Microenvironment and Immunology

TGFβ Receptor 1: An Immune Susceptibility Gene in HPV-Associated Cancer

Chaya Levovitz1,2,3, Dan Chen4, Emma Ivansson4, Ulf Gyllensten4, John P. Finnigan1, Sara Alshawish1, Weijia Zhang5, Eric E. Schadt6,7, Marshal R. Posner1,8, Eric M. Genden1,8,9, Paolo Boffetta1,3,9, and Andrew G. Sikora1,2,8,9

Abstract

Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein–protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38–MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV+ head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. Cancer Res; 74(23); 1–12. ©2014 AACR.

Introduction

Human papillomavirus (HPV) is a necessary cause of cervical cancer, and a major cause of anal, vulvar, and penile cancer as well as oropharyngeal cancer (1–3). Although tobacco-associated squamous cell carcinomas of the head and neck (HNSCC) have declined in the United States and other Western countries, the incidence of HPV-positive oropharyngeal cancer has sharply increased in the United States, rising by 225% since 1988, with more than 70% of all newly diagnosed oropharyngeal cancer believed to be HPV positive (4, 5). The National Cancer Institute predicts that HPV-positive oropharyngeal cancer will likely surpass cervical cancer as the most common HPV-associated cancer in the United States by 2020 (5).

Although HPV infection is common (6, 7), only a small fraction of infected individuals develops cancer (8). The pattern of increasing relative risk with increasing degree of relatedness found in cervical cancer suggests that susceptibility to HPV-induced cancer is modulated by genetic factors (9). At the same time, the viral etiology of HPV-induced cancers implicates host immunity as a potential susceptibility factor (10), and the higher prevalence of cervical HPV infections, HPV-positive cervical cancer (11), and HPV-positive oropharyngeal cancer (12) in HIV/AIDS individuals suggests that the host immune response is an important determinant of HPV-induced cancer risk. Thus, we hypothesize that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers.

In the present study, we investigate the immunogenetics of susceptibility to HPV-associated head and neck cancer using a genome-wide association study (GWAS) of upper aerodigestive (UADT) cancers that was organized by the International Agency for Research on Cancer (IARC) and the Centre National
de Genotypage (CNG) in Paris and whose replication was conducted through the International Head and Neck Cancer Epidemiology (INHANCE) consortium (13). Although the conventional unbiased GWAS approach can identify genetic variants associated with complex diseases (14), (15), many risk-modifying alleles are missed by this strategy due to the very stringent significance criteria required to minimize false discovery (16, 17). Alternate analytic approaches focused on combined effects of many loci, each contributing a small effect to the overall disease susceptibility, can successfully identify signals that individually do not meet the threshold for genomewide significance but are in fact associated with the disease (18, 19). To test the hypothesis that variants in immune-related genes modulate susceptibility to oropharyngeal cancer, an HPV-associated head and neck cancer, we developed a multitier integrative computational approach incorporating four distinct modes of analysis, including individual single-nucleotide polymorphism (SNP)/gene, pathway, gene–gene interconnectivity (GGI), and protein–protein interaction (PPI) analyses. Resulting hits that were supported across all four dimensions of analysis were subsequently validated in replication cohorts and gene expression studies (Fig. 1). Our results are consistent with an important role for genetic variation in multiple immune-related genes as modifiers of HPV-related cancer risk, particularly those related to transforming growth factor beta (TGFβ) signaling.

Materials and Methods

IARC head and neck cancer GWAS and quality control of GWAS data

IARC conducted a large two-phased pooled case/control GWAS including 2,091 UADT cancer patients (primarily head and neck cancer with esophageal cancers included) and 8,334 cancer-free controls genotyped using the Illumina Sentrix HumanHap300 BeadChip. We requested the raw GWAS data from IARC, and subjected these data to additional cleaning and quality control (QC) before analysis. Details of the UADT GWAS including the study population and initial QC are reported in detail elsewhere (13). In brief, for this study, systematic QC was performed on the raw Illumina HumanHap300 genotyping data. We excluded samples with gender discrepancies, low call rates (<95%), and outliers in population structure from principle component analyses. Variants with a genotype call rate <95%, minor allele frequency (MAF) <5%, and deviation from Hardy–Weinberg equilibrium (P < 10−7) were removed. The extremely limited extent of admixture and population stratification was confirmed using multidimensional scaling analysis. The association between each genetic variant and the disease risk was estimated by the odds ratio (OR) per allele and 95% confidence interval (CI) using multivariate unconditional logistic regression assuming a log-additive genetic model with sex and country of recruitment included as covariates. All analyses were performed using PLINK (20).

We conducted separate analyses on data restricted to oropharyngeal cancer and laryngeal cancer subtypes only.

Immune-related gene ranking and significance threshold

SNP identifiers were mapped to associated genes using the SNP location from the human genome assembly hg18. Gene boundary extensions, extending the transcription start and stop codon by 110 kb and 40 kb, respectively, did not significantly change the results, so they were not used in the final gene ranking to minimize error. The intersection between genes annotated from the set of SNPs and the 1324 genes defined by Gene Ontology (GO) network classification (21) as immune-related genes was found. Ranking was based on the most significant P value for each SNP. Because immune-related genes are not independent of one another and operate in common pathways and networks, in our gene-based analysis we used a false discovery rate (FDR) <0.05 for a significance threshold.

