CYP3A5 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Regulating mTORC2/Akt Signaling

Feng Jiang¹,²,³*, Lei Chen¹,⁴*, Ying-Cheng Yang¹*, Xian-ming Wang¹, Ruo-Yu Wang¹, Liang Li¹, Wen Wen¹, Yan-Xin Chang¹, Cai-Yang Chen¹, Jing Tang¹, Gao-Mi-Yang Liu¹, Wen-Tao Huang¹, Lin Xu²,³§, and Hong-Yang Wang¹,⁴§

¹International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
²Department of Thoracic Surgery, Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
³Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Hospital of Jiangsu Province, Nanjing, China
⁴National Center for Liver Cancer, Shanghai, China

There are no change to the authors’ affiliations.

Running title: Role of CYP3A5 in the metastasis of HCC

Funding: This work was supported by Chinese Key Project for Infectious Diseases (2012ZX10002), the National Basic Research Program of China (2012CB316503), Science Fund from NSFC, China (30921006,81201940,81422032,81472702), Chinese Postdoctoral Scientific Funding (2012M521859), Shanghai Young Scholarship Foundation (XYQ2013076), Natural Science Foundation of Jiangsu Province, China (BK2012482).

§Corresponding author: Hong-Yang Wang, No.225, Changhai Road, Shanghai, China. Phone: +86-21-81875361; Fax: +86-21-65566851; E-mail:
Role of CYP3A5 in the metastasis of HCC

hywangk@vip.sina.com; and Lin Xu, No.42, Baiziting Road, Jiangsu, China. Phone: +86-25-83284701; E-mail: xulin_83@hotmail.com.

*These authors contributed equally to this work

Competing interests: The authors declare no conflicts of interest.

Color Figures: We would like print the Figure 1,3,4,6 in color, and Figure 2,5 in black and white. We will pay the color reproduction costs.

Authors' Contributions:
Conception and design: H.Y. Wang, L. Chen, F. Jiang, L. Xu
Development of methodology: F. Jiang, Y.C. Yang, L. Chen
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): X.M. Wang, R.Y. Wang, L.Li, W. Wen, W.T. Huang
Writing, review, and/or revision of the manuscript: L. Chen, F. Jiang, H.Y. Wang
Administrative, technical, or material support: W.T. Huang, G.M.Y. Liu
Study supervision: H.Y. Wang, L. Chen, L. Xu

Abbreviations: CYP3A5: cytochrome P450, family 3, subfamily A, polypeptide 5; CYP3A4: cytochrome P450, family 3, subfamily A, polypeptide 4; HCC: hepatocellular carcinoma; qRT-PCR: quantitative real-time polymerase chain reaction; TNM: tumor-node-metastasis; PVTT: portal vein tumorthrombus; TIMP: tissue inhibitors of metalloproteinases; MMP: matrix metallopeptidase; HGF: hepatic growth factor; EGF: epidermal growth factor; RTKs: receptor tyrosine kinases; PIP3: phosphatidylinositol-3-phosphate; PDK1: phosphoinositide-dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog deleted on chromosome 10; Rictor: rapamycin-insensitive companion of mTOR; Raptor: regulatory-associated protein of mTOR; DEPTOR: DEP-domain-containing...
Role of CYP3A5 in the metastasis of HCC

mTOR-interacting protein; mLST8/GβL: mammalian lethal with Sec13 protein 8/G protein β-subunit-like protein; PRAS40: proline-rich AKT substrate of 40 kDa; NADPH: reduced form of nicotinamide-adenine dinucleotide phosphate; FAD: flavin adenine dinucleotide; mTORC1: mTOR complex 1; mTORC2: mTOR complex 2; ROS: reactive oxygen species; NAC: N-acetyl-L-cysteine; GSH: glutathione(reduced form); GSSG: glutathione(oxidized form).

Word count: 5997 words (excluding ONLY references)
Total number of figures: 6
Role of CYP3A5 in the metastasis of HCC

Abstract (250 Words)

CYP3A5 is a cytochrome P450 protein that functions in the liver metabolism of many carcinogens and cancer drugs. However, it has not been thought to directly affect cancer progression. In our present study, we challenge this perspective by demonstrating that CYP3A5 is downregulated in many hepatocellular carcinomas (HCC) where it has an important role as a tumor suppressor that antagonizes the malignant phenotype. CYP3A5 was downregulated in multiple cohorts of human HCC examined. Lower CYP3A5 levels were associated with more aggressive vascular invasion, poor differentiation, shorter time to disease recurrence after treatment and worse overall patient survival. Mechanistic investigations showed that CYP3A5 overexpression limited MMP2/9 function and suppressed HCC migration and invasion in vitro and in vivo by inhibiting AKT signaling. Notably, AKT phosphorylation at Ser473 was inhibited in CYP3A5-overexpressing HCC cells, an event requiring mTORC2 but not Rictor/mTOR complex formation. CYP3A5-induced ROS accumulation was found to be a critical upstream regulator of mTORC2 activity, consistent with evidence of reduced GSH redox activity in most clinical HCC specimens with reduced metastatic capacity. Taken together, our results defined CYP3A5 as a suppressor of HCC pathogenesis and metastasis with potential utility a prognostic biomarker.

