Whole exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A and CUL1 in malignant pleural mesothelioma

Guangwu Guo1, 2, Juliann Chmielecki1, 2, Chandra Goparaju4, Adriana Heguy5, Igor Dolgalev5, Michele Carbone6, Sara Seepo1, Matthew Meyerson1, 2, 3, Harvey I. Pass4

Authors' Affiliations:

1Broad Institute of Harvard and MIT, Cambridge; 2Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute; 3Department of Pathology, Harvard Medical School, Boston, Massachusetts; 4Department of Cardiothoracic Surgery, NYU Langone Medical Center, 5Genome Technology Center, NYU Langone Medical Center, New York, New York; 6University of Hawaii Cancer Center, Honolulu, Hawaii

Note: Supplementary data for this article are available at Cancer Research Online

Disclosure of Potential Conflicts of Interest

J. Chmielecki is employed as a Senior Scientist at Foundation Medicine. M. Meyerson has ownership interest in Foundation Medicine and is a consultant/advisory board member of the same. Michele Carbone has pending patent applications on BAP1 and provides consultation for mesothelioma expertise and diagnosis. No potential conflicts of interest were disclosed by the other authors.
Corresponding Author:

Harvey I. Pass, Department of Cardiothoracic Surgery, NYU Langone Medical Center, 530 First Avenue, 9V New York New York 10016. Phone: 212-263-7417; E-mail: Harvey.Pass@nyumc.org
Abstract

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm associated with asbestos exposure. Although previous studies based on candidate gene approaches have identified important common somatic mutations in MPM, these studies have focused on small sets of genes and have provided a limited view of the genetic alterations underlying this disease. Here, we performed whole exome sequencing on DNA from 22 MPMs and matched blood samples, and identified 517 somatic mutations across 490 mutated genes. Integrative analysis of mutations and somatic copy number alterations (SCNAs) revealed frequent genetic alterations in \textit{BAP1}, \textit{NF2}, \textit{CDKN2A}, and \textit{CUL1}. Our study presents the first unbiased view of the genomic basis of MPM.

Introduction

MPM is a rare and highly aggressive tumor of serosal surfaces associated with exposure to asbestos, whose incidence is increasing worldwide (1). Effective treatment for MPM is difficult due to delays in diagnosis, non-uniformity of staging, and the lack of effective medical therapy. Although several major advances in the management of patients with MPM have been made in the past few years including the use of pemetrexed and cisplatinum, currently available treatments still appear to provide only modest benefit (1). Previous genetic analyses have identified several key genetic alterations including inactivation of \textit{CDKN2A} (2), \textit{NF2} (3) and \textit{BAP1} (4). In addition, frequent losses of chromosome arms 1p, 3p, 4q, 6q, 9p, 13q, 14q, and 22q and gains of chromosome arms 1q, 5p, 7p, 8q, and 17q have been reported in MPM (5). These studies provide broad insights into the biology of MPM and identification of new targets for therapy. However,
no comprehensive analysis of MPM genomes using next-generation sequencing have yet been reported.

Advances in technologies for high-throughput sequencing of DNA have enabled the comprehensive characterization of somatic mutations in different cancer types at an unprecedented resolution (6). In particular, exome sequencing represents a cost- and labor-efficient strategy to identify mutations in protein-coding exons in the human genome. In recent years, exome sequencing has been successfully applied to a variety of human cancers, enabling cancer genome discoveries with the potential to translate into advances in cancer diagnosis and treatment as well as basic cancer biology (7).

Here, we performed exome sequencing on genomic DNA from 22 MPM tissues and matched normal samples. We found frequent inactivation of BAP1, NF2, CUL1 and CDKN2A by somatic mutations and/or copy number alterations. We also observed frequent alterations in several canonical cancer-related pathways. In summary, our data provide a first view of the comprehensive landscape of somatic genome alterations in MPM.