In silico replication of oropharyngeal cancer GWAS results in serologically HPV-positive head and neck cancer patients

A Luminex-based multiplex immunosorbent method was used to determine each subject’s antibody response to HPV infection by measuring serologic reactivity to the HPV16 E6 protein, as previously described (22). The cutoff was defined as 5 standard deviations above the mean of the final distribution. The serology data were then used to perform a validation analysis on 131 serologically HPV-positive head and neck cancer patients and 2,919 HPV-negative controls using the same methodologies applied in the oropharyngeal cancer GWAS (described above). A significance cutoff of P < 0.05 was used in the validation.

GGI analysis

The highly ranked immune-related genes, corresponding to SNPs with P values suggestive of association (1 × 10−3 > P > 1 × 10−7) were analyzed in Gene Relationships Across Implicated Loci, GRAIL (23), a literature-based text-mining program that...
infers biologic interconnectivity between and among genes. In summary, genes were identified using the linkage disequi-
librium (LD) structure of HapMap2 Release 22 CEU and text mining was performed using a text-based similarity measure that
scores two genes for relatedness to each other based on text similarity in PubMed abstracts last curated in 2012. Genes
in regions of interest were clustered on the basis of keyword similarity. These clusters were then scored on the basis of
ranked similarity, adjusting for gene size, to generate P values evaluating the strength of the functional interconnectivity of
genes in the regions of interest. A significant P value for a gene
region indicates that a gene within it is more related to genes in
other disease regions through PubMed abstracts than expected
by chance. P values for these functional clusters were FDR
adjusted to correct for multiple testing with the FDR
< 0.05 considered the threshold of significance.

PPI analysis
PPI analysis was completed using Disease Association Pro-
tein-Protein Link Evaluator, DAPPLE. The details of the algo-
rithm and methods used in DAPPLE can be found in Rossin and
colleagues (24). Briefly, the top 200 ranked immune-related
SNPs (maximum number allowed by the program) were input
into DAPPLE as seed SNPs and converted into genes. DAPPLE
then built interaction networks from proteins encoded by
the seed genes that have direct connections reported in the
literature. The statistical significance was assessed by a
number of network connectivity parameters as well as of the
connectivity of the individual proteins to other seed proteins
using a within-degree node-label permutation method. The
individual P values for seed proteins represent the probability
that by chance the seed protein would be as connected to other
seed proteins at the level observed in the network. Clusters
were assigned on the basis of statistically significant connec-
tions of genes that participate in common biologic functions.

Pathway analysis
We identified pathway-based associations in the orophar-
yngeal cancer GWAS with the Meta-Analysis Gene-set Enrich-
ment of variant Associations (MAGENTA) platform. The gene
set enrichment (GSEA)–based methodology is described by
Diaz-Sanchez and colleagues (25). In summary, all SNP from
the GWAS analysis limited to oropharyngeal cancer were used
in the pathway analysis. Genes in the human genome were
mapped to a single index SNP with the lowest P value. This P
value became the gene score and was corrected for confound-
ing factors such as gene size, SNP density, and LD-related
properties in a regression model to determine gene-wise
adjusted gene score. Genes were then ranked by the adjusted
gene scores. At a significance threshold of 95th and 75th
percentile of all gene scores, the observed number of gene
scores in a given predefined biologic pathway, with a ranked
score above the specified threshold percentile, was calculated.
This observed statistic was then compared with 1,000,000
randomly permuted pathways of identical size and generates
an empirical GSEA P value for each pathway. Significance
was determined when a pathway reached a FDR < 0.05 for either
threshold. Predefined biologic pathways were taken from
several publicly available databases, including GO (N =
9431), PANTHER (N = 634), KEGG (N = 185), Ingenuity (N
= 92), BIOCARTA (N = 217), REACTOME (N = 427), and
WikiPathways (N = 43).

In silico replication of oropharyngeal cancer results in
a cervical cancer GWAS
An in silico replication was performed using a GWAS of 617
unrelated cervical cancer patients and 512 cancer-free controls
generated on the Affymetrix Genome-wide Human SNP array
5.0 with approximately 440,794 SNP markers, which uses
mostly different SNP markers compared with the Illumina
arrays used in the UADT cancer GWAS. The details of popu-
lation and QC have been described by Ivansson and colleagues
(26). The data we received included for each SNP, the SNP
identifier, the genomic location, and the P value from the
association analysis that was estimated by ORs and 95% CI
using multivariable unconditional logistic regression assuming
a log-additive genetic model. Single gene analysis was com-
pleted as described above. A significance cutoff of P < 0.05 was
used in the validation. A combined P value was calculated for
each significant gene using the Fisher method. Using MAGEN-
TA, a pathway analysis limited to pathways found to be
significant in the oropharyngeal cancer dataset was also
performed on the cervical cancer GWAS dataset.