Key words: CYP3A5; liver cancer; AKT; mTORC2; ROS
Role of CYP3A5 in the metastasis of HCC

Introduction

The Cytochrome P450s (P450s) are involved in the response to cancer treatment and the initiation and promotion of tumorigenesis(1,2). CYP3A are the main members of P450s which contribute to drug metabolism and metabolize a variety of endogenous substrates. CYP3A4 is the most abundant CYP3A isoforms in human livers and the major enzyme involved in xenobiotic metabolism, which can activate several procarcinogens and also has critical roles in the metabolism of various anti-cancer drugs upon chemotherapy (3,4). Moreover, CYP3A4 is reported to have a positive correlation with malignant HCC characteristics and facilitates proliferation of cancer cells in vitro(5-7). In comparison, CYP3A5, the best investigated of the minor CYP3A isoforms, is also involved in the metabolism of drugs, exogenous carcinogens, and endogenous molecules(8). The human CYP3A5 gene is located on chromosome 7q21.1 and spans approximately 32 kb in length within the CYP3A gene cluster(9). Recently, most studies about CYP3A5 have addressed the relationship of CYP3A5 SNP (or genotype) polymorphism and cancer risk or drug metabolism(8,10). So far, at least 34 single nucleotide polymorphisms (SNPs) of the CYP3A5 gene have been identified(11). Among them, the most frequent and functional polymorphism is the A to G transition in intron 3 at position 6986 (CYP3A5*3, rs776746 A>G), which is associated with CYP3A5 protein production and enzyme activity(11). Until now, the potential role of CYP3A5 in HCC metastasis and invasion remains largely unknown.

In the present study, we focused on the physiological functions of CYP3A5 on tumor progression rather than its epidemiological-related consequences. Contrary to CYP3A4(5,7), the aberrantly decreased expression of CYP3A5 in HCC and a negative association between CYP3A5 expression and malignant HCC characteristics were observed in a large HCC cohort. More, exogenous expression of CYP3A5 dramatically suppressed HCC migration and invasion through inhibiting ROS/mTORC2/p-AKT (S473) signaling.
Materials and methods

Immunohistochemistry and Tissue microarray analysis

This study was approved by the Eastern Hepatobiliary Surgery Hospital Research Ethics committee. The detailed information of each patient was obtained from hospital charts and referring physicians. Immunohistochemistry of HCC tissue microarray slides was performed using the respective antibodies. Briefly, the slides were probed with primary antibodies specific for the CYP3A5 protein. Anti rabbit horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology) were applied. Finally, diaminobenzidine (DAB) colorimetric reagent solution from Dako (Carpinteria, CA) was used and followed by hematoxylin counterstaining (Sigma). Reading of the HCC tissue microarray was performed by scanning the slides with an Aperio ScanScope GL, and the Aperio ImageScope software (Aperio Technologies, Vista, CA) was used to assess the scanned images based on the percentage of positively stained cells and the staining intensity. Expression levels of CYP3A5 in all tissue samples were quantified, and the CYP3A5 expression level between each pair Tumor/Peri-tumor was compared.

In vitro cell behavior assays

For the migration and invasion assays, transwell filter chambers (Costar, Corning, NY) and BioCoat Matrigel invasion chambers (BD Biosciences) were used according to the manufacturer’s instructions. Six random microscopic fields were counted per field for each group, and these experiments were repeated at least three times independently. Cell adhesion assays were performed using the CytoSelect™ 48-Well Cell Adhesion Assay kit (Fibronectin-Coated) according to the manufacturer’s instructions (CellBiolabs, San Diego, CA). For the cell proliferation assays, SMMC-7721-CYP3A5, HCC-LM3-CYP3A5 and control cells (1×10^3/well) were seeded in 100μl of growth medium in 96-well plates for various time periods. Cell proliferation was evaluated by measuring cell viability with the CCK-8 assay (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s instructions.
Zymograph Assay
Protein was collected from SMMC-7721 and HCC-LM3 cells and processed. Total protein for each sample (15μg) was electrophoresed on 10% SDS-PAGE gel containing 0.1% gelatin under non-reducing conditions. Gelatin zymography was performed using a MMP Zymography assay kit (Applygen Technologies Inc.) according to the manufacturer’s protocol. Gelatinolytic bands were observed as clear zones against the blue background and the image intensity was estimated using the ScnImage Software.

The conduction of multivariate correlation
Kaplan-Meier analysis was used to assess survival. Log-rank tests were used to compare patient survival between subgroups. Multivariate analyses were performed using the Cox multivariate proportional hazard regression model in a stepwise manner (forward, likelihood ratio). The data are presented as the mean ± SD unless otherwise indicated. Differences were considered to be statistically significant for P values < 0.05. For the CYP3A5 staining density analyses, the cut-off value for defining the subgroups was the median. The samples were then divided into two groups. One group was composed of samples in which the CYP3A5 expression levels were above the median value, and the other group was composed of the remaining samples. Each data set was analyzed separately.

Total phosphatidic acid assay
The total phosphatidic acid (PA) in each cell line was measured using Total Phosphatidic Acid Assay Kit (KA1383, Abnova) according the manufacturer's instructions. The final PA level in each cell line was calculated as to standardize the PA concentration in each sample to protein concentration.

ROS detection and GSH measurement
Production of reactive oxygen species (ROS) was measured with the CellROX®
Deep Red Reagent kit (Lifetechnologies Corporation). Briefly, cells were pre-incubated with the CellROX® Reagent at a final concentration of 5 μM for 30 min at 37°C. After the extracellular dye was removed, the cells were washed 3 times and incubated with serum-free DMEM. Nuclei were counterstained with DAPI before imaging. The production of intracellular ROS was detected via confocal laser scanning microscopy (Leica, Wetzlar, Germany). Total liver glutathione (GSH) content were determined by a commercial kit (Jiancheng, Nanjing, China) according to the manufacturer's protocol. GSH and GSSG Levels were measured using a GSH and GSSG Assay Kit (Beyotime, China).