Materials and Methods

Patient samples collection and preparation

All 22 tumors and matched blood samples were obtained from individuals diagnosed with MPM at the New York University (NYU) General Thoracic Surgery Service (Supplementary Table S1). All patient samples were collected in the operating room,
immediately snap-frozen in liquid nitrogen within 10 minutes of collection, and then stored at -80°C. Blood was withdrawn prior to the initiation of anesthesia for serum, plasma, and peripheral blood mononuclear cells (PBMC). The PBMCs, cryopreserved after processing, were used for normal genomic DNA matched to the specimens and were processed per manufacturers specifications (Becton Dickinson, BD CPT™ vacutainer tubes, Franklin Lakes, NJ). Percentages of tumor within the tumors ranged from 70-90% based on histological examination, and histologies of the specimens included biphasic (3 tumors), desmoplastic (1 tumor), and epithelial (18 tumors). Each subject was properly informed before recruitment for the study, according to the regulations of the NYU ethics review boards. Before whole exome sequencing, germline SNP analysis was performed on tumor-blood pairs to confirm their identities; all tumors matched their normal pairs.

Massively Parallel Sequencing

For whole exome sequencing, genomic DNAs from tumor-blood pairs were fragmented and subjected to whole exome capture with the SureSelect Human All Exon 50Mb kit (Agilent Technologies) following standard protocols. Exome capture libraries were then sequenced on the Illumina HiSeq platform according to standard protocols (8).

Somatic mutation calling

Mutation analysis of exome sequencing data was performed as described (8). Briefly, basic read alignment and sequence quality control were done by using the Picard and Firehose pipelines at the Broad Institute. Mapped genomes were processed by the Broad Firehose pipeline to perform additional quality control, variant calling (MuTect algorithm (9)), and mutation significance analysis (MutSig algorithm (10)).
Validation of recurrently mutated genes in additional MPMs

The exonic regions of recurrently mutated genes PIK3C2B, RDX, and TAOK1 were determined using the RefSeq transcript data retrieved from the UCSC Genome Browser, yielding 67 regions. Specific primers were designed using Primer3, to amplify the exonic regions with a buffer of at least 100 bps on both ends with a total length of 500 to 1,500 bps (Supplementary Table S2).

The regions of interest were amplified by PCR reactions using a touchdown PCR protocol with Kapa HiFi HotStart polymerase (Kapa Biosystems, Cape Town, South Africa). The touchdown PCR method consisted of: 1 cycle of 95°C for 5 min; 3 cycles of 95°C for 30 sec, 64°C for 15 sec, 72°C for 30 sec; 3 cycles of 95°C for 30 sec, 62°C for 15 sec, 72°C for 30 sec; 3 cycles of 95°C for 30 sec, 60°C for 15 sec, 72°C for 30 sec; 37 cycles of 95°C for 30 sec, 58°C for 15 sec, 72°C for 30 sec; 1 cycle of 70°C for 5 min. All amplicons for each sample were pooled and used to generate libraries with unique indices using the Nextera DNA Sample Preparation Kit (Illumina, San Diego, CA) which generates smaller fragments randomly within each amplicon.

Sequencing of amplicons was carried out on an Illumina MiSeq instrument with 2 × 150 bps paired-end reads. The average coverage of each gene was approximately 900×. Somatic mutations in each gene were detected by the same methods as described in discovery stage.
Copy number profiling

We analyzed copy number in the whole exome sequencing by generating copy number segments based on published methods (11) and then applied GISTIC2 (12) to identify focal regions of SCNAs as described. A significant SCNA region was defined as having a Q-value threshold of 0.25 from the permutation-derived null distribution. The output of focal GISTIC2 was used to define the key peaks of amplifications and deletions.

Pathway enrichment analysis

We performed pathway enrichment analysis using WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/) by examining the distribution of genes with somatic mutations or copy number changes within the KEGG database. The significance of mutation enrichment was determined by a hypergeometric test and was adjusted for multiple testing with the Benjamini-Hochberg false discovery rate (FDR).

Results

Landscape of somatic mutations in MPM

We captured and sequenced the exomes from paired tumor and blood DNA samples from 22 MPM cases (Supplementary Table S1). On average, 3.5 Gb of high quality sequencing data were generated for each sample, resulting in coverage of targeted exome regions to a mean depth of 89× or greater (Table 1). Over 88.2% of the targeted regions were covered sufficiently for confident variant calling (≥14 reads in tumors and ≥8 reads in normal samples). By statistical comparison of paired tumor/blood sequence data (see Materials and Methods), mutation analysis identified a total of 517 somatic mutations
(Supplementary Table S3), including 134 synonymous mutations, 295 missense mutations, 25 nonsense mutations, 25 splice-site changes and 38 small coding insertions/deletions (indels). Comparison of somatic mutations from this study to the COSMIC database (13) yielded 53 mutations across 46 previously reported mutated genes. Of 295 missense mutations, 136 were predicted to have a high probability of being deleterious by PolyPhen (14).

