Promoting Thiol Expression Increases the Durability of Antitumor T-cell Functions

Pravin Kesarwani, Amir A. Al-Khami, Gina Scurti, Krishnamurthy Thyagarajan, Navtej Kaur, Shahid Husain, Quan Fang, Osama S. Naga, Patricia Simms, Gyda Beeson, Christina Voelkel-Johnson, Elizabeth Garrett-Mayer, Craig C. Beeson, Michael I. Nishimura, and Shikhar Mehrotra

University of South Carolina, Charleston, South Carolina. 1Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. 2Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina. 3Department of Surgery, Loyola University, Maywood, Illinois. 4Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina. 5Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina. 6Department of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, South Carolina. 7Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina. 8Department of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, South Carolina.

Abstract

Ex vivo–expanded CD8$^+$ T cells used for adoptive immunotherapy generally acquire an effector memory-like phenotype (T$_{EM}$ cells). With regard to therapeutic applications, two undesired features of this phenotype in vivo are limited persistence and reduced antitumor efficacy, relative to CD8$^+$ T cells with a central memory-like phenotype (T$_{CM}$ cells). Furthermore, there is incomplete knowledge about all the differences between T$_{EM}$ and T$_{CM}$ cells that may influence tumor treatment outcomes. Given that T$_{CM}$ cells survive relatively longer in oxidative tumor microenvironments, we investigated the hypothesis that T$_{CM}$ cells possess relatively greater antioxidative capacity than T$_{EM}$ cells. Here, we report that T$_{CM}$ cells exhibit a relative increase compared with T$_{EM}$ cells in the expression of cell surface thiols, a key target of cellular redox controls, along with other antioxidant molecules. Increased expression of redox regulators in T$_{CM}$ cells inversely correlated with the generation of reactive oxygen and nitrogen species, proliferative capacity, and glycolytic enzyme levels. Notably, T-cell receptor–transduced T cells pretreated with thiol donors, such as N-acetyl cysteine or rapamycin, upregulated thiol levels and antioxidant genes. A comparison of antitumor CD8$^+$ T-cell populations on the basis of surface thiol expression showed that thiol-high cells persisted longer in vivo and exerted superior tumor control. Our results suggest that higher levels of reduced cell surface thiols are a key characteristic of T cells that can control tumor growth and that profiling this biomarker may have benefits to adoptive T-cell immunotherapy protocols. Cancer Res; 74(21): 1–12. ©2014 AACR.

Introduction

The clinical success of adoptive T-cell immunotherapy of cancer has been linked to the persistence of effector T cells in vivo (1). Activation and expansion of antigen-specific T cells for adoptive immunotherapy requires prolonged stimulation of T cells, which results in a population with heterogeneous effector and/or memory phenotype (2). Although T cells with effector memory-like phenotype (T$_{EM}$) are the immediate effectors, it is believed that the ones with central memory-like phenotype (T$_{CM}$) are better in controlling tumor growth (3–5). Limited persistence and homing capability of T$_{EM}$ cells is argued for its decreased potential to effectively control tumor growth (5). Therefore, reprogramming of T$_{EM}$ cells towards T$_{CM}$-like cells, using different cytokines or forced expression of transcription factors, is being extensively investigated (2, 6).

Recent studies have implicated a role for free sulfhydryl groups (-SH, also referred to as thiol) in the function of individual cell surface proteins (7, 8). The overall amount of thiols that define the antioxidant and reductive capacity of cells differs among subsets of peripheral blood mononuclear cells (PBMC; ref. 7). These cell surface thiols (c-SH) can be manipulated in vitro by altering the levels of intracellular glutathione (iGSH; γ-glutamylcysteinylglycine), a ubiquitous intracellular thiol that maintains the cellular redox state and the integrity or function of proteins (9). The relationship between iGSH depletion and the generation of reactive oxygen species (ROS) that can accelerate apoptosis has been recently addressed (10). In addition, ROS could also amplify phosphorylation of JNK and Akt–mTOR pathways, leading to decreased persistence of the activated T-cell subsets (11). T-cell
activation also increases the cell metabolism and mitochondrial respiration rates (12). Recent reports have also shown that CD8+ memory T cells, but not CD8+ effector T cells, possess substantial mitochondrial spare respiratory capacity and are a critical regulator of CD8+ T-cell memory development (13). Similarly, a key property of immediate effector T cells to secrete IFNγ is dependent on the availability of glucose (14). While effector T cells express high surface levels of the glucose transporter Glut-1 and are highly glycolytic, regulatory T cells with high antioxidant capacity express low levels of Glut-1 and have high lipid oxidation rates (12, 15). However, whether the differences in thiol/antioxidant capacity affect effector T-cell persistence and its metabolic state impacting their functional outcome has not been addressed.

In this study, we compare the level of thiols/antioxidant along with metabolic commitment between the TCM and TEM-like cells and further evaluate whether that contributes to differential antitumor response. Our data suggest that manipulating the cellular redox state could be the key to prolonged survival of T-cell populations that are otherwise sensitized to death and improve adoptive immunotherapy protocols for the treatment of cancer.

