BRCA2-deficient sarcomatoid mammary tumors exhibit multi-drug resistance

Janneke E. Jaspers¹,², Wendy Sol¹, Ariena Kersbergen¹, Andreas Schlicker³, Charlotte Guyader¹,
Guotai Xu¹, Lodewyk Wessels³, Piet Borst¹, Jos Jonkers², Sven Rottenberg¹,⁴

Authors’ affiliations
¹Divisions of Molecular Oncology, ²Molecular Pathology and ³Molecular Carcinogenesis,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; ⁴Institute of
Animal Pathology, Vetsuisse Faculty, University of Bern, Laengassstrasse 122, 3012 Bern, Switzerland

Running title
Multi-drug resistance of sarcomatoid mouse mammary tumors

Precis
Epithelial-to-mesenchymal transition in murine mammary tumors associates with an
acquisition of multi-drug resistance, due to increased expression of genes encoding drug
efflux transporters.

Keywords
Multi-drug resistance, BRCA2, PARP inhibitor, P-glycoprotein, epithelial-to-mesenchymal transition

Financial support
This work was supported by grants from the Netherlands Organization for Scientific Research (NWO-
Toptalent 021.002.104 to J.E. Jaspers, NWO-VIDI 91.711.302 to S. Rottenberg, and NWO-roadmap
MCCA 184.032.303), Dutch Cancer Society (projects NKI 2007-3772, NKI 2009-4303 and NKI-2011-
5220), the EU FP7 Project 260791-Eurocan-Platform, CTMM Breast Care, and the NKI-AVL Cancer Systems Biology Centre.

Corresponding author
Dr. Sven Rottenberg
Institute of Animal Pathology
Vetsuisse Faculty, University of Bern
Laengassstrasse 122
3012 Bern
Switzerland
Phone: +41 31 6312395
sven.rottenberg@vetsuisse.unibe.ch

Conflict of interest
The authors declare to have no conflict of interest.

Word count: 4080

Figures: 5 (+ 5 Supplementary Figures)
Abstract

Pan- or multi-drug resistance is a central problem in clinical oncology. Here we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multi-drug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly re-sensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel and doxorubicin. We propose that multi-drug resistance is a multi-factorial process and that mouse models are useful to unravel this.
Introduction

A major clinical problem in cancer therapy is resistance of tumors to all available therapies, a phenomenon called pan-resistance (1). After an initial response primary tumors and especially metastases do not respond anymore to treatment, including radiotherapy. The frequently used term “multi-drug resistance” historically refers to resistance due to drug efflux transporters, but upregulation of these transporters cannot fully explain pan-resistance. Drug resistance is not only a problem for classical chemotherapeutics, but also for targeted therapeutics. Mechanisms can be drug-specific, such as imatinib resistance caused by mutations in or overexpression of the drug target BCR-ABL (2) or down-regulation of Top1 or Top2 causing resistance to topoisomerase I or II poisons (3). The precise mechanisms that cause resistance of tumors to multiple classes of drugs are not fully understood. One mechanism that has been put forward to explain pan-resistance of various types of cancer is epithelial-to-mesenchymal transition (EMT) (1,4). During EMT cells lose epithelial characteristics and acquire mesenchymal characteristics. EMT is a physiological process involved in, for example, embryogenesis and wound healing, but it has also been described for epithelial cancers when cells acquire a spindle-shaped (also called ‘mesenchymal’ or ‘sarcomatoid’) morphology and lose expression of cell adhesion molecules. In vitro, EMT was observed in various cell lines that acquired resistance to chemotherapeutic agents and targeted inhibitors (4) and induction of EMT by recombinant TGFβ treatment led to resistance to tyrosine kinase inhibitors and cisplatin (5), suggesting a role of EMT in pan-resistance.

Breast cancer is a heterogeneous disease, which comprises various histologic and molecular subtypes. Among these is the subgroup of metaplastic breast cancer, a variant of triple-negative breast cancer, which includes several morphologic entities, including spindle-shaped tumor cells (6,7). A molecular subtype that is frequently observed in metaplastic cancers is the claudin-low signature (8,9). Since metaplastic cancers have a poor prognosis, we wondered whether EMT might contribute to poor drug response of these tumors.
To study the influence of EMT on pan-resistance, we made use of a unique mouse model of BRCA2-deficient breast cancer, i.e. the \(K14\text{cre;Brca2}^{2/2};p53^{2/2} \) mammary tumor model (10). Female \(K14\text{cre;Brca2}^{2/2};p53^{2/2} \) mice develop mostly epithelial mammary carcinomas, but also mesenchymal carcinosarcomas are formed. Since the K14 promoter drives Cre expression only in epithelial cells (10), it is plausible that these mesenchymal mammary tumors originate from an epithelial-to-mesenchymal transition. The advantage of such an \textit{in vivo} model is that no cell lines have to be used, which may poorly represent the original tumor (11). We and others have previously shown that the BRCA2-deficient mouse mammary tumors are sensitive to DNA damage-inducing drugs and PARP inhibitors due to the lack of error-free repair of double strand DNA breaks by homologous recombination (12–16). In BRCA2-deficient breast cancer patients such an increased sensitivity was also observed after neoadjuvant therapy with DNA-damaging agents (17,18) or PARP inhibitors (19).