mTORC2 immunoprecipitations and in vitro kinase assay

For immunoprecipitation experiments, the lysis buffer contained 0.3% CHAPS instead of 1% Triton to preserve the integrity of the mTOR complexes. Two micrograms of Rictor antibody was added to the cleared cellular lysates (1 mg of protein content in 700μl) and incubated with rotation at 4°C for 90 min. After 1 hour of incubation with 40μl of 50% slurry of protein A/G–agarose, immunoprecipitates captured by protein A/G–agarose were washed four times with CHAPS-containing lysis buffer and once with the mTORC2 kinase reaction buffer [25 mM Hepes (pH 7.5), 100 mM potassium acetate, and 2 mM MgCl₂]. For in vitro mTORC2 kinase reactions, immunoprecipitates were incubated in a final volume of 15μl at 37°C for 20 min in the kinase buffer containing 500ng of inactive AKT1 and 500 mM ATP. The reaction was stopped by the addition of 200 μl of ice-cold enzyme dilution buffer [20 mM Mops (pH 7.0), 1 mM EDTA, 0.3% CHAPS, 5% glycerol, 0.1% 2-mercaptoethanol, and bovine serum albumin (BSA; 1 mg/ml)]. After a quick spin, the supernatant was removed from the protein A/G–agarose, and a 15μl portion was analyzed by immunoblotting for p-AKT (S473) and total AKT. The pelleted protein A/G–agarose beads were also analyzed by immunoblotting to determine the abundance of Rictor and mTOR in the immunoprecipitates.

Statistical analysis
All results were expressed as mean±standard deviation (SD). Differences between experimental and control groups were assessed by either the analysis of variance (ANOVA) or nonparametric tests, as applicable, using SPSS 17.0 (SPSS, Inc.). Survival analyses were plotted using the Kaplan–Meier method, and the differences between groups were analyzed using the log-rank test. P<0.05 was considered statistically significant.
Results

CYP3A5 is frequently down-regulated in HCC tissues and is negatively associated with metastatic potential

To identify the potential difference of CYP3A5 expression between HCC and adjacent normal tissues, the data from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus, GSE36763, GSE14520, GSE22058) were statistically analyzed, in which frequently down-regulated expression of CYP3A5 was observed in tumor tissues in comparison with that in para-tumor tissues (Fig.1A). Similar results were also found in 68% (41/60) paired HCC and adjacent non-tumor tissues from our own HCC tissue bank (Fig.1B&C), which was confirmed with western blotting analysis in another 16 patients (Fig.1D). We next performed immunohistochemical (IHC) staining with a tissue microarray containing 75 pairs of HCC and non-tumor tissues (Fig.S1A) and elucidated that IHC scores of CYP3A5 were significantly lower in tumor tissues (Fig.1E). Well differentiated HCCs showed higher CYP3A5 expression, as compared with those in poorly differentiated HCCs samples (Fig.1F). As shown in Table.S1, correlation regression analysis indicated that expression of CYP3A5 was negatively correlated with several malignant characteristics, in which the mRNA levels of CYP3A5 were significantly lower than their matched tumor tissues (Fig.1G). Similarly, the relative lower expression of CYP3A5 was also observed in vascular invasion stable cell line CSQT-1 (Fig.S1B). Together, these data indicated that CYP3A5 may play a protective role in the metastasis or invasion of HCC.

Down-regulated expression of CYP3A5 predicts poor prognosis in HCC patients

To further evaluate the significant contribution of CYP3A5 expression in the prognosis of HCC patients, we applied another HCC tissue microarray with follow-up data containing 159 pairs of HCC and non-tumor tissues (Fig.S2A). The 159 HCC patients were divided into two groups according the CYP3A5 expression in tumors: a high CYP3A5 expression group (n=61) and a low CYP3A5 expression group (n=98).
Role of CYP3A5 in the metastasis of HCC

As shown in Fig.2A&2B, patients with higher CYP3A5 expression exhibited better overall survival (OS, median OS times were 44 vs 21 months, respectively; difference=23 months, p<0.05) and tumor-free survival (TFS, median TFS times were 17 vs 6 months, respectively; differences=11 months, p<0.05). The univariate and multivariate analysis further indicated that the CYP3A5 expression level was an independent risk factor for both OS and TFS for HCC patients(Fig.2C&D and Table.S2-3). The group with the lower expression of CYP3A5 displayed shorter OS and TFS rates [OS: HR=1.788, 95% CI=1.113–2.872, p=0.016; TFS: HR=1.719, 95% CI=1.132–2.610, p=0.011]. Taken together, these data indicated that the expression level of CYP3A5 may be used as an independent factor for predicting the prognosis of HCC.

Ectopic expression of CYP3A5 ameliorates HCC migration and invasion both in vitro and in vivo

We then used lenti-virus encoding CYP3A5 to establish CYP3A5 stable cell lines with SMMC-7721 and HCCLM3 cells (named as SMMC-7721-CYP3A5 and HCCLM3-CYP3A5), which showed lower expression levels of endogenous CYP3A5 in eight HCC cell lines(Fig.S3A). Transwell migration and Matrigel invasion assays revealed that exogenous expression of CYP3A5 dramatically inhibited cell migration and invasion in comparison with that of control cells (SMMC-7721-GFP, HCCLM3-GFP)(Fig.3A&B). As the adhesion capacity of tumor cells to the extracellular matrix (ECM) is a key step during tumor metastasis, we therefore performed cell adhesion assays with SMMC-7721-CYP3A5, HCCLM3-CYP3A5 and their respective control cells by using fibronectin (FN)-coated culture plate. As shown in Fig.3C, forced expression of CYP3A5 significantly inhibited cell adhesion. Additionally, cell growth analyses were also carried out by applying Cell Counting Kit-8 (CCK-8) assays and no significant differences were observed(Fig.S3B).

