N. Azoitei, T. Seufferlein, C. Scholl, S. Fröhling, J. van Lint, G. Chiosis, C. Brunner
Administrative, technical, or material support: N. Azoitei, T. Seufferlein, G. Chiosis, C. Scholl, S. Fröhling
Study supervision: N. Azoitei, T. Seufferlein

Acknowledgments

The authors thank Susanne Bobrovich for excellent technical assistance.

Grant Support

This work was supported by German Research Foundation (DFG; grant AZ.96/1-1) to N. Azoitei, Deutsche Krebshilfe #109373 and DFG SE.676/10-1 to T. Seufferlein and R01 CA172546 and R01 CA155226 grants to G. Chiosis. N. Azoitei and K. Diepold were supported by the DFG grant to N. Azoitei, C. Scholl was supported by an Emmy Noether Fellowship from the DFG.

References

2. Semenza G. Signal transduction to hypoxia-inducible factor 1, Biochem Pharmacol. 2002 Sep;64 (5-6):993-8.
Figure legends

Figure 1. HSP90 inhibition results in PRKD2 degradation and induces apoptosis. A, immunoprecipitation of endogenous PRKD2 was performed with lysates of PaTu2, A549 and MDA-MB-231 cells (PRKD2) and compared to control beads (Control). Membranes were incubated with HSP90α/β and PRKD2 antibodies. 50 µg of total lysate was subjected to SDS-PAGE and subsequent incubation with PRKD2 antibody (left panels). B, C, protein expression of HSP90α, HSP90β, PRKD2 and cleaved PARP was determined in cancer cell lines transduced with a non-targeting control shRNA (Scr) or a shRNA-targeting HSP90α or HSP90β. D, breast cancer (MDA-MB-231), pancreatic cancer (PaTu2), lung cancer (A549), colon cancer HCT-116 and acute myeloid leukemia (SKM1) cell lines were incubated with increasing amounts of PU-H71 and STA-9090 as indicated. Western blot analysis with PRKD2, cleaved PARP and cleaved caspase 9 antibodies are depicted. E, lysates of cancer cell lines incubated with 1µM PU-H71 for the indicated time points were subjected to western blot analysis with PRKD2 and cleaved PARP antibodies.

Figure 2. Destabilization of PRKD2 is essential for HSP90 inhibition-triggered apoptosis in tumor cells. A, lysates of cancer cell lines transiently transfected with empty vector (e.v.) or GFP-PRKD2-widtype (PRKD2-wt) and incubated with PU-H71 for 24 hours were subjected to western blot analysis with PRKD2 and cleaved PARP antibodies. Cleaved PARP bands were quantified by densitometric analysis using ImageJ program (right-hand panels). B, MDA-MB-231 cancer cells transiently transfected with empty vector (e.v.) or PRKD2-wildtype (PRKD2-wt) and incubated with PU-H71 for 24 hours were subjected to Annexin V / Propidium iodide staining. The bar graphs represent the means of Annexin V+/PI- cells from three independent experiments. C, cancer cell lines transfected with a GFP-tagged kinase dead PRKD2 (PRKD2-KD) mutant and incubated with PU-H71 for 24 hours were subjected to western blotting. Membranes were incubated with PRKD2 and cleaved PARP antibodies. Cleaved PARP bands were quantified by densitometric analysis using ImageJ program (right-hand panels). D, soluble and insoluble protein fractions of breast and lung cancer cell
lines pre-treated with Bortezomib for 2 h before incubation with PU-H71 were subjected to western blotting. Membranes were incubated with PRKD2 antibody. E, 293T cells transfected with GFP-PRKD2 were treated as described in (D) and immunoprecipitation analysis was performed with anti-GFP antibody. Membranes were incubated with anti-Ubiquitin and PRKD2 antibodies.