We investigated whether this drug sensitivity is diminished in BRCA2-deficient carcinosarcomas. For this purpose, we compared the responses of epithelial carcinomas and mesenchymal carcinosarcomas to chemotherapy drugs and PARP inhibitors. We found that BRCA2-deficient carcinosarcomas are multi-drug resistant, which was, at least in part, due to high expression of the drug efflux transporters P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), which transport a wide range of chemotherapeutic and targeted agents. In addition, we found that an EMT-like gene expression profile correlates with Pgp expression in multiple independent mouse mammary tumor data sets.

Methods

Mice and tumor transplantations

Tumors were generated in \(K14\text{cre;Brca2}^{2/2};p53^{2/2} \) (KB2P) female mice (10) and samples were taken for histology, RNA isolation and cryopreservation. Orthotopic transplantation of \(BRCA2^{\Delta/\Delta};p53^{\Delta/\Delta} \), \(p53^{\Delta/\Delta} \) and \(p53^{\Delta/\Delta};\text{Abcb1a/b}^{-/-} \) tumors in wild-type FVB/Ola129 F1 mice was performed as previously described (20). The tumor size was monitored at least three times a week by calliper measurements.
The tumor volume was calculated with the following formula: 0.5 x length x width². Animals were sacrificed with CO₂, when the tumor reached a size of 1500 mm³. Cre-mediated deletion of exon 11 in Brca2 and exons 2-10 in Trp53 was confirmed by genotyping PCR and Southern blotting as described (14,21). All animal experiments were approved by the Animal Ethics Committee of the Netherlands Cancer Institute (Amsterdam, The Netherlands).

Drug treatments

Upon tumor outgrowth to approximately 200 mm³ (100 %) the mice were either left untreated or received one of the following treatments: olaparib (50 mg/kg intraperitoneally, daily for 28 days), topotecan (4 mg/kg intraperitoneally, day 0-4 and 14-18), doxorubicin (Amersham Pharmacia Netherlands, 5 mg/kg intravenously, day 0, 7 and 14), docetaxel (Aventis, 25 mg/kg intravenously, day 0, 7 and 14) or cisplatin (Mayne Pharma, 6 mg/kg intravenously, day 0). Mice with a relapsing tumor received another treatment cycle when the tumor was 100% of the original size at treatment start. For the re-sensitization experiment with tariquidar (Fig. 4B) the mice received only one treatment cycle and tumor outgrowth was monitored. Tariquidar (Avaant, 10 mg/kg intraperitoneally) was administered 15 minutes prior to treatment with olaparib, docetaxel or doxorubicin. AZD2461 (22) (100 mg/kg orally) was administered daily for 28 days.

Immunohistochemistry and fluorescence

Staining of E-cadherin and vimentin was performed on formalin-fixed paraffin-embedded (FFPE) tissue. Samples were boiled in Tris-EDTA pH9.0 to retrieve the antigens. Furthermore, we used 3 % H₂O₂ in methanol to block endogenous peroxidase activity, and 10 % milk (E-cadherin) or 4 % bovine serum albumin (BSA) plus 5 % normal goat serum in PBS (vimentin) as blocking buffer. Primary antibodies (mouse anti-E-cadherin, BD Transduction Laboratories 610182, 1:400; rabbit anti-vimentin, Cell Signalling 5741, 1:200) were diluted in 1.25 % normal goat serum plus 1 % bovine serum albumin (BSA) in PBS. For detection and visualisation labelled polymer-HRP anti-mouse and
rabbit Envision (Dako K4007 and K4011), DAB (Sigma D5905) and hematoxylin counterstaining were applied.