We subsequently injected SMMC-7721-CYP3A5 and SMMC-7721-GFP cells into the lateral veins of the nude mice to verify the consequences of ectopic expression of CYP3A5 in vivo. Visual and microscopic evaluation of the metastatic
growth in the lungs of the nude mice showed fewer and smaller foci in the presence of CYP3A5 ten weeks after injection (8 vs 18 nodules per lung in SMMC-7721-CYP3A5 and control cells respectively)(Fig.3D). Moreover, mice injected with SMMC-7721-CYP3A5 cells had a significantly higher survival rate(CYP3A5 group vs. GFP group: 50.0% vs. 9.1%, P=0.0286, with 90 days as the cut-off; Fig.3E). Collectively, these results indicated that CYP3A5 is capable of manipulating aggressive and metastatic phenotype of HCC both \textit{in vitro} and \textit{in vivo}.

CYP3A5 induces expression of TIMP1 and TIMP2 by inhibiting AKT signaling

To investigate the underlying molecular mechanisms of the CYP3A5-mediated attenuation of HCC metastasis, we firstly identified the potential regulation of CYP3A5 on the epithelium-mesenchymal transition(EMT), which is considered to be a key process of cancer metastasis. As shown in Fig.4A, no significant differences of EMT-related genes, such as E-cadherin, N-cadherin, Vimentin and Snail, were observed upon CYP3A5 expression, indicating that CYP3A5-mediated attenuation of HCC metastasis was EMT independent. MMPs are proteolytic enzymes that can degrade extracellular matrix components. Recently certain aspects of MMPs involvement in tumor metastasis such as tumor-induced angiogenesis, tumor invasion, and establishment of metastatic foci at the secondary site, have received extensive attention that resulted in an overwhelming amount of experimental and observational data in favor of critical roles of MMPs in these processes(12). Interestingly, we observed the remarkable increase of TIMP1 and TIMP2 expression in both SMMC7721-CYP3A5 and HCCLM3-CYP3A5 cells, whereas no differences were found in the expression of MMP2, 7 or 9(Fig.4B). As expected, zymography assay further revealed that the activities of MMP2 and 9 were dramatically inhibited in CYP3A5-overexpressed cells(Fig.4C).

Moreover, after treatment with HGF or EGF, p-AKT was clearly inactivated in the presence of CYP3A5, whereas p-ERK, p-JNK and p-P38 revealed no such changes(Fig.4D&S4A-B). To further study whether AKT signaling pathway was necessary for CYP3A5-mediated suppression of HCC metastasis, we transiently
Role of CYP3A5 in the metastasis of HCC

transfected SMMC-7721 cells with full-length CYP3A5 plasmid(pcDNA3.1-CYP3A5) and pmyr-AKT(dominant active AKT) or pcDNA3.1-CYP3A5 alone. As shown in Fig.4E&S4C and 4F, we noticed that cell migration and invasion were inhibited in couple with the increase expression of TIMP1 and TIMP2 in the presence of CYP3A5, whereas such changes were mostly reversed in pcDNA3.1-CYP3A5 and pmyr-AKT co-transfection group. In addition, two specific AKT inhibitors(Fig.S5A), AZD5363 and MK2206, were applied to further verify whether low CYP3A5 cells are more susceptible to migration and invasion inhibition. As shown in Fig.4G, 4H and S5, the migration and invasion capability were remarkably attenuated upon AKT inhibitor treatment in both SMMC-7721-GFP and HCCLM3-GFP cells, whereas no obvious differences were observed in SMMC-7721-CYP3A5 or HCCLM3-CYP3A5 cells. Together, these data suggested that intracellular PI3K-AKT-dependent proteolytic enzymes signaling, but not MAPK signal pathway, may play the key role in the modulation of CYP3A5-involved HCC metastasis.

CYP3A5 selectively inhibits AKT phosphorylation at Ser473 by blocking mTORC2 kinase activity

It has been documented that phosphorylations of both Thr308 and Ser473 residues contribute to the full activation of AKT(13). Thr308 is phosphorylated by PDK1, whereas other candidates, including mTORC2, may perform the AKT phosphorylation at Ser473(14). We therefore examined the change of p-AKT(S473) and p-AKT(T308) in SMMC-7721-CYP3A5 and the control cells following HGF stimulation. Western blotting analysis revealed no obvious differences of p-AKT(T308) between CYP3A5 and the control cells. Importantly, the level of p-AKT(S473) triggered by HGF stimulation significantly decreased in CYP3A5-expressing cells(Fig.5A). Clinically, the inverse correlation between the levels of CYP3A5 and p-AKT(S473) were observed in 159 pairs of HCC specimens we previously applied(Fig.S5E). In addition, no changes were observed on the up-stream regulators of p-AKT(T308), including P85(regulatory subunit of PI3K), PTEN, and PDK1 between CYP3A5-overexpressing and control cells(Fig.5B),
indicating the selective inhibition of p-AKT(S473) and mTORC2 might be necessary for CYP3A5-mediated physiological function.

Next, we transfected synthesized siRNA specifically targeting Rictor, the indispensable component of mTORC2(14), into SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines(Fig.5C), and found that silencing of Rictor abrogated the difference of p-AKT(S473) between the CYP3A5-overexpressing and control cells(Fig.5D). Furthermore, we evaluated the effect of mTORC2 knockdown on the metastatic phenotype of HCC cell lines by utilizing transwell migration and Matrigel invasion assays. As expected, migration and invasion capacities of both SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines ameliorated to similar levels upon Rictor siRNA treatment(Fig.5E&F and Fig.S6A&B). It has been reported that the complex formation of mTORC2 and mTORC2 kinase activity were responsible for the phosphorylation of AKT(S473), we therefore performed immunoprecipitations (IP) assay using antibody against Rictor to check mTORC2 complex formation and in vitro mTORC2 kinases activity between CYP3A5-overexpressing and its control cells. Interestingly, no obvious changes were observed in the total amount of key components(mTOR and Rictor) of mTORC2 complex upon HGF stimulation; nevertheless, the in vitro mTORC2 kinase activity in SMMC-7721-CYP3A5 cells was markedly decreased(Fig.5G). As previous study demonstrated that phosphatidic acid(PA) was required for the stabilization of mTORC2 complex(15), we thus attempted to assess PA contents in SMMC-7721-CYP3A5, HCCLM3-CYP3A5 and their counterpart control cell lines. No significant differences of PA levels were found between CYP3A5-overexpressing and their control cells(Fig.S6C), supporting the observation that the integrity of mTORC2 complex is not responsible for CYP3A5 function.