Figure 3. HSP90 inhibition impairs tumor growth and tumor blood vessel formation on CAM in a PRKD2-dependent manner A, MDA-MB-231 or HCT-116 stably expressing PRKD2 (PRKD2-wt) or empty vector (e.v.) were delivered to CAM. 24 hours old tumors were treated with 1µM PU-H71 for the next 48 hours. Bar, 1.5 mm. B, quantification of tumor area is presented. Error bars represent mean +/- SEM of four to seven tumors. C, IHC of HCT-116 cells growing on CAM using specific antibodies directed against PRKD2, Ki67, desmin and von Willebrand factor (vWF) is presented. Parallel samples were subjected to TUNEL staining. D, quantification of Ki67 positive HCT-116 cells is shown. E, quantification of TUNEL-positive cells for colon cancer cell xenografted on chicken CAM is displayed. Error bars represent mean +/- SEM of at least four microscopic fields with 700 cells. F, G, desmin and von Willebrand Factor immunoreactivity were quantified by subtracting background staining from specific desmin or von Willebrand Factor using Optima software. Scale bar indicates 125 µm.

Figure 4. HSP90 inhibition decreases tumor growth and tumor blood vessel formation in nude mice in a PRKD2-dependent manner. A, PRKD2 expression in colon and breast cancer cell lines stably transduced with PRKD2 is presented. B, one week following subcutaneous tumor transplantation mice were injected with PU-H71 or PBS as control. Three weeks later animals were sacrificed and tumors were analyzed. Photographs of five representative tumors per experimental group and cell line are depicted. C, the volume of explanted tumors is shown. Graphs represent means +/- SEM of at least 14 tumors per experimental group and cell line as indicated in 4B. D, IHC analysis of xenografted HCT-116 tumors with antibodies against von vWF and TUNEL are displayed. E, vWF labeling was quantified by subtracting the background staining using Optima software. F,
quantification of HCT-116 TUNEL-positive tumor cells is presented. Error bars represent mean +/- SEM of at least four microscopic fields with 600 cells. Scale bar indicates 125 µm.

Figure 5. PRKD2 mediates hypoxia-induced accumulation and promoter activity of HIF-1α.

A, lung, breast and pancreatic cancer cell lines were stably transduced with PRKD2-specific microRNA (miR-PRKD2) or a non-coding microRNA (miR-Scr). Western blot analysis was conducted with antibodies against PRKD1, PRKD2 and PRKD3. B, pancreatic and lung cancer cell lines stably transduced with miR-PRKD2 or miR-Scr were incubated for 24 hours under low oxygen atmosphere. Cell extracts were subjected to western blot analysis with PRKD2 and HIF-1α antibodies. C, breast and lung cancer cell lines with abrogated PRKD2 were transiently transfected with 3xHRE-luc and pTK-Renilla. Four hours after transfection cells were incubated under normoxic or hypoxic conditions and then cell lysates were subjected to luciferase assay. Bars are the means +/- SEM of at least three independent experiments. D, breast cancer cells transduced with a non-targeting control shRNA or HSP90α and HSP90β-specific shRNAs were incubated under hypoxia or normoxia for 24 hours and HIF-1α and VEGF-A levels were determined using western blot analysis. E, supernatants of MDA-MB-231 cells with suppressed HSP90α/β and incubated in low oxygen were subjected to VEGF-A-specific ELISA. F, lysates of MDA-MB-231 cancer cells incubated under low oxygen or normoxia in the presence or absence of PU-H71 inhibitor were subjected to western blot analysis with HIF-1α and VEGF-A antibodies. G, supernatants of MDA-MB-231 cells incubated in hypoxic or normoxic conditions in the presence or absence of PU-H71 were subjected to VEGF-A-specific ELISA. Bars represent the means +/- SEM of two independent experiments in triplicate. No = normoxia; Hy = hypoxia.

Figure 6. Ectopic PRKD2 restores hypoxia-induced stabilization of HIF-1α after HSP90 inhibition.