Gene expression analysis
Oncomine was used for analysis and visualization of the
tumor gene expression data (27). Oncomine is an online tool
that aggregates mRNA expression data from a large number of
cancer gene expression microarrays, and allows the user to
investigate the relative expression of genes across various
datasets. The relative expression of significant genes was
investigated across oropharyngeal cancer and cervical cancer
datasets. The overall P values were determined by simulta-
neously considering available data within Oncomine for the
cancer versus normal comparisons. P values < 0.05 were
considered significant. Only studies based on human samples
were included in the analysis.

A parallel analysis was performed using normalized level 3
gene expression data for all HNSCC samples extracted from
The Cancer Genome Atlas (TCGA) RNASeqV2 protocol (28, 29).
Sixty-nine HPV-positive cases were identified, with HPV status
determined by cross-referencing the corresponding TCGA
clinical dataset for samples whose HPV status had been verified
by in situ hybridization or PCR testing. Forty-two unmatched
samples corresponding to surrounding nonneoplastic tissue
were also identified. A two-tailed t test was used to assess
statistically significant differential expression of TGFBR1 for
all samples. P value < 0.05 was considered significant.

Results
Single-SNP and single-gene association analysis
After stringent quality control, data from 317 oropharyngeal
cancer cases and 3,707 controls were tested for association
with 296,728 SNPs. The QQ plot (Supplementary Fig. S1) shows
minimal evidence of genomic inflation (λ = 1.01539). To
enhance the power to detect associations, we dramatically
reduced the number of SNPs tested by limiting analysis to the 12,258 SNPs that map to GO (21) categorized immune-related genes to test the hypothesis that germline DNA variants in these genes modulate risk of oropharyngeal cancer. Of the 1,324 GO-annotated immune-related genes, 1,304 could be assigned to an SNP. Of the top ranked immune-genes corresponding to SNPs with P values suggestive of association ($1 \times 10^{-5} > P > 1 \times 10^{-4}$), the topmost 10 were significant at a gene-based level after correction for multiple testing (FDR < 0.05), whereas all have been previously associated in the literature with cancer, viral infection, or both (Table 1).

To confirm that the oropharyngeal subsite is a valid surrogate for HPV-related head and neck cancer, we performed a validation analysis on serologically HPV positive head and neck cancer patients. As expected, HPV E6 seropositivity was predominantly found in patients with oropharyngeal cancer (Supplementary Table S1, Supplementary Fig. S2). Even with the statistical significance limited by the low numbers of HPV-positive cases and limited sensitivity of serologic testing (30, 31), the overall results were strikingly supportive of the association analysis restricted to oropharyngeal cancer. As shown in Table 1 and Supplementary Table S2, all 14 immune-related genes identified in the oropharyngeal cancer GWAS with SNP P values suggestive of association replicated significantly in the HPV+ cohort (P value < 0.05).

To determine whether immune-related genes are uniquely associated with oropharyngeal cancer rather than all types of HNSCC, we performed a parallel analysis of laryngeal cancer, a head and neck cancer strongly associated with tobacco and alcohol use rather than HPV infection (32). As shown in Table 1, out of the 14 highly ranked genes in the oropharyngeal cancer analysis that replicated in the HPV+ cohort, only one replicated in laryngeal cancer. The Two-sample Kolmogorov–Smirnov test demonstrated that the distribution of P values of the candidate immune-related genes was much more significant (P value $= 6.64 \times 10^{-4}$) in the oropharyngeal cancer analysis compared with the laryngeal cancer analysis, demonstrating a unique association of candidate immune genes with oropharyngeal cancer that is not seen with tobacco/alcohol-associated head and neck cancer. Association of candidate genes was also much higher for oropharyngeal cancer than for all HNSCC aggregated (data not shown).

In summary, the suggestive association of oropharyngeal cancer with multiple candidate genes plausibly linked to viral immunity, the robustness of these associations when applied to HPV seropositive head and neck cancer patients, and the lack of similar strong association of immune related genes with non-HPV-related head and neck cancer supports our hypothesis that there is an immunogenetic basis for oropharyngeal cancer risk due to its unique association with HPV. We then further tested this hypothesis by applying further tiers of validation to the genes most strongly associated with oropharyngeal cancer risk.

GGI and PPI analysis

Analysis of functionally related gene combinations can unmask cumulative/cooperative risk associations that would be missed by single-gene analysis. To explore functional and biologic processes driving susceptibility to oropharyngeal cancer, we performed GGI and PPI analyses on immune-related genes from the oropharyngeal cancer single-gene association analysis. GGI analysis demonstrated a high degree of significant interconnectness among these genes, suggesting their involvement in common biologic processes (Fig. 2A and Supplementary Table S3). PPI analysis performed on the top 200 ranked SNPs in immune-related genes from the oropharyngeal cancer analysis revealed multiple statistically significant first-degree interactions (Fig. 2B and Supplementary Table S4). The PPI network contained 81 direct connections between seed proteins from different loci with an expected value of only 24.58 (P value $= 9.99 \times 10^{-4}$) and the average seed protein direct binding degree of 2.7 with an expected value of only 1.42 (P value $= 9.99 \times 10^{-4}$). In randomly selected subsets of 200 genes from the set of 1304 GO-annotated immune-related genes, the connectivity in the PPI network was significantly reduced and both the direct connections between seed proteins and the average seed protein direct binding degree were not significant (Supplementary Fig. S3A).