These data revealed that CYP3A5 exerts its physiological function through modulating mTORC2 kinase activity rather than the stability of mTORC2 complex, which in turn results in the de-phosphorylation of AKT on S473 and elevated expression of TIMPs.
CYP3A5-induced intracellular ROS enrichment is responsible for the regulation of mTORC2/p-AKT(S473) signaling

CYP3A5, a kind of mitochondrial P450 type enzymes, catalyzes central steps in steroid biosynthesis. These monooxygenase reactions depend on electron transfer from NADPH via FAD adrenodoxin reductase and 2Fe-2S adrenodoxin(16-18). These systems can function as a futile NADPH oxidase, oxidizing NADPH in absence of substrate, and leak electrons via adrenodoxin and P450 to O2, producing superoxide and other ROS(16-18). Here, increased level of intracellular ROS was observed in both SMMC-7721-CYP3A5 and HCCLM3-CYP3A5 cells in comparison with their counterpart control cells(Fig.6A-B). In addition, Fig.S7A-C showed that pretreatment of CYP3A5-overexpressing cells with DPI, a potent inhibitor of flavonoid-containing enzymes such as NADPH oxidase and nitric oxide synthase(NOS), completely abolished the induction of ROS production and enhanced the level of AKT phosphorylation(S473), indicating a potential role for NADPH oxidase in CYP3A5/ROS-regulated AKT activity.

As expected, the loss of migration capacity and intracellular AKT phosphorylation in CYP3A5 stable cells was notably enhanced to the similar level in control cells upon the induction of NAC(Fig.6C and 6D). To further verify whether enrichment of ROS is responsible for CYP3A5-regulated mTORC2 kinase activity and AKT signaling, we firstly treated cells with 100μM H2O2, and found that both mTORC2 kinase activity and AKT phosphorylation(S473) were dramatically decreased, which were restored again followed with antioxidant treatment(Fig.6E). This result indicated that ROS could negatively regulate mTORC2 kinase activity in vitro. Next, CYP3A5 stable and respective control cells were pretreated with either of antioxidants(NAC or GSH) for three hours and stimulated with HGF. As shown in Fig.6F, the treatment of antioxidant resulted in the restoration of mTORC2 kinase activity in CYP3A5 cells. As previously reported that mTORC2-Ribosome interaction is necessary for mTORC2-induced AKT activation(19), we examined whether the treatment of HGF may lead to the assembly of mTORC2-ribosome complex. Immunoprecipitation assay showed that the augment of Rictor or mTOR and
Role of CYP3A5 in the metastasis of HCC

ribosomal protein Rpl26 (Fig. S7D) with the induction of HGF. Importantly, the stability of Rictor/Rpl26 and mTOR/Rpl26 complex was disrupted in the presence of H$_2$O$_2$ (Fig. 6G). Together with the observation that knockdown of Rpl7 decreased HGF-stimulated phosphorylation of AKT in control cells to the similar level as CYP3A5-expressing cells did (Fig. S7E), these data revealed that CYP3A5-induced intracellular ROS accumulation may play the key factor for the regulation of mTORC2/ribosome interaction, mTORC2 kinase activity and mTORC2/p-AKT (S473) signaling. As an important supporting evidence, the GSH/GSSG ratio, which are negatively correlated with ROS level (16-18), in clinical HCC samples (n=62, 31 with microvascular invasion named as HM Tissues, 31 without microvascular invasion named as LM Tissues) were measured and found the remarkably lower GSH/GSSG level in LM group (Fig. 6H).

Discussion

CYP3A5, a member of the cytochrome P450 superfamily of enzymes, is involved in the metabolism of drugs, exogenous carcinogens, and endogenous molecules such as steroids (20). Previous studies about CYP3A5 have mainly focused on two major aspects, the potential relationship of CYP3A5 polymorphism and cancer risk or drug metabolism (9-11, 21-26). Moreover, Tsunedomi R concluded that the expression of CYP3A5 was drastically decreased in conjunction with venous invasion and might serve as a marker of progression and molecular target for treatment of HCV-associated HCC (27). Similar findings were also reported in some earlier articles (28, 29). Importantly, the expression of CYP3A5 was declined from early to late hepatic cirrhosis. In our present study, CYP3A5 expression was found frequently down-regulated in tumor tissues and was negatively associated with several malignant characteristics and poor prognosis in HCC patients. Ectopic expression of CYP3A5 attenuated cell migration, invasion and cell–ECM adhesion both in vitro and in vivo. To our knowledge, it is the first time to intensively evaluate the protective effects of CYP3A5 on HCC progression besides its enzyme activity.
In addition, we also examined the role of CYP3A4 in HCC progression. In line with previous studies, CYP3A4 showed lower expression level in most of tumor tissues, which was significantly correlated with differentiation grade, tumor number and TNM(Fig.S8A-C). Due to the relative high expression level of CYP3A4 across eight HCC cell lines we used in Fig.S3, we explored the effect of CYP3A4 on HCC cells by using RNAi method(Fig.S8D). A slightly decreased growth rate was observed in SMMC-7721-Si-CYP3A4(p>0.05) but not HCCLM3-Si-CYP3A4 cells in comparison with their matched control cells. Further, no obviously changes of ROS accumulation, cell migration and invasion were found between CYP3A4-knockdown and control cells(Fig.S8E-G). These data reinforced the protective effects of CYP3A5 but not CYP3A4 in regulating HCC metastasis. The primary role of CYP3A5 for ROS-attenuated AKT signaling might result from: 1.the relatively saturated level of CYP3A4 in HCC cells which might weak the effect of RNAi assay; 2.a possible selective mechanism for ROS accumulation in response to CYP3A5 expression.