A, B, lung and breast cancer cells transduced with control vector (e.v.) or PRKD2 (PRKD2-wt) were incubated under hypoxic conditions or normoxia for 24 hours in the presence or absence of HSP90 inhibitor. Western blot analysis with HIF-1α and PRKD2 specific antibodies is
presented. **C,** breast cancer cells overexpressing PRKD2 were transfected with 3xHRE-luc reporter and then incubated in hypoxic or normoxic environment in the presence or absence of HSP90 inhibitor. Luciferase production was assayed. Bars are the means +/- SEM of three independent experiments. **D,** supernatants of breast and colon cancer cells stably overexpressing PRKD2 or empty vector and incubated in low oxygen in the presence or absence of PU-H71 were subjected to VEGF-A-specific ELISA. **E,** breast cancer cells transfected with 3x κB-luc reporter were incubated in hypoxic or normoxic environment in the presence or absence of HSP90 inhibitor and cell lysates were subjected to luciferase assays. **F,** MDA-MB-231 cancer cells transduced with PRKD2-specific miR transfected with 3x-κB-luc and pTK-Renilla were incubated under normoxic or hypoxic conditions. Cell lysates were subjected to luciferase assay. **G,** lysates of MDA-MB-231 cells transfected with PRKD2-wt, constitutive active PRKD2 (PRKD2-3SE) and trans-dominant IκBα mutant (TD-IκBα) and incubated in normoxic or hypoxic atmosphere were subjected to luciferase assay. **H,** MDA-MB-231 cells were transfected with PRKD2-wt, constitutive active PRKD2 (PRKD2-3SE) and trans-dominant IκBα mutant (TD-IκBα) subsequent to incubation in normoxic or low oxygen atmosphere. Lysates were subjected to luciferase reporter assay. For all experiments bars represent the means +/- SEM of at least three independent experiments.

Figure 7. PRKD2 modulates HSP90-driven tumor growth and tumor angiogenic by regulating hypoxia-mediated HIF-1α accumulation and inducing VEGF-A secretion via activation of NF-κB. **A,** stabilization of PRKD2 by HSP90 contributes to enhanced HIF-1α accumulation in low oxygen environment. In this scenario, activation of NF-κB and its target VEGF-A is associated with augmented tumor growth and increased blood vessel formation. **B,** degradation of PRKD2 following HSP90 inhibition affects HIF-1α/VEGF-A and/or HIF-1α/NF-κB/VEGF-A signaling pathways and triggers enhanced cancer cell apoptosis and impaired tumor vascularization. Dotted bold lines represent basal signaling in hypoxic tumors; dotted thin lines represent impaired signaling.
Figure 1

Panel A: Input (50 μg) and IP (1500 μg) analysis showing the expression levels of PRKD2 and β-actin in A549, MDA-MB-231, and PaTu2 cell lines.

Panel B: Scr and shHSP90β treatments showing the expression levels of HSP90β, PRKD2, PARP, and β-actin in A549, MDA-MB-231, and PaTu2 cell lines.

Panel C: Scr and shHSP90α treatments showing the expression levels of HSP90α, PRKD2, PARP, clv. PARP, and β-actin in A549, MDA-MB-231, and PaTu2 cell lines.

Panel D: Analysis of PRKD2, PARP, clv. PARP, clv. caspase 9, β-actin, and U7 PU-H71 treatments in MDA-MB-231, PaTu2, A549, HCT-116, and SKM1 cell lines.