Both the GGI and PPI analyses indicate that the top-ranked immune-related genes display a high degree of interconnectivity and are likely to be involved in related biologic processes. Visual inspection of the PPI plot identified three distinct clusters related to TGFβ signaling, Th1/Th2 balance, and innate immunity. Even when we widened the gene margins to be less stringent by extending the transcription start and stop codon by 110 kb and 40 kb, respectively (Supplementary Fig. S3B), these clusters are apparent, demonstrating their robustness.

Pathway analysis

To identify specific immune pathways that may play a role in the etiology of HPV-mediated cancer, we performed a GSEA of 11,029 pathways associated with a broad array of biologic processes. We identified 21 immune-related pathways significantly associated with oropharyngeal cancer, organized into six categories, including five toll-like receptor (TLR) and innate immunity pathways, four NFKB-related pathways, two T-cell activation pathways, four cell death pathways, four TGFβ/TGFBR-related pathways, and two miscellaneous immune pathways (Table 2). Many of these pathways contained one or more of the top ranked genes from the oropharyngeal cancer single-gene association analysis, most notably the p38 MAPK pathway, which contains MAPKAPK2 and for which TGFβR1 is the most significant gene. Most strikingly, many of the highly ranked immune-related genes found in the single-gene analysis participated in significant PPI and/or significant pathways, including TGFβR1, IL10, SOCS5, ZAP70, MAPKAPK2, CD80, LYN and MAPK10. Several immune-related genes that displayed significant PPI were also the most significant genes in many of the significant pathways from GSEA analysis, including TGFβR1, EGFR, CD44, IGF1R, and JAK2 (Fig. 3). The density of participation of highly ranked immune-related genes in functional pathways and protein–protein and gene–gene interaction networks is consistent with our hypothesis that multiple functionally related genes participating in key
Table 1. Immune genes with \(P \) values suggestive of association

<table>
<thead>
<tr>
<th>SNP</th>
<th>Gene</th>
<th>OPC (P) value</th>
<th>OR</th>
<th>CI</th>
<th>Rank</th>
<th>HPV (^+) (P) value</th>
<th>Larynx (P) value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs9922120</td>
<td>CBFA2T3</td>
<td>8.10E-07</td>
<td>1.646</td>
<td>1.35–2.01</td>
<td>6</td>
<td>4.52E-03</td>
<td>1.16E-02</td>
<td>Candidate breast cancer tumor suppressor (44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with AML (45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Activated by inflammatory cytokines (46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Major Stabilizer of p38 signaling (47)</td>
</tr>
<tr>
<td>rs895437</td>
<td>ZAP70</td>
<td>6.64E–05</td>
<td>1.653</td>
<td>1.29–2.12</td>
<td>40</td>
<td>6.90E–03</td>
<td>7.25E–01</td>
<td>Mutations cause selective T-cell defect (48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used as a prognostic marker for CCL in B cells (49)</td>
</tr>
<tr>
<td>rs3107638</td>
<td>CRTAM</td>
<td>8.75E–05</td>
<td>1.551</td>
<td>1.25–1.93</td>
<td>51</td>
<td>6.90E–03</td>
<td>7.25E–01</td>
<td>Mutations results in immune deficiency (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with cervical cancer (37)</td>
</tr>
<tr>
<td>rs1780365</td>
<td>PBX1</td>
<td>2.09E–04</td>
<td>0.711</td>
<td>0.59–0.85</td>
<td>113</td>
<td>8.28E–04</td>
<td>6.81E–01</td>
<td>Associated with esophageal SCCA (53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Induces apoptosis (54)</td>
</tr>
<tr>
<td>rs2869433</td>
<td>MAPK10</td>
<td>2.80E–04</td>
<td>0.708</td>
<td>0.59–0.85</td>
<td>134</td>
<td>4.66E–02</td>
<td>9.66E–01</td>
<td>Activated by pro-inflammatory cytokines (56)</td>
</tr>
<tr>
<td>rs6778945</td>
<td>CD80</td>
<td>3.75E–04</td>
<td>0.590</td>
<td>0.44–0.79</td>
<td>171</td>
<td>5.85E–03</td>
<td>8.01E–01</td>
<td>Necessary for T-cell activation and survival (58)</td>
</tr>
<tr>
<td>rs3024498</td>
<td>IL10</td>
<td>3.95E–04</td>
<td>1.421</td>
<td>1.17–1.73</td>
<td>181</td>
<td>6.75E–04</td>
<td>3.03E–01</td>
<td>Associated with cancer including cervical cancer (38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Involved in immunoregulation and inflammation (59)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Released during immune response to viral infection (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with cervical cancer [PMID: 18341210]</td>
</tr>
<tr>
<td>rs10167561</td>
<td>SOCS5</td>
<td>4.23E–04</td>
<td>0.710</td>
<td>0.59–0.86</td>
<td>192</td>
<td>2.00E–02</td>
<td>3.32E–01</td>
<td>Involved in regulating T helper cell differentiation (61)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with HIV replication (62)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppresses EGFR signaling (63)</td>
</tr>
<tr>
<td>rs2026811</td>
<td>TGF/βR1</td>
<td>4.29E–04</td>
<td>1.414</td>
<td>1.17–1.72</td>
<td>196</td>
<td>1.85E–03</td>
<td>5.23E–01</td>
<td>Prooncogenic role (64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced carcinomas and tumor invasiveness (65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polymorphism associated with several cancers (65)</td>
</tr>
<tr>
<td>rs11135045</td>
<td>EBF1</td>
<td>6.71E–04</td>
<td>1.437</td>
<td>1.16–1.77</td>
<td>289</td>
<td>1.68E–02</td>
<td>2.68E–01</td>
<td>Associated with cervical cancer (40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with HNSCCA (66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with breast cancer (67)</td>
</tr>
<tr>
<td>rs11633294</td>
<td>IGF1R</td>
<td>7.03E–04</td>
<td>0.725</td>
<td>0.60–0.87</td>
<td>310</td>
<td>4.09E–03</td>
<td>5.27E–01</td>
<td>Antiapoptotic (68)</td>
</tr>
<tr>
<td>rs2667975</td>
<td>LYN</td>
<td>7.56E–04</td>
<td>0.706</td>
<td>0.58–0.86</td>
<td>331</td>
<td>1.57E–03</td>
<td>1.78E–01</td>
<td>Associated with cancer (68)</td>
</tr>
<tr>
<td>rs3816375</td>
<td>ITGAV</td>
<td>7.75E–04</td>
<td>1.335</td>
<td>1.13–1.58</td>
<td>338</td>
<td>4.90E–02</td>
<td>3.11E–01</td>
<td>Associated with breast cancer (70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated with HCC (71); In HIV, associated with Kaposi sarcoma lesions (72)</td>
</tr>
</tbody>
</table>