Materials and Methods

Cells, culture medium, and reagents
PBMCs from healthy donors were obtained from a commercial vendor, Research Blood Components, LLC, after institutional approval by the Human Investigation Review Board. Culture medium was Iscove’s Modified Dulbecco’s Medium (Gibco BRL) supplemented with 10% FBS (Gemini Bioproducts, Inc.). Ficoll-Paque was obtained from Amersham Biosciences. Recombinant IL15 and IL2 were purchased from R&D Systems. Rapamycin was purchased from LC Laboratories. N-acetyl-l-cysteine (L-NAC) was obtained from Sigma. Fluorochrome-conjugated Annexin-V and monoclonal antibodies have been described in Supplementary Materials and Methods.

Animals and cell lines
C57BL/6, Rag-deficient mice (Rag\(^{-/-}\)), pMel, and NOD\(^{-/-}\), SCID\(^{-/-}\), IL2 receptor γ chain \(^{-/-}\) (NSG) mice were purchased from Jackson Laboratory and stocks were maintained at Medical University of South Carolina animal facility in pathogen-free facilities and under the approved procedures of the Institutional Animal Care and Use Committee. T2 cells are transporter-associated protein-deficient and its empty surface HLA-A2 molecules were used for direct presentation of epitopes to the antigen-reactive cytotoxic T lymphocytes (CTL). B16-F10 (H-2b) is a tyrosinase-positive murine melanoma.

iGSH and c-SH determination
For iGSH determination, cells were preloaded for 15 minutes with 10 μmol/L monochlorobimane, which forms blue fluorescent adducts with iGSH (16, 17). Cell surface thiols were measured using Alexa Fluor 633-coupled maleimide (ALM-633, Invitrogen; ref. 18). Cells were incubated with 5 μmol/L ALM-633 for 20 minutes on ice.

Adoptive T-cell transfer
For adoptive transfer experiments, naïve pMel cells were isolated from spleen. Cells were activated using hgp100 peptide\(^{25\sim33}\) (KVPRNQDWL, 1 μg/mL) in presence of 50 IU/mL rhIL2 for 3 days. Equal numbers of activated cells (1 × 10\(^6\) CD8+ \(\beta\)13+) were transferred in each mouse (either Rag\(^{-/-}\) or C57BL/6) bearing 7-day established B16-F10 tumors. rhIL2 (20 μg/mouse/dose) was given twice daily intraperitoneally for 3 days starting immediately after adoptive transfer. When indicated cells were cultured in presence or absence of rapamycin (250 nmol/L) or treated with L-NAC (5 mmol/L). Sorting based on c-SH expression was done using 3-day activated cells stained for cSH and sorted on the basis of cSH\(^\text{in}\) or cSH\(^\text{out}\) (after gating on CD8+ \(\beta\)13+ T cells). Tumors were measured twice every week. Human T-cell receptor (TCR) transduced cells precultured for 3 days with rapamycin (250 nmol/L) or treated with L-NAC (5 mmol/L) were transferred in NSG mice.

Engineering of TCR-transduced human T cells
Tyrosinase-reactive TCR-transduced T cells (TIL1383i TCR\(^+\)) were generated as described earlier (19).

Flow cytometry and cell sorting
Samples were acquired on a FACScalibur or LSR Fortessa flow cytometer (Becton Dickinson), and data were analyzed using FlowJo software (Tree Star Inc.). Cells were sorted either on FACSaria II Sorter (Becton Dickinson) or MoFlo Astrios Cell Sorter (Beckman Coulter). Detailed protocols for activation-induced T-cell death, staining the cells for mitochondrial membrane potential (DiOC6), ROS, reactive nitrogen species (RNS), and glucose uptake assay (2NBDG) have been described in Supplementary Materials and Methods.

Measurement of mitochondrial oxygen consumption and glycolytic flux
Mitochondrial oxygen consumption rate (OCR) and glycolytic potential (ECAR, extracellular acidification rate) of the cells was measured using XF24 analyzer (Seahorse Bioscience). Detailed procedure is provided in Supplementary Materials and Methods.

Real-time PCR
Total RNA was isolated from pellets of the indicated T-cell subsets (2–5 × 10^6 cells/pellet) using TRIzol reagent (Invitrogen). cDNA was generated from 1 μg total RNA using iScript cDNA Synthesis Kit (Bio-Rad). Real-time PCR analysis for individual genes was done using Sso advance SYBR Green (Bio-Rad) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Primer sequences of the genes evaluated are provided in Supplementary Table S1.

Statistical analysis
Comparisons across conditions were performed using paired t tests. When comparing fold-change and ratios, a log
transform was applied before analysis. When comparing with a reference fold-change of 1 (or a ratio of 1), one-sample t tests were used where it was tested that the mean log fold-change (or log ratio) was equal to 0. Two-sample t tests were used to compare across conditions when no standardization was used or standardization was performed within groups. When comparing mean fluorescence intensity (MFI) for flow cytometry data, we used paired t test. To evaluate the difference between the c-SHlo and c-SHhi groups, a linear regression model was fit using generalized estimating equations to account for repeated measures per mouse over time. To adhere to model assumptions, the outcome variable was the square root of tumor size and predictors were main effects of group (c-SHlo vs. control; c-SHhi vs. control), time (treated as continuous), interactions between group and time, and indicator variables of the experiment (to account for cohort effects). Robust SEs were estimated and the correlation structure was assumed to be exchangeable. Tumor growth rate (i.e., slope) was compared across groups using Wald tests for the coefficients for the interactions between group and time. Residual plots and graphical displays were used for model diagnostics. All tests are two-sided and an α (or P value) of 0.05 was considered to be statistically significant.