mTOR belongs to the PI3K-related protein kinase subfamily that plays a pivotal role in the regulation of various cellular processes including cell growth, migration, and cell metabolism(30). mTOR consists of two distinct complexes, termed mTORC1 and mTORC2, which have slight differences in the subunit compositions(30,31). Specifically, mTORC1 consists of five components, mTOR, Raptor, mLST8/GβL, PRAS40, and DEPTOR(30,31); mTORC2 is composed of six components, including mTOR, mLST8/GβL, DEPTOR, PROTOR/PRR5(proline-rich protein 5), and mSIN114,31. Rictor controls the stability of mTORC2 complex(14,32). mTORC2 is primarily activated by growth factors despite its underlying mechanism remaining largely unknown(16). AKT is an important kinase mediating survival signaling, which is regulated by phosphorylation on Thr308 by PDK1 and on Ser473 by several other kinases, as well as mTORC2(33). In the present study, p-AKT(S473) was obviously inactivated in CYP3A5 stable cells; nevertheless, p-AKT(T308) presented no significant difference. The phosphorylation of AKT(S473) was strongly repressed to similar levels between CYP3A5-overexpressing and control cells in response to si-Rictor treatment. We thus speculated that CYP3A5-blocked p-AKT(S473) activity...
Role of CYP3A5 in the metastasis of HCC

might depend on the mTORC2 activity. Consistently, there were no significant
differences in metastatic phenotypes between SMMC-7721-CYP3A5 and
SMMC-7721-GFP cells following Rictor silencing. Several published studies have
demonstrated that down-regulation of the mTORC2 kinase activity usually resulted
from the dissociation of mTORC2 complex(15,34-36). More importantly, the novel
finding in our present study was that CYP3A5-mediated inactivation of p-AKT(S473)
resulted from the inhibition of mTORC2 kinase activity, rather than disruption of the
mTORC2 complex.

Although multiple endogenous and exogenous substances have been reported to
be involved in regulation of mTORC2 activity(15,33-38), second messengers, for
instance ROS, regulating mTORC2 remains less well understood. Structural and
biochemical characterization studies conducted on TOR(the yeast ortholog of mTOR)
reveal that, owing to the presence of a redox-sensitive motif, the cellular stability or
functionality of TOR is redox regulated(39). Consistent with this finding, several
studies demonstrated the ability of ROS to regulate the functional activity of
mTORC1(40,41). Of special interest is that ROS were also reported to facilitate or
oppositely suppress mTORC2 activity in newly emerging evidences(42,43). Supporting
evidence was obtained recently that ROS generation in response to a DNA
alkylating agent inhibit mTORC2 activity by affecting the complex assembly(44). It
seemed that ROS were double-edged swords in the regulation of mTORC2 activity.
ROS at high levels become deleterious, exhibiting pathophysiological actions,
whereas, at low levels they may be benefit for normal physiological actions(45-47),
which is called “ROS threshold concept”(46,47).

In our present study the HCC cells benefited from exposure to
CYP3A5-mediated ROS generation, and therefore exerted attenuation of metastasis.
Mechanically, the ROS level in CYP3A5-overexpressing cells dramatically
suppressed the mTORC2 activity, without affecting the mTOR/Rictor complex
assembly. We considered that the level of CYP3A5-induced intracellular ROS was
within a certain threshold value. Hydrogen peroxide(H2O2) represents an important
type of ROS and certain concentrations(5–200μM) of H2O2 have been proven to
Role of CYP3A5 in the metastasis of HCC

induce an appropriate amount of ROS production within the ROS threshold in multiple cell lines (48). Thus 100μM H₂O₂ was applied in our study to simulate the elevated intracellular ROS level in HCC cells. Moreover, it seemed that supplementation of antioxidants achieved unexpected promotion instead of inhibition of metastatic phenotype in our study. So it might be harmful to supply exogenous antioxidants in the presence of CYP3A5-mediated ROS production despite their fundamental role of antioxidants in human life and health.

In the present study our results reveal that CYP3A5 plays an important protective role in HCC metastasis independent of the activation of carcinogens and metabolism of anti-cancer drugs. Forced expression of CYP3A5 in HCC cells inhibits cell migration and invasion in vitro and in vivo, at least partly via manipulating ROS/mTORC2/p-AKT(S473) signaling, which provides a potential marker for cancer prevention and treatment.

Acknowledgment: We thank Dong-Ping Hu, Shan-Hua Tang, Lin-Na Guo, Dan Cao, Dan-Dan Huang, and Shan-Na Huang for technical assistance.
References

Role of CYP3A5 in the metastasis of HCC

Role of CYP3A5 in the metastasis of HCC

23. Bedewy AM, El-Maghraby SM. Do SLCO1B3 (T334G) and CYP3A5*3 polymorphisms affect response in Egyptian chronic myeloid leukemia patients receiving imatinib therapy? Hematology 2013; 18: 211-6.

33. Razmara M, Heldin CH, Lennartsson J. Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D. Cell Commun Signal 2013; 11: 3-14.

Role of CYP3A5 in the metastasis of HCC

Figure legends

Figure 1. CYP3A5 level is down-regulated in HCC tissues and is negatively associated with metastatic potential

(A) The gene chip data of HCC were obtained from TCGA and GEO databases, and the expression levels of CYP3A5 mRNA in HCC and adjacent non-tumor tissues were statistically analyzed (*: P<0.05 and **: P<0.01).