NOTE: The table lists the top 14 ranked immune genes and their corresponding SNP and includes the SNP identifier (rs#), the official gene symbol, the overall rank in the oropharyngeal cancer GWAS, the genes most significant SNP’s \(P \) value from the oropharyngeal cancer, HPV \(^+\), and laryngeal cancer association analysis and connection of each gene to cancer, progressive viral infection, or both described in existing scientific literature. The top 10 ranked genes are significant at a gene-based threshold (FDR < 0.05).

Abbreviations: CI, confidence interval; LC, laryngeal cancer; OPC, oropharyngeal cancer; OR, odds ratio.
immune processes contribute incrementally to risk of oropharyngeal cancer.

Replication of oropharyngeal cancer results in a cervical cancer GWAS

Our hypothesis that risk of oropharyngeal cancer, as an HPV-related cancer, is uniquely associated with variation in immune genes, would be strongly supported by validation in cervical cancer, the cancer most strongly associated with HPV. Because TGFβR1 was significant across all four tiers of independent analyses, we attempted to replicate it in the cervical cancer GWAS. First, we sought to confirm that variants in TGFβR1 are associated with cervical cancer, and found that the TGFβR1-associated SNP rs334356 was ranked the 11th most significant immune gene in the cervical cancer GWAS with a P value of 2.00E−03. Because a SNP-based replication was unable to be performed because the oropharyngeal cancer and cervical cancer GWAS each used different genotyping platforms, we attempted a gene-based replication. The combined P value of TGFβR1 across the oropharyngeal cancer and cervical cancer GWAS met the significance threshold for gene-based analysis (using the nearest gene and most significant SNP in each gene loci) even after standard Bonferroni correction ($P < 3.8E−05$) with a P combined = 1.25E−05.

We also sought to determine whether any of the significant pathways from the oropharyngeal cancer analysis replicated in the cervical cancer dataset. The P38 MAPK pathway was the only pathway significant in both the oropharyngeal cancer and

Figure 2. Literature-based connectivity analyses. A, GGI analysis demonstrates the high degree of significant connectivity amongst the highly ranked immune SNPs in the oropharyngeal cancer GWAS. The figure was generated using the GRAIL platform, which determined the corresponding corrected P values for all gene–gene connections. The outer ring contains the input SNPs and the inner ring shows all possible genes corresponding to each SNP locus. Genes with significant intergene connections, determined by the GRAIL P value (Supplementary Table S2), are in bold and the thickness of the connection corresponds to strength of their interconnections. B, PPI network for the top ranked 200 immune genes in the oropharyngeal cancer GWAS generated using the DAPPLE platform. Nodes, proteins; links, direct interactions reported in the literature; colors, significance of the interaction as defined by the color key. Visual analysis of the oropharyngeal cancer GWAS immune network reveals three distinct immune clusters: 1, TGFβ signaling; 2, innate immunity; 3, Th1/Th2 balance.
cervical cancer GWAS datasets (FDR adjusted P value < 0.05), and in both datasets TGFβRI was the most significant gene. Of the 54 genes comprising the p38 MAPK pathway, the same seven genes had the lowest P values and were drivers of significance in both the oropharyngeal cancer and cervical cancer GWAS datasets (Fig. 4A), suggesting conservation of functional gene associations across both HPV-related cancers.