Results

Differential antioxidant capacity between T-cell subsets regulates their sensitivity to cell death

Expansion of antigen-specific CD8+ T cells ex vivo generates a population with heterogeneous effector and/or memory phenotype (2). Antigen-experienced T-cell subsets can be identified phenotypically by a set of cell surface molecules: TCM cells constitutively express CD44hiCD62Lhi, whereas TEM cells exhibit CD44hiCD62Llo phenotype. We thus used CD44 and CD62L as markers to delineate the two T-cell subsets and determine their sensitivity to apoptosis in our experiments. TCR restimulation of activated T cells resulted in relatively more death in CD62Llo CD8+ and CD4+ T cells as determined by increased distribution of Annexin-V (Fig. 1A). Similar results that correlate the CD62Llo population with higher extracellular translocation of Annexin-V and decreased mitochondrial membrane potential (a marker for apoptosis) were also observed upon restimulation of activated PBMCs for 4 hours with various stimuli (Supplementary Fig. S1A–S1D). To

![Figure 1](https://www.aacrjournals.org/figure/1)

Figure 1. Differential antioxidant capacity in CD62Llo and CD62Lhi T cells. A, activated human PBMCs cultured for 7 days were restimulated overnight with anti-CD3 and stained for CD8, CD4, CD62L, and Annexin-V for flow cytometry–based analysis. B, human T cells were gated on CD8+ CD44hiCD62Llo/CXCR3hiCXCR7lo (red) or CD8+ CD44lo CD62Lhi/CXCR3lo CXCR7hi (green) and analyzed for expression of c-SH using maleimide; P < 0.05 (i) and iGSH using monochlorobimane; P < 0.05 (ii). Data are representative of at least seven experiments with similar results. C, T cells were labeled with CFSE (1 μmol/L) and stimulated or left unstimulated for 72 hours. Cells were then harvested and stained for CD8, Vβ13, CD62L, and c-SH, and analyzed by flow cytometry. Cell-cycle analysis was then performed using the unstained peak in FlowJo platform software for CD62L and c-SH on CD8+ cells (N = 3). D, PBMCs were cultured in IL15 for 5 days and sorted as CD8+ CD62Llo or CD8+ CD62Lhi for RNA isolation. mRNA expression levels of antioxidant genes were determined by real-time PCR. All results are representative of three or more separate experiments. **, P < 0.005; *, P < 0.05.
confirm whether the increased sensitivity of CD62Llo T cells to apoptosis was not a culture artifact, expression of antipapoptotic protein BCL-XL was evaluated on CD62Llo T-cell subsets sorted from human PBMCs of healthy donors. Our data show that BCL-XL was substantially elevated in freshly sorted CD62Llo, but not in CD62Lhi CD8 T-cell subsets (Supplementary Fig. S1E). These data confirmed the innate differential sensitivity of the CD62L T-cell subsets to activation-induced cell death.

Since ROS and RNS have previously been reported as potent innate effector molecules that also regulate activation-induced T-cell apoptosis (11), we assessed the levels of these free radicals in CD62Llo and CD62Lhi T-cell subsets after 4 hours of restimulation. Here, an increased generation of superoxide (dihydroethyridid, DHE) and nitric oxide (4-aminoo-5-methylamino-2,7'-difluorofluorescein diacetate) in CD62Llo cells was observed, when compared with CD62Lhi cells (Supplementary Fig. S1F). Differences in key antioxidant proteins could contribute to the disparity of free radical accumulation and sensitivity to apoptosis between CD62Llo and CD62Lhi T cells. Among them, iGSH plays a key role in regulating the intracellular redox balance and the status of c-SH groups on other molecules (9). Using a cell surface marker–based comprehensive gating strategy to delineate T\textsubscript{CM} (CD8 CD4 CD62LloCXCR3loCCR7hi) and T\textsubscript{EM} (CD8 CD4 CD62LloCXCR3loCCR7lo) cells (Supplementary Fig. S1G), our data showed that the CD62Lhi T\textsubscript{CM} cell had a higher expression of c-SH as compared with CD62Llo T\textsubscript{EM} subsets (Fig. 1B, i). In addition, the CD62Lhi T-cell subset had higher levels of iGSH over the CD62Llo T-cell subset (Fig. 1B, ii). An increased expression of the reductive -SH moiety and reduced iGSH allowed the CD62Llo T-cell subset to withstand increased oxidative stress induced by H\textsubscript{2}O\textsubscript{2} (Supplementary Fig. S2A). Our results also showed that an inverse correlation exists between T-cell proliferation and c-SH levels (Fig. 1C), that is, a concomitant progressive reduction in CD62L expression and c-SH was observed in each daughter progeny of a proliferating T cell. The fluorescent intensity for CD62L expression and c-SH indicated that CFSEhi cells that underwent less proliferation expressed increased c-SH levels and CD62L compared with CFSElo cells that underwent more proliferation (Figs. 1C and Supplementary Fig. S2B). Furthermore, expression of the thiol-regulating thioredoxin proteins, TRX-1 and TRX-2, which act as antioxidants by facilitating the reduction of other proteins through cysteine thiol-disulfide exchange (20), was reduced in higher proliferating T cells (Supplementary Fig. S2C). Moreover, the GSH/GSSG ratio (Supplementary Fig. S2D) indicated that the reduced glutathione was increased in sorted CD62Lhi T cells. Furthermore, using real-time PCR arrays, we also found an increased gene expression of the antioxidant molecules (Supplementary Fig. S2E) in the FACS-sorted CD62Llo subset, compared with the CD62Lhi subset, that was confirmed with individual PCR (Fig. 1D). Altogether, these data indicate that CD62Lhi T cells are less susceptible to activation-induced apoptosis due to their significantly increased antioxidative capacity, as compared with CD62Llo T cells.