We detected a mean of 23 somatic mutations per tumor (range 2–51) corresponding to an average of 0.79 mutations per megabase (range 0.07–1.71), a considerably smaller number compared with other types of malignant tumors (Supplementary Table S4). Three of the 22 tumors, NYU589, NYU1396 and NYU269, harbored small numbers of somatic mutations with two, two and three mutations, respectively; despite high estimated histological purity, we were unable to determine sample purity by DNA analysis (15) and therefore are uncertain whether the low mutation rate represents low tumor purity or a biological feature of these tumors. The mutation spectrum in the 22 MPMs was dominated by C:G->T:A transitions (Supplementary Fig. S1), as noted in several other adult cancers (16).

Significantly mutated genes in mesothelioma

Protein-altering mutations occurred across 490 genes, of which 97% (477/490) were mutated in only a single individual. To identify significantly mutated genes that were likely to be implicated in MPM tumorigenesis, we considered genes that were mutated in at least two tumors and were significantly more mutated than the background mutation rate (q-value <0.1), as calculated by MutSig (10). We identified three significantly mutated genes (**BAP1**, **NF2** and **CUL1**) meeting these two criteria (**Fig. 1**) and 10
additional genes that were recurrently but not significantly mutated (Supplementary Table S3).

BAP1 has the highest prevalence of protein-altering mutations identified in this MPM cohort (8/22 tumors=36%), consistent with earlier MPM sequencing analyses (4). *BAP1* encodes a nuclear ubiquitin carboxy-terminal hydrolase (UCH) (17). We found 8 mutations in *BAP1*, 7 of which (three nonsense mutations, three frame-shift indels and 1 splice site change) were predicted to truncate the encoded protein (*P* < 0.001; Fig. 2A), consistent with a tumor suppressor function for the BAP1 protein in MPM. A germline mutation at splice site in *BAP1* was also found in the case NYU754 (T>C mutation at 52,441,334 in chromosome 3). We also found inactivation of *NF2*, another common event in MPM (3), by truncating mutations in three cases (14%). All mutations in *NF2* were reported in the COSMIC database.

Interestingly, we also found 1 dinucleotide mutation and 1 missense mutation in *CUL1* (Fig. 2B), which is an essential component of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex and plays an important role in protein degradation and protein ubiquitination. All mutations in *CUL1* were predicted to affect protein function by PolyPhen (14) and one missense mutation (E485K) was also identified in the COSMIC database.

The other recurrently mutated genes

In this study, 13 genes were recurrently mutated in two or more MPMs (Supplementary Table S3). Besides *BAP1*, *NF2* and *CUL1*, four recurrently mutated genes (*RDX*, *TP53*, *PIK3C2B* and *TAOK1*) harbored higher mutation rates than the background with a
significance threshold at a moderately stringent level \((P < 0.01; \text{Supplementary Table S5})\). \textit{TP53} harbored somatic mutations in two cases, consistent with previously reported frequencies in MPM (4). To our knowledge, the three novel recurrently mutated genes \((RDX, PIK3C2B \text{ and } TAOK1)\) have not been identified in MPM although mutations in these genes have been reported in many cancer types in COSMIC database (13). \textit{RDX}, encoding a cytoskeletal protein that may be important in linking actin to the plasma membrane, is subject to two somatic mutations in this case series \((S497R \text{ and } Q48P)\). \textit{PIK3C2B} encodes a protein that belongs to the phosphoinositide 3-kinase \((PI3K)\) family and is somatically mutated in two cases. \textit{TAOK1}, encoding a serine/threonine-protein kinase involving in various processes such as MAPK signaling pathway and mitotic anaphase, was also mutated in two cases.

To further evaluate the mutation prevalence of \textit{RDX, PIK3C2B} \text{ and }\textit{TAOK1} in MPM, we determined the coding sequencing of the three genes in an additional 10 tumor-normal pairs from MPM patients and 9 mesothelioma cell lines by high-throughput deep sequencing. However, no somatic mutations in these three genes were found in the 10 tumor samples. All mutations detected in mesothelioma cell lines were known SNPs and none of them were present in COSMIC database.