CD31 staining was done on cryosections after acetone fixation for 10 minutes at -20 °C. Then we applied 0.3 % H$_2$O$_2$ in methanol, avidin-biotin block (Dako X0590) and serum-free protein block (Dako X0909). The primary (rat anti-CD31, BD Bioscience 550274, 1:1000) and secondary antibodies (biotinylated rabbit-anti-rat IgG, Dako E0468, 1:300) were diluted in 1 % bovine serum albumin in PBS. For detection and visualisation, we used streptavidin-HRP (Dako K1016, 10 minutes incubation at room temperature), DAB (Dako K3468), and hematoxylin counterstaining.

For visualization of perfused blood vessels, biotinylated Lycopersicon Esulentum (Tomato) Lectin (B1175 Vector Laboratories) was added to streptavidin-AF633 (21375 Invitrogen) in sterile PBS and injected in the tail vein 15 minutes before sacrificing the mouse. For visualisation of the Lectin-AF633 signal, FFPE slides were deparaffinised, rehydrated, incubated with DAPI for five minutes and mounted in Vectashield (H-1000 Vector Laboratories). Images were taken with a Leica TCS SP5 (Leica Microsystems) confocal system, equipped with a 405 nm Diode laser and 633 nm HeNe laser system.

Gene expression profiling

Total RNA was isolated with Trizol (Invitrogen) from snap-frozen tumor samples. The RNA was processed according to the manufacturer’s instructions for single channel 45K MouseWG-6 v2.0 BeadChips (Illumina). Background correction was performed using the bg.adjust method from the Bioconductor affy package (23). For normalization between arrays the robust spline method was applied.

EMT signature and EMT score

A published EMT signature (5) was converted from human to mouse, resulting in 239 epithelial genes (down after EMT) and 224 mesenchymal genes (up after EMT). Of these, 235 epithelial and 223 mesenchymal genes could be mapped to Ensembl gene identifiers using Ensembl Biomart (24).
Generation of gene expression data from p53^{Δ/Δ} and Cdh1^{Δ/Δ};p53^{Δ/Δ} mouse mammary tumors has been described (Klijn et al. PLoS One, in press). Gene expression data sets GSE3165 (25), GSE23938 (26) and GSE10885 (27) were downloaded from the Gene Expression Omnibus.

Expression data were mean-centered per gene or probe for each data set. The EMT score of each tumor in all data sets is calculated by subtracting the mean log₂ expression of the epithelial genes from the mean of the log₂ expression of the mesenchymal genes. Supplementary Table S1 summarizes the number of signature genes represented on each platform. As a result, tumors with a mesenchymal gene expression profile have a positive score and tumors with an epithelial profile have a negative EMT score. For the correlation between EMT score and Abcb1a, Abcb1b and Abcg2 expression we used the Spearman correlation and significance was tested with the t distribution test.

Array comparative genomic hybridization (aCGH)

aCGH data from Brca2^{Δ/Δ};p53^{Δ/Δ} mouse mammary tumors were downloaded from Array Express (E-NCMF-34 and E-NCMF-35). The phenotype was determined previously (28), with one exception: a tumor with unknown phenotype was later classified as carcinosarcoma. Unsupervised hierarchical clustering was performed using the Euclidean distance method with complete linkage.

RT-MLPA

Semi-quantitative levels of Abcb1a, Abcb1b and Abcg2 mRNA were measured with RT-MLPA. Reverse transcription of total RNA, hybridization, ligation, PCR amplification and fragment analysis by capillary electrophoresis were performed as described (29). Gene expression levels were normalized to the internal reference Actb (beta-actin).

Results

Two main mammary tumor phenotypes are produced in K14cre;Brca2^{F/F};p53^{F/F} mice
To study the effect of a mesenchymal morphology on therapy response we made use of the
K14cre;Brca2^{f/f};p53^{f/f} mouse model (10). K14cre-mediated deletion of exon 11 of Brca2 and exon 2-10 of Trp53 in mammary epithelial cells (Supplementary Figure S1) results in the development of mammary tumors with an average latency of 181 days. We used an established orthotopic transplantation model to study the response of each donor tumor to various chemotherapies (30). As described previously (10), the predominant histopathological mammary tumor phenotype in K14cre;Brca2^{f/f};p53^{f/f} mice is a carcinoma with well-defined tumor cell nests. These tumors express epithelial markers such as E-cadherin and are negative for vimentin, a fibroblast and mesenchymal cell marker (Fig. 1A, upper panel). A second phenotype present in the group of 14 Brca2^{∆/∆};p53^{∆/∆} (KB2P) mammary tumors used in this study, is a sarcomatoid tumor that has undergone a spindle cell metaplasia, characterized by bundles with elongated cells, absence of E-cadherin and expression of vimentin (Fig. 1A, lower panel). This subtype is referred to as carcinosarcoma. In our tumor panel we identified ten carcinomas and four carcinosarcomas. In contrast to the clear histopathological separation, the carcinosarcomas did not form a separate group at the genomic level when we tested array comparative genomic hybridization (aCGH) data of a larger panel of Brca2^{∆/∆};p53^{∆/∆} carcinomas and carcinosarcomas (28) by unsupervised hierarchical clustering (Supplementary Fig. S2). Thus, these tumors do not form a clearly separate subgroup within this model for BRCA2-mutated breast cancer at the DNA level.