Differential mitochondrial levels and glycolysis in CD62L T-cell subsets

As CD62Llo T cells have higher ROS and RNS (Supplementary Fig. S1F), and mitochondria are the major source of these reactive species, we evaluated whether there exists a difference in total mitochondria levels between the T-cell subsets. Our microscopy and FACS data revealed that CD62Llo T cells have more mitochondrial mass than CD62Lhi T cells (Fig. 2A, i and ii, respectively). While CD62Lhi T cells demonstrate a larger cytoplasm and dispersed mitochondrial distribution, CD62Llo T cells had smaller cytoplasmic space with tightly packed mitochondria (bright field panels of Fig. 2A, i).

Accordingly, a significantly higher ratio of mitochondrial DNA to nuclear DNA (mDNA/nDNA) was also observed in the CD62Llo T cells, suggesting a higher mitochondrial biogenesis rate (Fig. 2B). A higher number of active mitochondria would possibly explain the increased ROS accumulation in CD62Llo T cells, as compared with CD62Lhi T cells (as observed in Supplementary Fig. S1F). As the ability of effector T cells to secrete key cytokine has been shown to be dependent on utilizing glucose as carbon source (14, 21), we tested whether the immediate effector ability of CD62Llo T subsets correlates to their high glycolytic commitment. Our data show that CD62Llo T cells expressed higher levels of glucose transporter Glut-1 (Fig. 2C) that correlate with increased glucose uptake as measured by the 2-NBDG uptake levels using flow cytometry (Fig. 2D). FACS-sorted CD62Llo T cells also exhibited an increased expression of the key glycolytic enzymes hexokinase II (HKII), pyruvate kinase M2 (PKM2), phosphofructokinase 2 (PFK2), pyruvate dehydrogenase kinase isozyme 1 (PDK1), and PDK2 as compared with CD62Lhi cells (Fig. 2E). The CD62Llo T cells also exhibited higher expression of hypoxia inducible-factor 1 (HIF1\textalpha), relative to CD62Lhi cells. These observations establish that the mitochondrial distribution and the level of glycolytic molecules are different between the CD62Llo T\textsubscript{EM} and CD62Llo T\textsubscript{CM} subsets.

c-SHhi T-cell subsets are better at controlling tumor growth

We next evaluated whether higher c-SH–expressing T cells will have improved ability to control tumor growth. For this purpose, we first sorted the activated gp100 epitope–specific T cells based on c-SH expression and compared the expression of antioxidant and glycolytic molecules. A real-time expression analysis revealed that c-SHhi cells have a lower expression of key glycolytic genes (HKII, HIF1\textalpha, PFKII), but antioxidant (TRX1, SOD1) and effector molecules (as Granzyme B) were expressed at higher levels (Fig. 3A). In addition, the lower mitochondrial membrane potential, indicative of less active mitochondria that correlates to reduced ROS accumulation, was also observed in c-SHhi as compared with c-SHlo cells (Fig. 3B). Adoptive transfer of c-SHhi gp100 epitope–specific T cells resulted in improved and long lasting control of subcutaneously established B16 murine melanoma as compared with the group that received c-SHlo T cells (Fig. 3C and Supplementary Fig. S2F for sorting strategy). The number of antigen-specific T cells retrieved from c-SHlo–transferred...
group was higher (Fig. 3D, top and bottom left), and difference in c-SH expression between the groups was maintained at the experimental endpoint (Fig. 3E). Thus, our data support that thiol expression is directly proportional to T-cell persistence and tumor control.

Rapamycin treatment enhances c-SH levels in T cells

The data presented thus far supported that the c-SH expression correlated with the TCM phenotype, increased antioxidant capacity, and reduced glycolysis. While identifying potent long-term persisting antitumor T cells based on c-SH expression could be a potential therapeutic strategy, we wanted to test whether using pharmacologic agents can render higher thiols/antioxidant capacity to ex vivo–expanded human T cells (with primarily TEM phenotype). As rapamycin treatment has been shown to induce a higher expression of CD62L on CD8\(^{+}\) T cells in vitro and in vivo (22), we tested whether treating the human T cells with rapamycin also increased c-SH and affected metabolic pathways. Consistent with previous studies (22, 23), culturing human PBMCs with rapamycin for 5 days resulted in a higher expression of CD62L (Supplementary Fig. S3A). Interestingly, rapamycin treatment also increased the levels of c-SH on CD8\(^{+}\) T cells (Supplementary Fig. S3B, top). In accordance with the previous study that showed an inverse correlation with c-SH and ROS (18), rapamycin-treated cells with increased c-SH have lesser accumulation of superoxide as compared with control T cells after restimulation, as measured by DHE staining (Supplementary Fig. S3B, bottom). Furthermore, as compared with untreated control cells, rapamycin-induced c-SH provided an optimal reductive environment to withstand the H\(_2\)O\(_2\)-induced oxidant injury and rescued both CD62L\(_{lo}\) and CD62L\(_{hi}\) subsets from H\(_2\)O\(_2\)-induced apoptosis (Supplementary Fig. S3C). These data suggested that rapamycin could act by altering the expression of genes involved in oxidative stress and thereby, apoptosis. Indeed, we found that rapamycin upregulated the expression of antioxidant genes such as catalase, NRF-2, SOD-1, and TRX-2 (Supplementary Fig. S3D).