(B&C) Expression levels of CYP3A5 mRNA in 60 paired HCC and adjacent non-tumor tissues were evaluated by qRT-PCR.

(D) The representative expression of CYP3A5 protein in tumor (T) and paired adjacent non-tumor (N) tissues measured by western blotting assay.

(E) Comparison of CYP3A5 expression in 75 paired tumor tissues and adjacent non-tumor tissues using IHC staining in HCC tissue microarray.

(F) Representative images of IHC staining of CYP3A5 in differentiated (metastatic potential) HCC tissues from HCC tissue microarray. Comparison of CYP3A5 expression in HCC tissues was analyzed (*: P<0.05).

(G) Comparison of CYP3A5 expression in paired tumor tissues and the corresponding portal vein tumor thrombus (PVTT) by qRT-PCR.

Figure 2. Down-regulated expression of CYP3A5 predicts poor prognosis in HCC patients

(A&B) The OS and TFS for the high and low CYP3A5 expression groups were analyzed by the two-sided long-rank test.

(C&D) A multivariate analysis of the HRs showed that the downregulation of CYP3A5 may be an independent prognostic factor for the OS and TFS rates (by the Cox multivariate proportional hazard regression model). The HRs are presented as the means (95% CI). The variables included in the multivariate analysis were selected using a univariate analysis.

Figure 3. Ectopic expression of CYP3A5 ameliorates HCC migration and invasion
both *in vitro* and *in vivo*

(A) Cell migration assays of SMMC-7721-CYP3A5, HCCLM3-CYP3A5 and the respective control cells were performed utilizing polycarbonate membrane inserts in 24-well plate. Representative images were shown. Magnification, ×200; The results were plotted as the average number of migrated cells from six random microscopic fields. Three independent experiments were performed and the similar results were obtained.

(B) Cell invasion assays of SMMC-7721-CYP3A5, HCCLM3-CYP3A5 and the respective control cells were performed using BioCoat Matrigel invasion chambers in 24-well plate. Representative images were shown. Magnification, ×200; The results were plotted as the average number of invasive cells from six random microscopic fields. Three independent experiments were performed and the similar results were obtained.

(C) Cell adhesion assays of SMMC-7721-CYP3A5, HCCLM3-CYP3A5 and the respective control cells were analyzed using a CytoSelectTM 48-well adhesion Assay Kit. Representative images were shown. Magnification, ×200; The results were plotted as the average OD value at 560nm. Three independent experiments were performed and the similar results were obtained.

(D) Upper panel: Representative image of the visible metastatic nodules in the mouse lungs of SMMC-7721-GFP group and SMMC-7721-CYP3A5 group (n=5); Middle panel: Representative H&E images of metastatic nodules from the mouse lung tissue sections of SMMC-7721-GFP group and SMMC-7721-CYP3A5 group; Lower panel: The number of metastatic nodules in the lungs of each group was presented as the mean±SD.

(E) OS curves for the two groups of nude mice injected with either SMMC-7721-GFP or SMMC-7721-CYP3A5 through the lateral tail veins (n=10). P value was calculated using the two-sided log-rank test.

Figure 4. CYP3A5 induces expression of TIMP1 and TIMP2 by inhibiting AKT signaling.
(A) The expression levels of E-cadherin, N-cadherin, Vimentin and Snail were compared by western blotting analysis between the indicated cell lysates.

(B) TIMP1, TIMP2, MMP2, MMP7 and MMP9 expression levels were measured by western blotting in the indicated cell lysates.

(C) The activities of MMP2 and 9 were detected by zymography assay. The lower histogram showed the average optical density from three repeated experiments.

(D) The SMMC-7721 cells were starved with serum-free DMEM overnight and exposed to HGF(40ng/ml) for 0, 5, 15 and 30 minutes. The total expression levels and phosphorylation levels of AKT(p-AKT), ERK1/2(p-ERK1/2), JNK1/2(p-JNK1/2) and P38(p-P38) were analyzed by western blotting.

(E) SMMC-7721 cells were transiently transfected with a control vector (pcDNA3.1), or pcDNA-CYP3A5, or pcDNA-CYP3A5 plus pmyr-AKT. The cells were subjected to the transwell migration assay and the Matrigel invasion assay after 24 hours of transfection. The results were plotted as the average number of migrated (left lower) or invasive (right lower) cells from six random microscopic fields (**:P<0.01). Representative images were shown in Figure.S4C.

(F) The relative expression levels of TIMP1 and TIMP2 were analyzed by qRT-PCR after 48 hours of transfection indicated as (D) (*:P<0.05 and **:P<0.01). Three independent experiments were performed.

(G&H) Two stable cell lines, SMMC-7721-GFP and SMMC-7721-CYP3A5 were treated with AKT inhibitors, AZD5363 (10uM) or MK-2206 (2uM), and then the capacity of cell migration (G) or invasion (H) were examined.

Figure 5. CYP3A5 selectively inhibits AKT phosphorylation at Ser473 by blocking mTORC2 kinase activity

(A&B) SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines were serum-starved overnight and then stimulated with HGF (40ng/ml) for indicated time periods. (A):The total expression of AKT (t-AKT) and phosphorylation levels of AKT, including p-AKT (S473) and p-AKT (T308), were analyzed by western blotting. (B):The major up-stream regulators of p-AKT (T308) were probed by western
Role of CYP3A5 in the metastasis of HCC

 blotting with indicated antibodies.

(C) SMMC-7721-GFP and SMMC-7721-CYP3A5 cells were transfected with siRNA duplexes targeted against human Rictor (si-Rictor) or control siRNA (si-NC). 48h after transfection the knock-down efficiency was evaluated by western blotting assay.