Panel E: Expression levels of PRKD2, PARP, clv. PARP, and β-actin in A549, MDA-MB-231, and PaTu2 cell lines treated with STA-9090 for different times.
Figure 3

A

HCT-116

e.v. | e.v. + PU-H71 | PRKD2-wt + PU-H71

MDA-MB-231

e.v. | e.v. + PU-H71 | PRKD2-wt + PU-H71

B

HCT-116

Tumor area (%)

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.002</td>
<td>p=0.015</td>
<td></td>
</tr>
</tbody>
</table>

MDA-MB-231

Tumor area (%)

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.004</td>
<td>p=0.026</td>
<td></td>
</tr>
</tbody>
</table>

C

PRKD2

Ki67

TUNEL

Desmin

vWF

e.v.

e.v. + PU-H71

PRKD2-wt + PU-H71

D

Ki67 positive cells (%)

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p<0.001</td>
<td>p<0.001</td>
<td></td>
</tr>
</tbody>
</table>

E

TUNEL positive cells (%)

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.003</td>
<td>p=0.006</td>
<td></td>
</tr>
</tbody>
</table>

F

Desmin staining intensity

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.0002</td>
<td>p=0.026</td>
<td></td>
</tr>
</tbody>
</table>

G

vWF staining intensity

<table>
<thead>
<tr>
<th>e.v.</th>
<th>e.v. + PU-H71</th>
<th>PRKD2-wt + PU-H71</th>
</tr>
</thead>
<tbody>
<tr>
<td>p<0.0001</td>
<td>p<0.0001</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

A

B

HCT-116

MDA-MB-231

C

D

E

F

TUNEL

vWF

PRKD2-wt

β-actin

PRKD2

β-actin

HCT-116

MDA-MB-231

Tumor volume (mm³)

Start 1 week 2 weeks 3 weeks Therapy

0 100 200 300

0 100 200 300

p=0.0001 p=0.0119

p=0.0001 p=0.0046

E.L - positive cells (%)

PRKD2-wt + PU-H71

TUNEL - positive cells (%)

PRKD2-wt + PU-H71

vWF staining intensity

p=0.0039

p=0.0046

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2014 American Association for Cancer Research.
Figure 5

A

<table>
<thead>
<tr>
<th></th>
<th>A549</th>
<th>MDA-MB-231</th>
<th>PaTu2</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-Scr</td>
<td>[image]</td>
<td>[image]</td>
<td>[image]</td>
</tr>
<tr>
<td>miR-PRKD2</td>
<td>[image]</td>
<td>[image]</td>
<td>[image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A549</th>
<th>MDA-MB-231</th>
<th>PaTu2</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-Scr</td>
<td>[image]</td>
<td>[image]</td>
<td>[image]</td>
</tr>
<tr>
<td>miR-PRKD2</td>
<td>[image]</td>
<td>[image]</td>
<td>[image]</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>PaTu2</th>
<th>A549</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>[image]</td>
<td>[image]</td>
</tr>
<tr>
<td>Hy</td>
<td>[image]</td>
<td>[image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PaTu2</th>
<th>A549</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>[image]</td>
<td>[image]</td>
</tr>
<tr>
<td>Hy</td>
<td>[image]</td>
<td>[image]</td>
</tr>
</tbody>
</table>

C

![Graph showing 3xHRE-luc Fold induction](image)

D

<table>
<thead>
<tr>
<th></th>
<th>MDA-MB-231</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>[image]</td>
</tr>
<tr>
<td>Hy</td>
<td>[image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MDA-MB-231</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>[image]</td>
</tr>
<tr>
<td>Hy</td>
<td>[image]</td>
</tr>
</tbody>
</table>

E

![Graph showing p53 VEGF-A levels](image)

F

![Graph showing p53 VEGF-A levels](image)

G

![Graph showing p53 VEGF-A levels](image)
Hypoxia

Tumor cell

HSP90
PRKD2
HIF-1α
NF-κB
VEGF

Tumor growth
Tumor angiogenesis

A

Hypoxia

HSP90
PRKD2
HIF-1α
NF-κB
VEGF

Impaired Tumor angiogenesis

B

Hypoxia

HSP90
PRKD2
HIF-1α
NF-κB
VEGF

Apoptosis
Impaired Tumor angiogenesis

PU-H71
HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization

Ninel Azoitei, Kristina Diepold, Cornelia Brunner, et al.

Cancer Res Published OnlineFirst October 8, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-1017

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/10/09/0008-5472.CAN-14-1017.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.