Antioxidant Capacity in T-cell Subsets

www.aacrjournals.org
one of the mechanisms by which rapamycin affects memory CD8+ T-cell differentiation.

As we observed that rapamycin, the mTOR-specific inhibitor, induces an increase in thiol levels that correlated with its ability to upregulate CD62L expression, we next investigated whether the opposite is true; that is, whether an increased thiol expression affects the mTOR pathway. Because cellular availability of cysteine is considered to be a rate-limiting factor in the synthesis of thiol GSH, we used the simplest cysteine derivative, L-NAC, a thiol antioxidant and GSH precursor (24), to artificially increase the levels of reduced thiols on T cells. As observed in Supplementary Fig. S3E, upon L-NAC pretreatment, an elevation in the c-SH levels was observed. In addition, we also observed that L-NAC-pretreated T cells showed a downregulation of the pS6, a downstream molecule in the mTOR pathway, upon TCR restimulation (Supplementary Fig. S3F). To further determine the effect of increased thiol expression in a translationally relevant model, we used the melanoma-associated human tyrosinase TCR TIL1383I-transduced T cells. Pretreatment of TCR-transduced T cells with L-NAC and rapamycin increased the expression of both c-SH and GSH (Fig. 4A). Furthermore, antigen-specific restimulation of the TCR-transduced T cells pretreated with L-NAC and rapamycin also showed a reduction in TCR-restimulated-induced cell death (Fig. 4B).

c-SH expression inversely correlates to T-cell mitochondrial metabolism

As rapamycin treatment of T cells increased the c-SH expression that correlated to increased antioxidant molecules...
and lower intracellular ROS, we next investigated whether thiol donor L-NAC or rapamycin affected mitochondrial function. Mitochondrial metabolism has been shown to affect the generation of memory T cells after ex vivo culture in the presence of IL15 (a cytokine that also induces CD62Lhi phenotype; refs. 13, 25). We used the Seahorse Bioscience analyzer to measure mitochondrial function in real-time using multi-well plates. Using carbonyl cyanide p-trifluoro-methoxy-phenyl-hydrazone (FCCP)—a marker of maximal electron transport chain activity, we first confirmed that uncoupled OCR, an indicator of oxidative phosphorylation (OXPHOS), was higher in cells expanded in the presence of IL15 as opposed to IL2 (Supplementary Fig. S3G; ref. 13). However, pretreatment of IL15-cultured T cells with rapamycin and L-NAC resulted in lower basal and maximal OCR (Fig. 4C, i). A similar decrease in basal and maximal OCR was observed when TIL1383I TCR-transduced T cells were pretreated with rapamycin and L-NAC (Fig. 4C, ii). The decrease in OCR by rapamycin and L-NAC pretreatment was also reflected by the decreased expression of the mitochondria-specific 12S ribosomal RNA, cytochrome b (a component of respiratory chain complex III), cytochrome c oxidase subunit 2, and NADH dehydrogenase 4 (Fig. 4D). In addition, mitochondrial transcription factor A (TFAM) along with the key mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Fig. 4D) was also found to be down-regulated after the pretreatment of T cells with rapamycin and L-NAC. The rapamycin and L-NAC–mediated decrease of mitochondrial biogenesis in T cells could be considered as a quality control process that decreases the dysfunctional mitochondria under conditions of cell-intrinsic oxidative stress due to reduced antioxidant levels (26). Furthermore, the decrease in mitochondrial content of the T cells after pretreatment with rapamycin and L-NAC was confirmed by microscopy (Fig. 4E). These data confirmed that thiol upregulation (mediated herein by rapamycin and L-NAC) significantly reduced mitochondrial biogenesis and mitochondrial respiratory capacity.

c-SH expression inversely correlates to T-cell glycolysis

As rapamycin and L-NAC pretreatment increased c-SH expression, but decreased the mitochondrial function, we next evaluated whether these agents also affected the glycolytic pathway (12). Our data showed that rapamycin and L-NAC–pretreated TIL1383I TCR-transduced cells exhibited a decrease in glucose consumption as measured by 2NBDG analysis for glucose uptake (Fig. 5A, i and ii). Furthermore, evaluation of glycolysis in real-time, using the Seahorse analyzer, also showed a decrease in the ECAR of TIL1383I TCR-transduced T cells in the presence of rapamycin and L-NAC (Fig. 5B). Western blot analyses also confirmed for the lower HIF-1α expression that correlates with decreased glycolysis in the presence of rapamycin in TCR-transduced T cells (Fig. 5C). These results are different than those reported in other model systems where rapamycin induces glycolysis (27), raising the possibility that hyperactive T cells may be more sensitive to inhibition of mTOR or glycolysis.