To determine whether TGFβRI-related pathways are uniquely associated with HPV-related cancers, we compared the nominal P values and corresponding FDR of all immune-related pathways containing closely TGFβRI-related genes (TGFβ1, TGFβ2, TGFβ3, TGFβRI, TGFβR2, and TGFβR3) in oropharyngeal cancer and cervical cancer (HPV related) and laryngeal cancer (tobacco/alcohol related; Fig. 4B). The significance trends are more similar for the two HPV-mediated cancers, oropharyngeal cancer and cervical cancer, than either is to laryngeal cancer, which shows almost inverse significance trends. These findings support a unique and potentially functionally conserved role for TGFβ signaling across HPV-related cancers.

Expression of TGFβRI is altered in HPV-associated tumors

Significant genetic associations with oropharyngeal cancer and other HPV-associated cancers are likely to have functional

Table 2. Significant pathways

<table>
<thead>
<tr>
<th>Immune category</th>
<th>Database</th>
<th>Pathway</th>
<th>FDR</th>
<th>Pathway GS</th>
<th>Effective GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell death</td>
<td>GOTERM</td>
<td>Negative regulation of caspase activity</td>
<td>2.98E–02</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Cell death</td>
<td>PANTHER</td>
<td>Other apoptosis</td>
<td>1.54E–02</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Cell death</td>
<td>REACTOME</td>
<td>P75ntr signals via NFKB</td>
<td>2.01E–02</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Cell death</td>
<td>REACTOME</td>
<td>NRI1 signals cell death from the nucleus</td>
<td>3.23E–02</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Misc immune</td>
<td>PANTHER</td>
<td>B cell and antibody-mediated immunity</td>
<td>3.66E–02</td>
<td>97</td>
<td>65</td>
</tr>
<tr>
<td>Misc immune</td>
<td>GOTERM</td>
<td>Initiation of viral infection</td>
<td>3.74E–02</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>NFkB</td>
<td>BIOCARTA</td>
<td>EPONFKB pathway</td>
<td>5.20E–03</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>NFkB</td>
<td>Ingenuity</td>
<td>NFKB signaling</td>
<td>3.05E–02</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>NFkB</td>
<td>REACTOME</td>
<td>Human TAK1 activates NFKB by phosphorylation and activation of IKK complex</td>
<td>4.00E–02</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>NFkB</td>
<td>BIOCARTA</td>
<td>NFKB pathway</td>
<td>3.90E–03</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>T-cell activation</td>
<td>BIOCARTA</td>
<td>CD40 pathway</td>
<td>2.21E–02</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>T-cell activation</td>
<td>Panther</td>
<td>T-cell activation</td>
<td>2.23E–02</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>TGFβ signaling</td>
<td>wiki pathway</td>
<td>P38 MAPK signaling pathway</td>
<td>4.56E–02</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>TGFβ signaling</td>
<td>KEGG</td>
<td>MAPK signaling pathway</td>
<td>2.19E–02</td>
<td>267</td>
<td>241</td>
</tr>
<tr>
<td>TGFβ signaling</td>
<td>wiki pathway</td>
<td>MAPK signaling pathway</td>
<td>4.80E–02</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>TGFβ signaling</td>
<td>wiki pathway</td>
<td>TGFβ signaling pathway</td>
<td>4.62E–02</td>
<td>162</td>
<td>154</td>
</tr>
<tr>
<td>TLR and innate immunity</td>
<td>REACTOME</td>
<td>Toll-like receptor 3 cascade</td>
<td>1.61E–02</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>TLR and innate immunity</td>
<td>Ingenuity</td>
<td>LPSIL-1 mediated inhibition of RXR function</td>
<td>1.80E–02</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>TLR and innate immunity</td>
<td>KEGG</td>
<td>NOD-like receptor signaling pathway</td>
<td>4.91E–02</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>TLR and innate immunity</td>
<td>Panther</td>
<td>Toll receptor signaling pathway</td>
<td>4.26E–02</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>TLR and innate immunity</td>
<td>REACTOME</td>
<td>Toll receptor cascades</td>
<td>2.03E–02</td>
<td>86</td>
<td>78</td>
</tr>
</tbody>
</table>

NOTE: The 21 significant immune pathways assigned to one of six immune categories. For each pathway, the table lists the immune category, the database the pathway was found in, the official name of the pathway, FDR, and the gene size (GS, the number of genes included in the pathway) and the effective gene size (EGS, the number of genes found in the GWAS dataset).
consequences, such as altered expression of target genes in cancer. We analyzed TGFBR1 gene expression in oropharyngeal cancer and cervical cancer tumor specimens in the Oncomine human cancer genomic database (27) and in HPV+/head and neck cancer samples in the TCGA database (28, 29). TGFBR1 was significantly overexpressed in oropharyngeal cancer, cervical cancer, and HPV+ head and neck cancer with respect to benign tissue (Table 3). This suggests that the genes found to be associated with HPV-related head and neck cancer are not simply markers of susceptibility, but likely to play a functional role in interactions between the host and the virus or virally transformed cancer cells.