Copy number alterations in MPM

We profiled the 22 MPM for SCNAs using exome sequencing data using previously described methods (11) and found predominant loss of 22p and 22q harboring \textit{NF2} (Supplementary Fig. S2), a frequent genetic alteration in MPM (3). We also applied GISTIC2 (12) analysis to exome sequencing data to identify recurrent focal SCNAs, yielding 6 regions of focal deletion that encompass 505 genes (Supplementary Table S6).
Among these regions, the most common focal deletion, altered in 10 tumors (45%), encompassed a region at 9p21 containing \textit{CDKN2A} and \textit{CDKN2B} (Supplementary Fig. S3), which is a widely reported genomic alteration in MPM (2). Consistent with our previous study (18), we found that \textit{MIR31} (microRNA 31), a microRNA gene located at 9p21 near \textit{CDKN2A}, was frequently deleted in 8 (36%) tumors (Supplementary Fig. S4).

Significantly altered pathways

To construct a comprehensive view of the common genetic alterations underlying the MPM, we performed integrative pathway analysis of the somatic mutations and focal SCNAs. We identified a number of pathways with recurrent alterations in MPM, including the cell cycle, MAPK and Wnt signaling pathway (Supplementary Table S7). The cell cycle was the most frequently altered pathway, with alterations in 12 of the tumors (55%), including the alterations in \textit{CDKN2A/B}, \textit{CUL1} and \textit{TP53}. Genes within the MAPK and Wnt signaling pathways were altered in 11 and 7 tumors, respectively.

Discussion

In this study, we analyzed somatic mutations in 22 MPMs compared to matched normal samples using whole exome sequencing. We detected more than 500 somatic mutations and showed that 490 genes were somatically mutated in at least one of the tumors. Integrating mutation and SCNA data, we found that \textit{BAP1}, \textit{NF2} and \textit{CDKN2A}, known to be altered genes in MPM, were the three most frequently altered genes detected in our study (Fig. 3). We also found frequent genetic alterations in cell cycle, MAPK signaling
and Wnt signaling pathway. The results are consistent with a previous study of MPM using both CGH arrays and Sanger sequencing (4).

The tumor suppressor $BAP1$, one of several classes of deubiquitinating enzyme, may be involved in regulation of transcription, regulation of cell cycle and growth, response to DNA damage and chromatin dynamics (17). Frequent mutations in $BAP1$ have been reported in many types of cancer including uveal melanoma (19), renal cancer (20) and MPM (4). In the present study, nine tumors (41%) harbored somatic mutations or SCNAs in $BAP1$. We also found 11 genetic alterations in $NF2$, a component of the Hippo signaling pathway. A previous study reported 10 inactivating homozygous deletions or mutations of $LATS2$, another member of Hippo pathway, among 45 MPM tumor tissue or cancer cell lines (21), although no mutations in $LATS2$ was found in our study. These studies suggest that the Hippo signaling pathway may be implicated in MPM tumorigenesis. However, no somatic mutations in genes of the Hippo pathway other than $NF2$ and $LATS1$ were found in our study (Supplementary Table S8).

We also found significant recurrence of mutations in $CUL1$, a gene in which mutations have not been previously reported in MPM, in two tumors. $CUL1$ encodes a core component of SCF E3 ubiquitin-protein ligase complexes that mediate the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription.

Finally, we used exome sequencing data to identify somatic CNAs and found 6 significant focal deletions. Among them, the deletion of 9p21 centered on $CDKN2A$ was
the most common event occurring in 10 of 22 MPMs. Moreover, seven of CDKN2A-deleted tumors also harbored genetic alterations in NF2 ($P=0.19$). No somatic substitutions and coding indels were found in CDKN2A in our cohort.

Our study presents the first unbiased view of somatic mutations in MPM. However, one limitation of our study is that we have only analyzed a small number of tumors analyzed, thus the sequencing of larger MPM cohorts will be necessary to determine a more comprehensive genomic landscape for MPM as well as a more precise prevalence frequency for the mutated genes detected in our analysis. In addition, further functional study for novel mutated genes such as CUL1 will be required to define their roles in MPM.
Acknowledgments

The authors thank Cheng-Zhong Zhang and Andrew Cherniack for helpful discussions.