To explore the in vivo persistence of TCR-transduced T cells that have an increased thiol expression/antioxidant capacity and lowered glycolysis after pretreatment with

Table 1. Effect of rapamycin on oxidative stress and antioxidant defense–related genes

<table>
<thead>
<tr>
<th>Accession no.</th>
<th>Symbol</th>
<th>Description</th>
<th>Fold change</th>
<th>Donor 1</th>
<th>Donor 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_001979</td>
<td>EPHX-2</td>
<td>Epoxide hydrolase 2, cytoplasmic</td>
<td>7.78</td>
<td>5.5</td>
<td>0.0385</td>
<td></td>
</tr>
<tr>
<td>NM_00581</td>
<td>GPX-1</td>
<td>Glutathione peroxidase 1</td>
<td>3.63</td>
<td>1.82</td>
<td>0.1969</td>
<td></td>
</tr>
<tr>
<td>NM_002083</td>
<td>GPX-2</td>
<td>Glutathione peroxidase 2 (gastrointestinal)</td>
<td>1.95</td>
<td>4.79</td>
<td>0.2371</td>
<td></td>
</tr>
<tr>
<td>NM_002084</td>
<td>GPX-3</td>
<td>Glutathione peroxidase 3 (plasma)</td>
<td>1.2</td>
<td>1.95</td>
<td>0.2649</td>
<td></td>
</tr>
<tr>
<td>NM_002085</td>
<td>GPX-4</td>
<td>Glutathione peroxidase 4 (phospholipid hydroperoxidase)</td>
<td>3.63</td>
<td>2.75</td>
<td>0.0381</td>
<td></td>
</tr>
<tr>
<td>NM_015696</td>
<td>GPX-7</td>
<td>Glutathione peroxidase 7</td>
<td>2.75</td>
<td>2.95</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>NM_000637</td>
<td>GSR</td>
<td>Glutathione reductase</td>
<td>3.16</td>
<td>4.47</td>
<td>0.0501</td>
<td></td>
</tr>
<tr>
<td>NM_012331</td>
<td>MSRA</td>
<td>Methionine sulfoxide reductase A</td>
<td>3.63</td>
<td>2.39</td>
<td>0.0834</td>
<td></td>
</tr>
<tr>
<td>NM_181354</td>
<td>OXR-1</td>
<td>Oxidation resistance 1</td>
<td>2.57</td>
<td>2.75</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>NM_015553</td>
<td>IPCEF-1</td>
<td>Interaction protein for cytohesin exchange factors 1</td>
<td>2.95</td>
<td>2.95</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>NM_020820</td>
<td>PREX-1</td>
<td>Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1</td>
<td>2.57</td>
<td>3.16</td>
<td>0.0241</td>
<td></td>
</tr>
<tr>
<td>NM_004905</td>
<td>PRDX-6</td>
<td>Peroxiredoxin 6</td>
<td>1.95</td>
<td>2.39</td>
<td>0.0336</td>
<td></td>
</tr>
<tr>
<td>NM_005410</td>
<td>SEPP-1</td>
<td>Selenoprotein P, plasma, 1</td>
<td>3.89</td>
<td>33.36</td>
<td>0.3542</td>
<td></td>
</tr>
<tr>
<td>NM_003330</td>
<td>TXNRD-1</td>
<td>Thioredoxin reductase 1</td>
<td>2.08</td>
<td>1.58</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>NM_006440</td>
<td>TXNRD-2</td>
<td>Thioredoxin reductase 2</td>
<td>1.69</td>
<td>2.75</td>
<td>0.148</td>
<td></td>
</tr>
</tbody>
</table>

Genes upregulated in rapamycin-treated cells, as compared with untreated control

- **NM_015696**: GPX-7 Glutathione peroxidase 7
- **NM_012331**: MSRA Methionine sulfoxide reductase A
- **NM_181354**: OXR-1 Oxidation resistance 1
- **NM_015553**: IPCEF-1 Interaction protein for cytohesin exchange factors 1
- **NM_020820**: PREX-1 Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1
- **NM_004905**: PRDX-6 Peroxiredoxin 6
- **NM_005410**: SEPP-1 Selenoprotein P, plasma, 1
- **NM_003330**: TXNRD-1 Thioredoxin reductase 1
- **NM_006440**: TXNRD-2 Thioredoxin reductase 2

Genes downregulated in rapamycin-treated cells, as compared with untreated control