Due to the spindle-shaped morphology of the carcinosarcomas we suspected that these tumors have undergone epithelial-to-mesenchymal transition (EMT) after the initial induction of the Brca2 and p53 mutations in an epithelial cell. To test this we applied an EMT signature (5) to our panel of BRCA2; p53-deficient mouse mammary tumors. This signature has previously been shown to be associated with genes that are upregulated in gefitinib-resistant non-small cell lung cancers (5). In addition, the EMT index based on a subset of this signature, correlates with colorectal cancer subtypes (31). As expected, the two histological subtypes were clearly separated in an unsupervised
clustering analysis using this EMT signature (Fig. 1B). Compared to carcinomas, carcinosarcomas show higher expression of mesenchymal genes and lower expression of epithelial genes.

Brca2Δ/Δ; p53Δ/Δ carcinosarcomas are multi-drug resistant

To investigate differential drug sensitivities, we tested the response of 10 KB2P carcinomas versus 4 KB2P carcinosarcomas to the maximum tolerable dose (MTD) of the topoisomerase I inhibitor topotecan, the microtubule stabilizing agent docetaxel, the topoisomerase II inhibitor doxorubicin or the cross-linking agent cisplatin. As shown in Fig. 2, most KB2P carcinomas responded to all drugs, even though they eventually acquired resistance to olaparib, topotecan, docetaxel and doxorubicin. In contrast, the four carcinosarcomas did not respond well to olaparib, topotecan, docetaxel, and doxorubicin, but were still sensitive to cisplatin. In Fig. 1B the response to each drug is depicted per tumor and shows that a poor response is highly correlated with a mesenchymal gene expression profile. Carcinomas that acquired drug resistance have all retained their epithelial state, as measured by histology and gene expression (see Supplementary Fig. S3 for the olaparib-resistant tumors).

Drug delivery is not impaired in Brca2Δ/Δ; p53Δ/Δ carcinosarcomas

In a mouse model for pancreatic ductal adenocarcinoma (PDAC), the lack of response to gemcitabine was caused by a poor perfusion of the tumors (32). We therefore checked the presence of blood vessels in KB2P carcinomas and carcinosarcomas. Both subtypes showed blood vessels throughout the tumor (Fig. 3A). In the carcinomas blood vessels are mainly present between the cell nests, whereas in carcinosarcomas blood vessels lay in between the tumor cells. The vessels are functional, as shown by the presence of intravenously injected, fluorescently labelled Tomato-Lectin (Fig. 3B), indicating that the drugs reach the tumor cells in both KB2P subtypes. These data are consistent with our observation that both carcinomas and carcinosarcomas respond to cisplatin.
\textbf{Brca2}^{	ext{Δ/Δ}};\text{p53}^{	ext{Δ/Δ}} \text{ carcinomas can be re-sensitized to chemotherapy by co-administration of the Pgp inhibitor tariquidar}

Each drug for which we observed primary resistance in the carcinomas is known to be transported by drug efflux transporters: olaparib (30), docetaxel (33) and doxorubicin (34) by ABCB1 (also known as Pgp) and topotecan mainly by ABCC2 (also known as BCRP) (35), whereas cisplatin has no strong affinity for any efflux transporter. This suggested to us that high expression of drug efflux transporters in KB2P carcinomas could have contributed to their drug resistance phenotype. In the SAM analysis, expression of \textit{Abcb1b} (which encodes Pgp together with \textit{Abcb1a}) was indeed higher in treatment-naïve carcinomas compared to the carcinomas (Supplementary Fig. S4). We tested expression of \textit{Abcb1a}, \textit{Abcb1b} and \textit{Abcg2} in a semi-quantitative manner by RT-MLPA (Fig. 4A). \textit{Abcb1a} and \textit{Abcb1b} were expressed at varying levels in the untreated carcinomas, but three out of four carcinomas showed a higher expression than all carcinomas. All carcinomas expressed increased levels of \textit{Abcg2}.