Grant Support

This work was supported by the Broad Institute through a grant from the National Human Genome Research Institute at the National Institutes of Health (U54HG003067: Eric S. Lander, principal investigator), and by NCI EDRN 5U01CA111295-07 (H.I. Pass as principal investigator), the Stephen E. Banner Lung Cancer Foundation, and Belluck and Fox. J.C. was supported by an American Cancer Society AstraZeneca Postdoctoral Fellowship.
References

Table 1. Landscape of somatic mutations in the exomes of 22 MPMs

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Tumor bases sequenced</th>
<th>Normal bases sequenced</th>
<th>Tumor exome coverage</th>
<th>Normal exome coverage</th>
<th>Callable positions</th>
<th>% Callable</th>
<th>Point mutations</th>
<th>Coding indels</th>
<th>Mutation rate (per Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYU269</td>
<td>3.55 x 10^9</td>
<td>3.14 x 10^9</td>
<td>107.3</td>
<td>95</td>
<td>2.94 x 10^7</td>
<td>88.9</td>
<td>2</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>NYU274</td>
<td>2.94 x 10^9</td>
<td>3.32 x 10^9</td>
<td>88.8</td>
<td>100.3</td>
<td>2.92 x 10^7</td>
<td>88.3</td>
<td>31</td>
<td>1</td>
<td>1.08</td>
</tr>
<tr>
<td>NYU321</td>
<td>3.58 x 10^9</td>
<td>3.05 x 10^9</td>
<td>108.2</td>
<td>92.2</td>
<td>2.94 x 10^7</td>
<td>89</td>
<td>30</td>
<td>2</td>
<td>1.07</td>
</tr>
<tr>
<td>NYU460</td>
<td>3.69 x 10^9</td>
<td>4.23 x 10^9</td>
<td>111.5</td>
<td>127.8</td>
<td>2.95 x 10^7</td>
<td>89.3</td>
<td>22</td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>NYU517</td>
<td>3.12 x 10^9</td>
<td>4.10 x 10^9</td>
<td>94.2</td>
<td>124</td>
<td>2.93 x 10^7</td>
<td>88.6</td>
<td>29</td>
<td>3</td>
<td>1.08</td>
</tr>
<tr>
<td>NYU587</td>
<td>3.82 x 10^9</td>
<td>3.78 x 10^9</td>
<td>115.7</td>
<td>114.3</td>
<td>2.97 x 10^7</td>
<td>89.9</td>
<td>23</td>
<td>1</td>
<td>0.79</td>
</tr>
<tr>
<td>NYU589</td>
<td>3.76 x 10^9</td>
<td>3.97 x 10^9</td>
<td>113.7</td>
<td>120</td>
<td>2.97 x 10^7</td>
<td>89.7</td>
<td>0</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>NYU647</td>
<td>3.10 x 10^9</td>
<td>3.30 x 10^9</td>
<td>93.8</td>
<td>99.8</td>
<td>2.94 x 10^7</td>
<td>88.9</td>
<td>30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NYU658</td>
<td>3.03 x 10^9</td>
<td>3.33 x 10^9</td>
<td>91.8</td>
<td>100.6</td>
<td>2.94 x 10^7</td>
<td>89</td>
<td>28</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NYU695</td>
<td>3.60 x 10^9</td>
<td>3.9 x 10^9</td>
<td>108.9</td>
<td>93.5</td>
<td>2.92 x 10^7</td>
<td>88.3</td>
<td>12</td>
<td>3</td>
<td>0.51</td>
</tr>
<tr>
<td>NYU754</td>
<td>3.64 x 10^9</td>
<td>4.2 x 10^9</td>
<td>110</td>
<td>127.1</td>
<td>2.94 x 10^7</td>
<td>89</td>
<td>26</td>
<td>2</td>
<td>0.94</td>
</tr>
<tr>
<td>NYU872</td>
<td>3.76 x 10^9</td>
<td>3.64 x 10^9</td>
<td>113.7</td>
<td>109.9</td>
<td>2.94 x 10^7</td>
<td>89</td>
<td>46</td>
<td>5</td>
<td>1.71</td>
</tr>
<tr>
<td>NYU929</td>
<td>3.39 x 10^9</td>
<td>3.67 x 10^9</td>
<td>102.6</td>
<td>111</td>
<td>2.96 x 10^9</td>
<td>89.4</td>
<td>22</td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>NYU937</td>
<td>3.41 x 10^9</td>
<td>3.28 x 10^9</td>
<td>103.1</td>
<td>99</td>
<td>2.94 x 10^7</td>
<td>89</td>
<td>39</td>
<td>2</td>
<td>1.37</td>
</tr>
<tr>
<td>NYU939</td>
<td>3.01 x 10^9</td>
<td>3.99 x 10^9</td>
<td>91.1</td>
<td>120.5</td>
<td>2.92 x 10^7</td>
<td>88.3</td>
<td>24</td>
<td>3</td>
<td>0.91</td>
</tr>
<tr>
<td>NYU1162</td>
<td>3.11 x 10^9</td>
<td>3.42 x 10^9</td>
<td>94.1</td>
<td>103.4</td>
<td>2.92 x 10^7</td>
<td>88.4</td>
<td>24</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td>NYU1189</td>
<td>3.46 x 10^9</td>
<td>3.34 x 10^9</td>
<td>104.7</td>
<td>101</td>
<td>2.93 x 10^7</td>
<td>88.4</td>
<td>9</td>
<td>1</td>
<td>0.34</td>
</tr>
<tr>
<td>NYU1245</td>
<td>3.05 x 10^9</td>
<td>4.35 x 10^9</td>
<td>92.2</td>
<td>131.6</td>
<td>2.92 x 10^7</td>
<td>88.2</td>
<td>15</td>
<td>0</td>
<td>0.51</td>
</tr>
<tr>
<td>NYU1283</td>
<td>3.97 x 10^9</td>
<td>3.30 x 10^9</td>
<td>119.9</td>
<td>99.7</td>
<td>2.96 x 10^7</td>
<td>89.6</td>
<td>27</td>
<td>4</td>
<td>1.03</td>
</tr>
<tr>
<td>NYU1353</td>
<td>3.08 x 10^9</td>
<td>3.68 x 10^9</td>
<td>93.2</td>
<td>111.2</td>
<td>2.91 x 10^7</td>
<td>88</td>
<td>11</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td>NYU1363</td>
<td>3.37 x 10^9</td>
<td>3.00 x 10^9</td>
<td>101.8</td>
<td>90.8</td>
<td>2.93 x 10^7</td>
<td>88.5</td>
<td>27</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>NYU1396</td>
<td>4.15 x 10^9</td>
<td>4.11 x 10^9</td>
<td>125.4</td>
<td>124.2</td>
<td>2.97 x 10^7</td>
<td>89.7</td>
<td>2</td>
<td>0</td>
<td>0.07</td>
</tr>
</tbody>
</table>