- **NM_001979**: EPHX-2 Epoxide hydrolase 2, cytoplasmic
- **NM_00581**: GPX-1 Glutathione peroxidase 1
- **NM_002083**: GPX-2 Glutathione peroxidase 2 (gastrointestinal)
- **NM_002084**: GPX-3 Glutathione peroxidase 3 (plasma)
- **NM_002085**: GPX-4 Glutathione peroxidase 4 (phospholipid hydroperoxidase)
rapamycin or L-NAC, cells were adoptively transferred into NSG mice and these homeostatically maintained cells were retrieved after 2 days. Our data showed that 2- to 3-fold more cells were retrieved from the rapamycin- or L-NAC–pretreated group as compared with controls (Fig. 5D, i), and the retrieved cells retained a much higher CD62L expression after in vivo transfer (Fig. 5D, ii). To confirm whether the increased number of T cells along with the expression of CD62L resulted in an improvement in the antitumor T-cell response, gp100 melanoma epitope-reactive T cells (untreated or pretreated with rapamycin) were adoptively transferred to C57BL/6 Rag−/− mice with subcutaneously established B16 murine melanoma. Rapamycin was also administered intraperitoneally every alternate day for 2 weeks, as reported earlier (28). In agreement with this study (28), our data also showed that the mice receiving rapamycin-treated T cells had improved tumor control (Fig. 5E, i). The improvement could be attributed to the increased persistence of the transferred effectors with a CD62L+ phenotype (Fig. 5E, ii). Importantly, an analysis of the retrieved effector T cells from the tumor-bearing recipient mouse showed that rapamycin-treated T cells had better persistence (Fig. 5E, iii), which also correlated to higher c-SH expression as compared with the untreated cells (Fig. 5E, iv). These data suggest that the strategy to increase c-SH expression (or antioxidant property) may centrally regulate effector T-cell persistence that in turn results in improved tumor control.
Discussion

Adoptive cell therapy requires activation and expansion of tumor epitope–specific T cells \textit{ex vivo}. However, rapid expansion to obtain high number of cells needed for transfer also confers a major fraction of these effectors with a replicative senescence phenotype, resulting in impaired \textit{in vivo} persistence (3, 29, 30). While strategies to minimally expand the effector T cells and conserve the TCM and stemness phenotype are underway, we focused on deciphering the innate differences between the T-cell subsets obtained after activation/expansion. We demonstrate here that TCM-like cells have higher thiols/antioxidant levels, and less glucose requirement, as compared with TEM-like cells. Importantly, a comparison of antitumor potential of the T cells, when sorted on the basis of thiol expression, showed better persistence and tumor control \textit{in vivo} by high thiol-expressing T cells. Our data indicated that both extracellular (≈c-SH) and intracellular (≈glutathione)
distribution of antioxidant proteins in CD8\(^+\) T-cell subsets correlated with their decreased metabolic state and enhanced persistence of effector T cells.

To evaluate the contribution of redox molecules in T-cell persistence, we used CD62L and CD44 expression for delineating between the two key subsets (i.e., T\(_{EM}\)-like and T\(_{CM}\)-like). Our data established an inverse correlation between CD62L expression and ROS accumulation, which has been previously implicated by us in T-cell death (11). Each cycle of repetitive TCR stimulation of epitope-specific T cells was recently shown to cause loss of CD62L expression in approximately 20% of the cells in vivo (i.e., 20% of CD62L\(^{hi}\) cells convert to CD62L\(^{lo}\) during each division in vivo; ref. 31). Whereas compromised T-cell homing ability due to loss of CD62L expression has been identified as one factor for the reduced in vivo efficacy of CD62L\(^{hi}\) versus CD62L\(^{lo}\) T cells (4, 5), our data suggested that the concomitant loss of c-SH (along with CD62L) in CD8\(^+\) effector T cells accompanying proliferation also played a major role in persistence. Both c-SH and iGSH play a role in modulating redox-regulated signal transduction and apoptosis, as iGSH depletion was shown to be necessary for the progression of apoptosis activated by both extrinsic and intrinsic signaling pathways (10). In addition, our data show that thioredoxins, that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange (20), were also reduced in T cells that underwent proliferation upon repeated TCR stimulation.

A recent study showed that a lower ROS-producing capacity is associated with an increased number of reduced cellular thiol groups (c-SH) on T-cell membranes that determines its reactivity and arthritis susceptibility (18, 32). The difference in c-SH in T-cell subsets with distinct phenotype and susceptibility to death suggests that cell fate is directly linked to modulation of redox-regulating proteins, and that in turn could affect ROS/RNS balance, resulting in modulation of TCR-dependent and independent signaling molecules/pathways (33–35). The inverse correlation between L-NAC–induced c-SH expression and phosphorylation of S6 (a downstream molecule in the mTOR pathway) supports this view. Importantly, rapamycin treatment not only blocked mTOR activation, but also increased c-SH expression and the antioxidant levels in T cells. Whereas upregulated mTOR activity is associated with higher levels of intracellular ROS (36), lowering mTOR activation and concomitantly increasing c-SH/antioxidant levels is important for decreasing the susceptibility of oxidative stress-induced cell death. Thus, our work identifies a role for c-SH in suppressing mTOR signaling that is also known to affect mitochondrial function (36). Our data also showed that both rapamycin and L-NAC–pretreated T cells with high c-SH had a low basal oxygen consumption rate compared with untreated cells, but they did not show a high spare respiratory capacity. Although rapamycin has been shown to promote the CD62L\(^{hi}\) phenotype (as does IL15), our data suggested that rapamycin and L-NAC pretreatment resulted in decreased mitochondrial biogenesis and reduced expression of key glycolytic molecules in CD62L\(^{hi}\) T\(_{CM}\)-like cells. It is evident that CD62L\(^{hi}\) T cells generated under different conditions of cytokines (as IL15) or after modulation of different pathways (using rapamycin), may be phenotypically similar, but metabolically dissimilar (13, 37, 38). While earlier reports have addressed the role of metabolism in T-cell activation and differentiation (12, 39, 40), its role in T-cell contraction and regulating antitumor response is beginning to be addressed (13, 41).