To determine whether increased expression of \textit{Abcb1a} and \textit{Abcb1b} was causally related to the drug insensitivity, we tested the effect of the Pgp inhibitor tariquidar on therapy responses of carcinomas derived from donors KB2P4 and KB2P6. Tumors were treated with tariquidar alone; olaparib, docetaxel or doxorubicin alone; or the drug in combination with tariquidar. In addition, mice were treated with AZD2461, a novel PARP inhibitor with low affinity for Pgp (22). The effect of the combination therapy differed between the two donor tumors (Fig. 4B). KB2P4 tumors showed no effect of tariquidar on olaparib sensitivity, a small delay in outgrowth when docetaxel was combined with tariquidar, and a clear delay in tumor growth for doxorubicin plus tariquidar. All KB2P6 tumors responded well to the combination therapies of tariquidar with olaparib, docetaxel or doxorubicin. Also, the response to AZD2461 was comparable to that of olaparib plus tariquidar. Taken together, these results show that Pgp contributed substantially to the low drug sensitivity of KB2P6 and, in the case of doxorubicin, of KB2P4.
EMT status correlates with Abcb1b expression in several mouse mammary tumor models

In several in vitro studies EMT has been linked to resistance to various classes of drugs (4). As we observed in our KB2P mouse model a positive correlation between an “EMT-like” gene expression pattern and expression of Abcb1a, Abcb1b and Abcg2, we wondered whether this is also the case in other mouse mammary tumor models. In order to obtain a continuous value for EMT, we used an EMT score based on the EMT signature. The score is calculated by subtracting the average mean-centered log$_2$ expression of the epithelial genes from the average mean-centered log$_2$ expression of the mesenchymal genes. We used three different gene expression data sets from mouse mammary tumors: one that was generated at the NKI and two publicly available data sets. The first one consists of 91 mammary tumors from K14cre or WAPcre driven mouse mammary tumor models with conditional deletion of Trp53 alone (10) or in combination with Cdh1 (36,37). Similar to the KB2P model, these models develop two main histopathologic tumor subtypes: carcinoma and carcinosarcoma. The EMT score of these tumors significantly correlated with Abcb1b and (to a lesser extend) with Abcb1a and Abcg2 (Fig. 5A). The second and third data sets are publicly available from Herschkowitz et al. (25) and Zhu et al. (26) and contain a collection of thirteen and eight different genetically engineered mouse mammary tumor models respectively. Although both data sets contain mostly tumors with a low EMT score, a positive correlation between EMT score and Abcb1b expression was still detected (Fig. 5B,C). The lack of correlation for Abcb1a and Abcg2 in these data sets is likely due to the low number of tumors with a high EMT score. Another possible explanation might be a poor sensitivity of the oligos on the expression arrays, as we have shown earlier that this affects the outcome (38).

Interestingly, in line with the KB2P data, the phenotype of p53$^{Δ/Δ}$ tumors not only correlated with Abcb1b expression, but also with therapy response. Mice with a K14cre;p53$^{Δ/Δ}$ (KP) carcinoma have an improved survival upon treatment with docetaxel or doxorubicin, compared to untreated control mice (Fig. 5D). KP carcinosarcomas, however, respond poorly to docetaxel and only moderately to doxorubicin. Mice with an Abcb1a/b$^{-/-}$ KP tumor (KPA) showed a survival time in response to
docetaxel or doxorubicin, which is in between that of the KP carcinomas and carcinosarcomas (Fig. 5D, docetaxel-treated sarcomatoid KP vs. KPA p = 0.022; doxorubicin-treated sarcomatoid KP vs. KPA p = 0.032). This indicates that also in BRCA2-proficient tumors Pgp contributes to the poor response of carcinosarcomas. Ablation of Pgp does not fully sensitize these tumors to treatment, however, which is consistent with the tariquidar combination treatments in KB2P tumors shown in Figure 4.