Discussion

Little is known about determinants of host susceptibility to viral carcinogenesis, and whether common biologic themes may account for the heterogeneity of progression to cancer following viral exposure. The present study is the first to exploit GWAS as a high-throughput strategy to examine immunogenetic susceptibility to oropharyngeal cancer, unique among HNSCC subsites for its strong association with HPV. We found that variation in immune-related genes is an important determinant of susceptibility to HPV-related but not HPV-unrelated HNSCC, and that this relationship is robust across multiple levels of analysis. Our findings also specifically highlight the pivotal contribution of variation in TGFBR1 signaling-associated molecules to HPV-related cancer susceptibility.

Table 3. TGFBR1 gene expression analysis

<table>
<thead>
<tr>
<th>Tissues</th>
<th>P value</th>
<th>Fold change</th>
<th>Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oropharyngeal cancer</td>
<td>2.00E−03</td>
<td>2.21</td>
<td>Oncomine</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>3.85E−07</td>
<td>2.88</td>
<td>Oncomine</td>
</tr>
<tr>
<td>HPV+ head and neck cancer</td>
<td>1.04E−08</td>
<td>1.69</td>
<td>TCGA</td>
</tr>
</tbody>
</table>

NOTE: Gene expression levels of TGFBR1 in oropharyngeal cancer, cervical cancer, and HPV+ HNSCC. The table lists the tissue type, P value, fold change, and database for all entries.
which was consistent across oropharyngeal cancer, HPV seropositive HNSCC, and cervical cancer analyses. Significance of immune-related genes was much greater in the oropharyngeal cancer GWAS than that in a parallel analysis of laryngeal cancer, consistent with a unique contribution of immune-related genes to HPV-related cancer. Although this does not mean that host immunity plays no role in susceptibility to laryngeal cancer or other tobacco-associated HNSCC, it highlights the impressive and unique magnitude of association between variation in specific immune-related genes and oropharyngeal cancer, presumably due to high proportion of virally induced cancers at this subsite.

The strongest support for GWAS findings is their replication in independent datasets. For this, we focused on \(\text{TGFB}^b \) and the \(\text{TGFB}^b \) signaling pathways, which were significant across all modes of analysis. Because the association between immune genes and risk of oropharyngeal cancer is presumed to reflect enrichment at this subsite for HPV-driven cancer, we replicated our findings in cervical cancer, another HPV-related cancer. \(\text{TGFB}^b \) was successfully validated in the cervical cancer GWAS, with a significance level in the top 99.999% of the whole GWAS. Pathway level analysis comparing significance among oropharyngeal cancer, cervical cancer, and laryngeal cancer of all pathways that include a core \(\text{TGFB}^b \)-related gene, also strongly supported a role for \(\text{TGFB}^b \) and \(\text{TGFB}^b \) signaling unique to virally associated cancer. The likely functional significance of altered \(\text{TGFB}^b \) signaling in HPV-related cancers is further supported by our finding that \(\text{TGFB}^b \) is significantly overexpressed in both oropharyngeal cancer and cervical cancer.

These findings are consistent with the existing literature, in which \(\text{TGFB}^b \) signaling has already been linked to HPV-associated cancer by classic methods of genetic analysis. Dysregulated \(\text{TGFB}^b \) signaling is associated with malignant progression of HPV-positive cervical dysplasia (33, 34), and HPV has been shown to promote cervical cancer by attenuating \(\text{TGFB}^b \) signaling required for epithelial homeostasis at early stages of viral infection (35). Most importantly, genetic variants in \(\text{TGFB}^b \) have also been shown to be associated with HPV-positive oropharyngeal cancer, with people carrying genotypes with \(\text{TGFB}^b \) variants more than twice as likely to have an HPV-positive tumor as patients with the wild-type genotype (36). Our results further support the concept that dysregulated \(\text{TGFB}^b \) signaling is a key process common to multiple HPV-related cancers.

In addition to \(\text{TGFB}^b \), all the genes linked to the top-ranked SNPs are highly plausible candidates with established connection to cancer and/or viral infection (Fig. 3 and Table 1), and several have been previously reported to be associated with cervical cancer, including CRTAM, CD80, IL10, and EBF1 (37–40). More than half of the top-ranked immune genes were significantly associated with oropharyngeal cancer across multiple tiers of analysis, supporting the hypothesis that the class of immune-related genes is uniquely enriched for oropharyngeal cancer susceptibility genes. Although these associations at the single-SNP level do not meet the criteria for genome-wide significance \((P < 1 \times 10^{-8})\), the immune system is characterized by interconnectivity, cooperativity, and redundancy of functions. Thus, even in the absence of individual SNPs meeting genome-wide significance, immune-related genes may contribute additively and incrementally to cancer risk by participating in common pathways and networks underlying disease susceptibility. Hence, we decided not to focus on single SNPs, but to consider their significance in the context of a broad, biology-driven, pathway/network-discovery approach. The broad concordance of our results across disparate tiers of analysis, including GGI, PPI, GSEA/pathway, and gene expression analyses supports the premise that functionally related genesets rather than individual genes modulate susceptibility to oropharyngeal cancer.