A recent publication showing pretreatment of CTL with the glycolytic inhibitor, 2-DG, results in improvement of the antitumor response, also support our data (42). Another study also shows that T cells have the ability to interchangeably adapt to OXPHOS or glycolysis and both metabolic pathways may exist in tandem to meet the energy needs of a T cell (43). While this study did not address whether the heterogeneous effector T-cell population had a similar degree of metabolic commitment to one pathway or the other, our data showed that CD62L\(^{hi}\) T\(_{EM}\)-like cells have both higher glycolysis and OXPHOS than CD62L\(^{lo}\) T\(_{CM}\)-like cells, and that rapamycin treatment reduced the metabolically active state and increased the antioxidant capacity that enables increased persistence in the tumor microenvironment. Furthermore, whether the differential accumulation of ROS in c-SH\(^{hi}\) versus c-SH\(^{lo}\) T-cell subset results in autophagy (involving Atg4, catalase, and the mitochondrial electron transport chain) mediated difference in cell survival versus cell death, respectively, needs to be investigated (44).

Under normal conditions, intracellular redox status is reductive. Reduced thiols have also been shown to be important for antigen presentation and redox remodeling of antigen-specific T cells (45, 46). It is likely that the thiol transfer from the mature DCs renders a subset of T cells with more thiols, resulting in their improved fitness and ability to overcome oxidative stress (47). Earlier studies have also shown that Tregs have the ability to survive better than the effector T cells could be due to high level of reduced thiols expressed on their surface (15). Importantly, Tregs have also been shown to interfere with the glutathione metabolism in DCs, resulting in ineffective antigen presentation and enforcing suppression (48). In addition, the myeloid-derived suppressor cells have also been shown to mediate T-cell suppression by deprivining them of the cytoeine that is required for T-cell activation and function (49). Thus, the maintenance of the redox molecules as thiols may play an important role not only in boosting antigen presentation but also overcoming immunosuppression and increasing survival of T cells. Our data suggested that on TCR restimulation there was a decrease in the reductive state of actively dividing cells (identified here as CD62L\(^{lo}\) T\(_{EM}\)-like cells), rendering them more sensitive to oxidative stress. As protein-thiols are usually sites of oxidation/nitrosylation, increased incidence of protein glutathionylation in CD62L\(^{hi}\) T\(_{CM}\)-like cells (induced by IL15 or rapamycin) can protect protein-thiols from irreversible oxidation and/or prevent protein misfolding through disulfide formation, thus resulting in enhanced persistence. Importantly, the T cells with high c-SH/antioxidant expression also coexhibit key antitumor properties such as low glycolysis, increased persistence, and controlled tumor growth. This suggested that thiol expression could serve as a biomarker that tightly correlates with better survival and antitumor T-cell function, specifically in the presence of ROS and RNS-producing cells in the tumor microenvironment, inflammatory sites,
or in the periphery of tumor patients. Therefore, as depicted in Supplementary Fig. S4, we conclude that promoting the reductive cellular environment could affect metabolic function and result in the long-term maintenance of CD8+ T cells, with implications for adoptive immunotherapy approaches.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: P. Kesarwani, A.A. Al-Khami, K. Thyagarajan, M.I. Nishimura, S. Mehrotra
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): P. Kesarwani, A.A. Al-Khami, K. Thyagarajan, N. Kaur, O.S. Naga, P. Simms, G. Beeson, C. Voelkel-Johnson, C. Beeson, S. Mehrotra
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): P. Kesarwani, A.A. Al-Khami, K. Thyagarajan, N. Kaur, G. Fang, G. Beeson, C. Beeson, E. Garrett-Maye, C. Beeson, S. Mehrotra
Writing, review, and/or revision of the manuscript: P. Kesarwani, A.A. Al-Khami, S. Husain, O.S. Naga, M.I. Nishimura, S. Mehrotra

Acknowledgments
The authors thank Drs. Xue-Zhong Yu, Chesthammarkshan Vasu, and Chrystal Paulos at MUSC and Dr. Jose-Alessandro Guerva at Loyola Medical Centre (Chicago, IL) for critical reading of this article and valuable feedback. The authors also thank Drs. Luanna Bartholdowem and Radhika Gudi for help in preparing this article.

Grant Support
The work was supported in part by NIH grants R21CA137725 and R01CA138930 (S. Mehrotra), R01AR057643 (sub-contract to S. Mehrotra), R01CA104947 and P20GM1035402 (C.C. Beeson), and P01CA154778 (M.I. Nishimura). Flow Cytometry and Cell Sorting Unit is supported in part by P30 CA138313 to Hollings Cancer Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 11, 2014; revised July 8, 2014; accepted July 25, 2014; published online First August 27, 2014.

References
42. van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A 2013;110:14336–41.
Promoting Thiol Expression Increases the Durability of Antitumor T-cell Functions

Cancer Res Published OnlineFirst August 27, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-1084

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2014/08/27/0008-5472.CAN-14-1084.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.