Discussion

In this study we investigated the role of EMT in anti-cancer drug sensitivity in the KB2P mouse model for BRCA2-deficient breast cancer. We found that a subset of the tumors has a mesenchymal, sarcomatoid phenotype and gene expression profile. These BRCA2-deficient carcinosarcomas do not respond to several DNA damaging chemotherapeutics or the PARP inhibitor olaparib, and are therefore multi-drug resistant. They are not pan-resistant, because they remain highly sensitive to cisplatin, due to the irreparable deletion inactivating the Brca2 gene, which compromises DNA repair by homologous recombination. We have previously shown that such a defect in homologous recombination by the irreparable inactivation of Brca1 cannot be overcome by any known mechanism of resistance to cisplatin (29). We show in our KB2P model and three other mouse mammary tumor data sets that an EMT-related transcriptional profile (indicated by a high EMT score) correlates with high expression of the Abcb1a and Abcb1b genes which both encode the drug efflux transporter P-glycoprotein (Pgp). Moreover, KB2P carcinosarcomas could be sensitized to olaparib, docetaxel and doxorubicin by the Pgp inhibitor tariquidar. Taken together, these results indicate that EMT-associated multi-drug resistance is in part driven by increased activity of drug efflux transporters. Similar to the KB2P tumors, p53^{Δ/Δ} carcinosarcomas with high Abcb1b expression responded poorly to docetaxel and doxorubicin, which could partially be reversed by removal of Pgp, indicating that the EMT-related resistance phenotype is independent of the BRCA2 status.

To date, only a few studies have investigated a link between EMT and drug transporter levels. Doxorubicin treatment can induce EMT in cultured breast cancer cells and up-regulate efflux
transporters, which is mediated by EMT transcription factors TWIST1 (39) and ZEB1 (40). Conversely, overexpression of SNAI1 in MCF7 cells results in increased Pgp levels after doxorubicin treatment (41), and in increased BCRP (ABCG2) levels (42). These studies also reported a positive correlation between SNAIL and Pgp (41), and between SNAIL and BCRP (42) respectively, in human breast cancer tissues.

In contrast to the strong evidence for a causal role of Pgp in primary and acquired resistance to chemotherapy and targeted agents in mice (20,30,43), the relevance of drug efflux transporters for therapy response in breast cancer patients is still controversial. Increased Pgp mRNA or protein levels are in some, but not all, studies related to worse outcome (44). A complication in these studies is that Pgp (ABCB1) mRNA in tumor extracts may be derived from non-tumor cells, such as macrophages, in the tumor microenvironment (43).

Over the last decades many clinical studies with transporter inhibitors have been conducted, with mostly negative results (34) and overall the impact of drug efflux transporters on patient outcome is likely to be small. This is not due to the inability of these transporters to cause resistance in real tumors. We have shown in the BRCA1-deficient mouse breast cancer model that modest levels of Pgp are sufficient to cause complete resistance to drugs used in the clinic, such as doxorubicin, docetaxel, topotecan, or olaparib (20,30,43). Obviously, transporter levels in human tumors are very low and transcriptional activation of the ABCB1 gene does not easily occur in these tumors (45).

Indeed, the gene needs to be linked to a strong promoter by chromosomal rearrangements for a tumor to reach sufficient levels of Pgp to acquire drug resistance (46), and this may be a rare event. We have considered the possibility that Pgp plays a role in a small subset of breast cancer, such as metaplastic breast cancer. However, we did not find any correlation with ABCB1 expression and a high EMT score in metaplastic tumors (Supplementary Fig. S5). This does not mean that Pgp could not play a role in some patients with acquired or secondary resistance. Unfortunately, matched samples of initially sensitive and subsequently drug-refractory tumors are hardly available from individual breast cancer patients to address this issue.
Pgp contributes to multi-drug resistance in KB2P carcinosarcomas, but our finding that KB2P4 is still insensitive to PARP inhibition and only modestly responsive to docetaxel and doxorubicin when Pgp is inhibited by tariquidar strongly suggest that other factors in the EMT program contribute as well. For example, the damage induced by PARPi and docetaxel in KB2P4 can still be compensated by another yet unknown mechanism, whereas doxorubicin-induced damage (47) is not compensated by EMT-related drug resistance in this tumor. Such EMT-associated factors could also contribute to the EMT-related drug resistance that is frequently observed in human cancer cells in vitro. In humans, metaplastic and claudin-low breast cancers are both associated with EMT and a triple-negative phenotype. Metaplastic breast cancers are often refractory to treatment and have a poor prognosis compared to other triple-negative breast cancers (48). The claudin-low subtype has a worse pCR rate than the basal-like group (8,9). Several studies have demonstrated the predictive value of EMT markers (single or in combination) for prognosis and relapse-free survival (49–51), but which proteins in the EMT program eventually cause low drug sensitivity in general and to which drugs specifically still requires further investigation.

Even though several studies have shown that drug treatment, especially with doxorubicin, can induce EMT in vitro, we have not observed this phenomenon in any of our treated KB2P carcinomas. A possible explanation is that other resistance mechanisms are more easily activated, although it is not clear what these mechanisms might be, other than Pgp up-regulation. Another option is that the carcinomas and carcinosarcomas arise from a different cell of origin, for example a luminal or myoepithelial progenitor cell, respectively, in which K14 is expressed (10) and that they therefore do not easily switch from one type to another. This low plasticity is also illustrated by the small effect of Snai1 or Twist overexpression on the phenotype of KB2P tumor cell lines in vitro and in vivo (data not shown).