The mutation rate was calculated by dividing the total number of somatic mutations by the total number of callable nucleotide positions (≥14× in tumor and ≥8× in matched normal samples).
Figure Legends

Figure 1. Significantly mutated genes in MPM. Significantly mutated genes (Q value < 0.1) identified by exome sequencing are sorted vertically by Q value. The top bar graph shows somatic mutation frequency for 22 MPMs. The middle matrix indicates *BAP1*, *NF2* and *CUL1* somatic mutation status with left-adjacent bar graph indicating the total number of mutations and percent frequency for each gene. The boxplots below the matrix represent the distributions of allelic fractions observed in each tumor. The bottom plot shows each tumor’s somatic mutation spectrum as a percentage of all mutations (right axis).

Figure 2. Somatic mutations in *BAP1* and *CUL1*. The types and relative positions of somatic mutations are shown in the predicted protein sequences of *BAP1* (A) and *CUL1* (B). Mutation status was color-coded by types of mutation.

Figure 3. Integrative display of somatic mutations and copy number alterations in 22 MPM. Five tumors had no alterations in the genes listed.
Figure 2

A

BAP1

0 100 200 300 400 500 600 700

Interaction with BRCA1

HBM-like motif

Nuclear localization signal

p.Q85

p.C91

p.R264

p.Q280*

p.Q372*

p.I499

p.E653*

p.A683fs

Splice site

Nonsense

Missense

Missense

Frame shift Indel

B

CUL1

0 100 200 300 400 500 600 700

Missense

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2014 American Association for Cancer Research.
Whole exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A and CUL1 in malignant pleural mesothelioma

Guangwu Guo, Juliann Chmielecki, Chandra Goparaju, et al.

Cancer Res Published OnlineFirst December 8, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-1008

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2014/12/06/0008-5472.CAN-14-1008.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.