Additional evidence from the literature supports the association of multiple immune-related genes with susceptibility to HPV-related cancer. In a recent GWAS of cervical cancer in a Swedish population (41), three independent loci were identified in the major histocompatibility complex (MHC) region that influence susceptibility, the first in the MHC class I polypeptide-related sequence A gene (MICA), the second between \(\text{HLA-DRB1} \) and \(\text{HLA-DQA1} \), and the third at \(\text{HLA-DPB2} \). Another cervical cancer GWAS performed in China also found associations with the \(\text{HLA-DRB1} \) and \(\text{HLA-DPB2} \) genes (42). Further support for a role for HLA molecules as modulators of susceptibility to cervical cancer comes from a pathway analysis performed on the cervical cancer GWAS, in which a subset was used as replication cohort in this study and identified several pathways, including HLA genes, that influence risk of cervical cancer (26). However, in the oropharyngeal cancer GWAS, the pathways and SNPs associated with HLA molecules were not highly ranked, with the most significant SNP \(P \) value equal to 1 \(\times 10^{-7} \). These differences may potentially reflect differences in the underlying biology of oropharyngeal cancer and cervical cancer, which share HPV as an etiologic agent, but are in many respects clinically and epide miologically different. On the other hand, a recent study (43) found NFkB-related pathways to be significantly associated with cervical cancer and vulvar cancer, which is concordant with our identification of four NFkB-related pathways in oropharyngeal cancer.

One significant limitation of this study is the lack of gold-standard tumor HPV status, requiring us to use HPV serology to infer which patients have HPV-associated tumors. Although HPV serology of blood samples is an established method for identifying patients with a high likelihood of HPV-induced cancer, the methods used for serologic analysis only identify roughly 60% of HPV+ oropharyngeal cancer (30, 31). An additional limitation of the approach used is that we only considered seropositivity for HPV16, whereas other oncogenic subtypes are associated with oropharyngeal cancer and presumably interact with the immune system in a similar fashion. Thus, we based our primary analysis on oropharyngeal cancer, the cancer subsite most highly associated with HPV, and used serology results to support the unique association of oropharyngeal cancer with HPV-related cancer. Although limited by the low number of cases with positive serology, the oropharyngeal cancer and HPV-seropositive datasets had strongly overlapping highly ranked significant SNPs and immune-related genes. Also, our results showing a much...
stronger association of immune genes with oropharyngeal cancer as compared with laryngeal cancer and all HNSCC, and the close similarity to cervical cancer, further support our hypothesis that the association of variation in immune-related genes with oropharyngeal cancer is uniquely strong because of its association with HPV-induced cancer. Replicating our oropharyngeal cancer findings in the cervical cancer dataset further validates our findings as genetic signatures associated with HPV-driven carcinogenesis.

In summary, this article supported the hypothesis that variants in immune-related genes, pathways, and networks increase susceptibility to HPV-associated HNSCC. Using a multiliterary analysis approach, TGFβ signaling was found to be associated with both HPV-mediated HNSCC and cervical cancer. Although this study focused on replicating the finding with the most analytical evidence, TGFβ signaling, we plan to investigate other immune-related genes and pathways that showed striking overlap between tiers of analysis. Identifying these causal variants will provide clues to pathogenetic mechanisms against which preventative interventions might be targeted and novel immunotherapeutic strategies developed for HPV-mediated oropharyngeal cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

Authors’ Contributions
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C. Levowitz, U. Gyllensten, J. Finnigan, E.E. Schadt, M.R. Posner, P. Boffetta, A.G. Sikora
Writing, review, and/or revision of the manuscript: C. Levowitz, D. Chen, E. Ivansson, U. Gyllensten, S. Alshawish, W. Zhang, M.R. Posner, P. Boffetta, A.G. Sikora
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Alshawish, E.E. Schadt, M.R. Posner, P. Boffetta, A.G. Sikora
Study supervision: M.R. Posner, P. Boffetta, A.G. Sikora

Acknowledgments
The authors thank Dr. Inga Peter (Department of Genetics and Genomic Sciences, ISMMS) and Dr. Ke Hao (Department of Genetics and Genomic Sciences, ISMMS) for their helpful input.

Grant Support
This work was partially supported by grants from the NIH National Cancer Institute (1F30CA165615-01; C. Levowitz); National Institute of Dental and Craniofacial Research (5R03DE017411-02; A.G. Sikora); the NIH National Cancer Institute (1K08CA154963-01A1; A.G. Sikora).

The costs of publication of this article were deferred in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 27, 2014; revised May 26, 2014; accepted September 1, 2014; published OnlineFirst October 1, 2014.
Integrative Analysis of Susceptibility to HPV-Related Cancer

Updated version

Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-0602-T

Supplementary Material

Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/10/02/0008-5472.CAN-14-0602-T.DC1

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.