Our data show that sarcomatoid HR-deficient mammary tumors respond better to cisplatin than to the PARP inhibitor olaparib. This could potentially be clinically relevant, although two major differences between human and mouse tumors must be taken into account: 1. the controversial role...
of drug transporters in human cancers as described above and 2. the large, irreversible deletion of exon 11 of Brca2 in this mouse model. Also for carcinomas a side-by-side comparison of PARP inhibitors versus platinum drugs would be informative. In addition to BRCA1/2-mutated breast cancers also cancers with a BRCA-like CGH pattern would be useful to include. It has been shown that these are highly sensitive to platinum-based intensified chemotherapy (52) and it would be very interesting to investigate whether the same effect is achieved with PARP inhibition.

In summary, we show the usefulness of studying multi-drug resistance in a realistic mouse model of BRCA2-deficient breast cancer. We found that enhanced expression of Pgp contributes to multi-drug resistance associated with a sarcomatoid tumor phenotype. In addition, our data suggest that the correlation between a high EMT signature score and high expression of Pgp is a general phenomenon in mouse models of breast cancer. Pan-resistance is likely to be an accumulation of multiple mechanisms and mouse models could be useful to unravel the different layers of resistance.

Acknowledgments

We thank Arno Velds for analysing the aCGH data and generating Supplementary Figure S2 and Ewa Gogola and Xiaoling Liu for assistance with genotyping and Southern blotting. We are also grateful to Susan Bates from the NIH (Bethesda, MD) for providing tariquidar, and Mark O’Connor from AstraZeneca for providing olaparib and AZD2461.

Grant support

This work was supported by grants from the Netherlands Organization for Scientific Research (NWO-Toptalent 021.002.104 to J.E. Jaspers, NWO-VIDI 91.711.302 to S. Rottenberg, and NWO-roadmap MCCA 184.032.303), Dutch Cancer Society (projects NKI 2007-3772, NKI 2009-4303 and NKI-2011-5220), the EU FP7 Project 260791-Eurocan-Platform, CTMM Breast Care, and the NKI-AVL Cancer Systems Biology Centre.
References

Figure legends

Figure 1 Brca2^{Δ/Δ};p53^{Δ/Δ} (KB2P) carcinomas are characterized by epithelial-to-mesenchymal transition (EMT)-related proteins and gene expression pattern. **A**, Example of histology and E-cadherin and vimentin staining in a KB2P carcinoma with epithelial morphology and a KB2P carcinosarcoma with mesenchymal morphology. Scale bar = 100 μm. **B**, The mesenchymal tumors cluster together in an unsupervised hierarchical clustering using the EMT signature genes (Supplementary Table 1). The phenotype of each tumor is determined by histology and immunohistochemical stainings for E-cadherin and vimentin (see **A**). Genes indicated with the gray bar are related to an epithelial cellular state and genes indicated with the black bar are higher expressed in mesenchymal cells. Red and green bars indicate the response to the indicated treatments for the individual donor tumors. A poor response is defined as a survival of less than 31 days after start of the treatment. Mice carrying a tumor with a good response survived more than 30 days after start of the treatment.

Figure 2 Brca2^{Δ/Δ};p53^{Δ/Δ} carcinosarcomas do not respond to treatment with the PARP inhibitor olaparib, topotecan, docetaxel or doxorubicin, but respond well to cisplatin treatment. Small tumor pieces from 14 individual KB2P donor tumors were transplanted orthotopically in wild-type syngeneic recipients. Treatment was started when the tumor reached a volume of 200 mm^3 (100%) and after relapse of the tumor to a size of 100% another treatment cycle was given. In the Kaplan-Meier curves overall survival is shown. All mice had to be sacrificed due to a large, resistant tumor, except for the cisplatin-treated mice, that were sacrificed due to cisplatin-induced cumulative toxicity. Note the difference in time scale between cisplatin and the other treatments. The relative tumor volume of each tumor is shown in **B** for the carcinomas and **C** for the carcinosarcomas.
Figure 3
Brca2^{Δ/Δ};*p53*^{Δ/Δ} carcinomas and carcinosarcomas are well perfused.
A, Immunohistochemical staining of the endothelial cell marker CD31.
B, Perfused vasculature is visualized with labeled Lycopersicon Esculentum Lectin. Scale bar = 100 μm.