(D) SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines were transfected with siRNA duplexes targeted against human Rictor (si-Rictor) or control siRNA (si-NC). The cells were serum-free starved overnight and subjected to HGF (40ng/ml) for indicated time periods after 48 hours of transfection. The cell lysates were analyzed by western blotting with anti-AKT, anti-AKT (S473) and anti-GAPDH antibodies.

(E&F) SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines were transfected with siRNA duplexes targeted against human Rictor (si-Rictor) or control siRNA (si-NC). 48 hours after transfection the indicated cell lines were subjected to the transwell migration assay (D) and the Matrigel invasion assay (E). The results were plotted as the average number of migrated (invasive) cells from six random microscopic fields (*:P<0.05, **:P<0.01). Three independent experiments were performed and the similar results were obtained.

(G) SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines were serum-starved overnight and then exposed to HGF (40ng/ml) for 0 and 5 minutes. The cells were lysed in CHAPS buffer, and immunoprecipitations (IP) were performed using anti-Rictor antibody. In vitro mTORC2 kinase assays were performed utilizing inactive AKT1 as a substrate of anti-Rictor immunoprecipitates. Immunoprecipitates and cell lysates were subjected to western blotting analysis using anti-mTOR, anti-Rictor, anti-p-AKT (S473) and anti-β-Actin antibodies.

Figure 6. CYP3A5-induced intracellular ROS enrichment is responsible for the regulation of mTORC2/p-AKT (S473) signaling

(A) SMMC-7721-GFP and SMMC-7721-CYP3A5 cell lines were serum-starved overnight and then exposed to HGF (40ng/ml) for 5 minutes. Intracellular ROS levels of indicated cell lines were measured using CellROX® Deep Red Reagent. The
fluorescent images were captured using a confocal microscope. White Arrows: the dots for ROS staining. Magnification,×600.

(B) The intracellular GSH level was examined. Upper panel: the GSH content in SMMC-7721-CYP3A5 and HCCLM3-CYP3A5 vs. SMMC-7721-GFP and HCCLM3-GFP cell lines were measured with DMEM medium containing 10% FBS; lower panel: we calculated the GSH level of serum-starved SMMC-7721-CYP3A5 and GFP cells in the absence or presence of HGF stimulation. Three independent experiments were performed (*:P<0.05).

(C) SMMC-7721-GFP and SMMC-7721-CYP3A5 cells were preconditioned with or without NAC (5mM) for 3 hours, and then subjected to transwell migration assays. upper panel: Representative images were shown. Magnification,×200; Lower panel: The results were plotted as the average number of migrated cells from six random microscopic fields. Three independent experiments were performed (**:P<0.01).

(D) Indicated cell lines were starved with serum free DMEM medium overnight and pretreated with the antioxidant NAC (5mM) or GSH (5mM) for 3 hours. Then the cells were exposed to HGF (40ng/ml) for 5 minutes and lysed in CHAPS buffer. In vitro mTORC2 kinase assays and IP were performed using anti-Rictor antibody.

(E) SMMC-7721 cell lines were serum-starved overnight and pretreated with or without H₂O₂ (100μM) for 30 minutes before HGF (40ng/ml) stimulation. Indicated cells were exposed to the antioxidant NAC (5mM) for 3 hours before harvesting. The cells were lysed and IP were performed using anti-Rictor antibody. In vitro mTORC2 kinase assay containing anti-Rictor immunoprecipitates and inactive AKT1 was performed. Immunoprecipitates and cell lysates were then subjected to western blotting and probed with the indicated antibodies.

(F) Indicated cell lines were starved overnight and pretreated with NAC(5mM) or GSH(5mM) for 3 hours before HGF(40ng/ml) stimulation. The cells were harvested at corresponding time point and subjected to western blotting with indicated antibodies.

(G) The cells were lysed and IP were performed using anti-Rpl26 antibody. Cell lysates were then subjected to western blotting and probed with the indicated
Role of CYP3A5 in the metastasis of HCC

antibodies.

(H) GSH/GSSG contents in clinical HCC samples with higher (HM, n=31) or lower (LM, n=31) metastatic capacity were measured and compared.
Figure 1

A: Bar chart showing relative CYP3A5 mRNA expression.

B: Graph illustrating up-regulation and down-regulation of CYP3A5 mRNA expression.

C: Box plot comparing CYP3A5 mRNA expression in tumor and para-tumor samples.

D: Western blot analysis of CYP3A5 and GAPDH expression levels.

E: Bar graph showing comparative HIC score of CYP3A5 in tumor and para-tumor samples.

F: Representative immunohistochemical images illustrating CYP3A5 expression levels in different grades of tumors.

G: Box plot comparing relative CYP3A5 mRNA expression in different tumor grades (Well, Moderate, Poor).

Downloaded from cancerres.aacrjournals.org
Figure 2

A and B: Kaplan-Meier survival curves showing the effect of high vs low CYP3A5 expression on overall survival.

P = 0.0456 for A and P = 0.0343 for B.

C: Multivariate analysis of survival variables:
- Tumor number (multiple): HR(95% CI) = 0.001
- HBsAg (positive): HR(95% CI) = 0.004
- Tumor Diameter (>5cm): HR(95% CI) = 0.006
- CYP3A5 (low): HR(95% CI) = 0.016

D: Multivariate analysis of recurrence variables:
- CYP3A5 (low): HR(95% CI) = 0.011
- Pathological satellite (yes): HR(95% CI) = 0.017
- HBsAg (positive): HR(95% CI) = 0.008
- Tumor Diameter: HR(95% CI) = 0.006
Figure 4
Figure 5
CYP3A5 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Regulating mTORC2/Akt Signaling

Feng Jiang, Lei Chen, Ying-Cheng Yang, et al.

Cancer Res Published OnlineFirst February 3, 2015.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-1589

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/02/03/0008-5472.CAN-14-1589.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.