Figure 4
P-glycoprotein (Pgp) contributes to multi-drug resistance in *Brca2*^{Δ/Δ};*p53*^{Δ/Δ} carcinosarcomas.
A, treatment-naïve sarcomatoid KB2P tumors have a higher expression of drug transporters *Abcb1a*, *Abcb1b* (which both encode Pgp) and *Abcg2*. Gene expression levels are measured by reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) and normalized for *Actb* expression. For the carcinosarcomas the expression level is indicated for each donor tumor.
B, Kaplan-Meier curves, showing the survival of mice bearing sarcomatoid tumors from donor KB2P4 (left) or KB2P6 (right). Treatment was started on day 0. The mice received either the Pgp-inhibitor tariquidar (10 mg/kg i.p., daily), olaparib (50 mg/kg i.p., daily for 28 days), AZD2461 (100 mg/kg oral, daily for 28 days), docetaxel (25 mg/kg i.v., day 0, 7 and 14) or doxorubicin (5 mg/kg i.v., day 0, 7 and 14) or a combination of tariquidar with olaparib, docetaxel or doxorubicin. Tariquidar was given 15 minutes prior to olaparib, docetaxel or doxorubicin administration. The censored cases died due to unexpected toxicity. n = 5 or 6 per treatment group. The log-rank p-values are indicated.

Figure 5
EMT score correlates with *Abcb1* expression in genetically engineered mouse mammary tumor models.
A-C, each plot shows the correlations between EMT score (y-axis) and the log₂-ratio gene expression levels (x-axis) of *Abcb1a*, *Abcb1b* and *Abcg2* in three different gene expression data sets with the Spearman correlation coefficient (cor) and p-values of the t distribution.
A, 91 tumors from *K14cre;p53^{F/F}, K14cre;Cdh1^{F/F};p53^{F/F}, WAPcre;p53^{F/F} or WAPcre;Cdh1^{F/F};p53^{F/F} mice (Klijn et al. *in press*). The colors indicate the phenotype of each tumor as indicated in the legend.
B, a publicly available dataset (GSE3165) with 108 mammary tumors from 13 different mouse models (25).
C, a publicly available dataset (GSE23938) with 41 tumors from 8 different mouse models (26).
D, Kaplan-Meier curves showing the overall survival of mice with a p53-deficient mammary tumor (KP) of either...
a carcinoma or carcinosarcoma phenotype and KP carcinosarcomas that are deficient for *Abcb1a/b* (KPA), that are treated with docetaxel, doxorubicin or left untreated. The log-rank p-values are indicated.
Figure 1

A

H&E E-cadherin vimentin

carcinoma

carcinosarcoma

B

Gene expression heatmap showing the expression levels of various genes in different cell lines (KB2P). The heatmap includes information on phenotype, survival, and signature. The top row indicates the cell lines, and the side bar shows the expression levels for different drugs and signatures.
<table>
<thead>
<tr>
<th></th>
<th>CD31</th>
<th>Lectin</th>
</tr>
</thead>
<tbody>
<tr>
<td>carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carinosarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB2P 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

A

gene/Actb

carcinoma sarcoma carcinoma sarcoma carcinoma sarcoma

KB2P 6
KB2P 4
KB2P 1
KB2P 7

p = 0.017
p = 0.006
p < 0.0001

Abcb1a Abcb1b Abcg2

B

KB2P 4

tariquidar

drug

drug + tariquidar

AZD2461

KB2P 6

olaparib
survival (%)

time (days)

KB2P 4

time (days)

docetaxel

survival (%)

time (days)

doxorubicin

survival (%)

p = 0.0016

p = 0.0018

p = 0.0007

p = 0.0007

p = 0.0007

p < 0.0001

p = 0.0061
Figure 5

A

B

C

D

untreated - KP carcinoma

treated - KP carcinoma

untreated - KP carcinosarcoma

treated - KP carcinosarcoma

untreated - KPA carcinosarcoma

treated - KPA carcinosarcoma

Doxorubicin

Docetaxel

Survival (%)

time (days)

Survival (%)

time (days)

p = 0.0018

p = 0.032

p = 0.19

p = 0.0005

p = 0.022

p = 0.0018

p = 0.0018

p = 0.022

p = 0.0018
BRCA2-deficient sarcomatoid mammary tumors exhibit multi-drug resistance

Cancer Res Published OnlineFirst December 15, 2014.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-0839

Supplementary Material Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/12/13/0008-5472.CAN-14-0839.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.