Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma

L.P. Madhubhani P. Hemachandra¹, Dong-Hui Shin¹², Usawadee Dier¹, James N. Iuliano³, Sarah A. Engelberth¹, Larissa M. Uusitalo¹, Susan K. Murphy⁴, and Nadine Hempel¹²

Abstract

Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O₂⁻) to hydrogen peroxide (H₂O₂) and oxygen (O₂), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O₂⁻ to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H₂O₂-mediated migration. While this higher steady-state H₂O₂ drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H₂O₂ threshold to enable more rapid killing by exogenous sources of H₂O₂. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype. Cancer Res; 75(22); 1–12. ©2015 AACR.

Introduction

Ovarian clear cell carcinomas (OCCC) represent approximately 10% to 25% of all epithelial ovarian cancer (EOC), depending on ethnic background (1). It is now evident that OCCC differs widely from the more common high-grade serous adenocarcinoma. While the primary tumor mass of OCCC is found on the ovary, its origin is not thought to be the ovary or fallopian tube but rather to stem from endometrioid tissue and endometriosis. Because of the reactive oxygen species (ROS) stress associated with endometriosis, OCCC has been characterized as a stress-responsive cancer (2, 3). Gene expression studies have shown increased expression of a number of stress-related and metabolic genes, in particular those related to hypoxic insult, glycolysis, and antioxidant defense mechanisms (4). The Nrf2 stress response pathway has been implicated in driving some of these changes, including the enhanced expression of mitochondrial manganese-containing superoxide dismutase (Sod2; ref. 5).

Sod2 is a nuclear-expressed mitochondria-targeted antioxidant enzyme, which catalyzes the conversion of two molecules of superoxide anion (O₂⁻) to hydrogen peroxide (H₂O₂) and oxygen (O₂). Because a small amount of O₂⁻ leakage occurs during normal oxidative phosphorylation from the mitochondrial electron transport chain, Sod2 is of importance in preventing redox-mediated damage of mitochondrial proteins and preserving mitochondrial function. Enhanced O₂⁻ production can occur in response to stress, such as hypoxia, and has been linked to a number of cancer types. For this reason, Sod2 was initially characterized as a tumor suppressor gene (6). However, recent data now point to a dichotomous role of Sod2 during tumor progression. Evidence suggests that Sod2 expression is often increased during metastatic progression, potentially as an adaptation to enhanced levels of intra- and extracellular ROS (7). While Sod2 may initially prevent ROS-mediated DNA damage to facilitate tumor initiation, increased Sod2 expression appears to conversely contribute to the metastatic phenotype by altering redox signaling pathways (8). We and others have observed that increased Sod2 expression correlates with a shift to higher intracellular H₂O₂ levels, contributing to prometastatic behavior (7, 9, 10).

In the present study, we set out to interrogate the role of Sod2 in OCCC and found a dual function for this mitochondrial antioxidant in OCCC tumorigenicity. Sod2 not only provides a protective role in scavenging mitochondrial O₂⁻, thereby maintaining...
high mitochondrial function and proliferation, but also alters the steady-state ROS balance to drive H2O2-mediated migration and metastasis of OCCC cells.

Materials and Methods
Oncomine data and ovarian cancer cell line microarray data
Oncomine.org was used to screen Sod2 expression in ovarian cancer histologic subtypes (Supplementary Fig. S1). Two representative datasets are shown in Fig. 1A and B (GEO accession nos. GSE2109 and GSE6008). Microarray data of the following ovarian cancer cell lines were obtained using the GeneChip Human Genome U133A 2.0 Array (Affymetrix; GEO accession no.: GSE25428; refs. 4, 11). Data represent expression of Sod2 probe 215223_s_at (log2 RMA normalized). OCCC: JHOC-5, JHOC-7, JHOC-8, JHOC-9, KOC-5C, KOC-7C, OVISE, OVTOKO, RMG-1, RMG-2, RMG-5, TAYA, TOV-21-G. Serous adenocarcinoma: CAOV3, Fuov1, HEY, Hey-A8, Hey-Ce, JHOS-2, JHOS-3, JHOS-4, M41, M41-cisR, OV90, OVARY1847, OVCA420, OVCA429, OVCAR3, PEO1, PEO4, SKOV3. Mucinous: JHOM-1, JHOM-2B, MCAS, OMC-3. Endometrioid: OVK-18, TOV-112D. Adenocarcinoma: A2780 (A2780-J), A2780J-cisR, DOV13, OVCAR2, OVCAR5, OVCAR8. Teratocarcinoma: CH1, PA1. Undifferentiated: TYK-nu, TYK-nu cisR. Prior to microarray analysis, cell lines were authenticated by STR analysis at the Fragment Analysis Facility, Johns Hopkins University (Baltimore, MD; PowerPlex 1.2 System; Promega) or at the University of Colorado Cancer Center (Aurora, CO; AmpFlSTR Identifier Plus PCR Kit, Applied Biosystems; ref. 11).

Cell lines and cell culture conditions
At commencement of this study ES-2 and TOV-21-G cells were newly obtained from ATCC. Authenticity was verified by ATCC using STR analysis. ES-2 cells were maintained in McCoy 5A media + 10% FBS and TOV-21-G cells in 40% Media199/40% MCBD supplemented with 20% FBS and sodium bicarbonate. Cells were maintained at 37°C with 5% CO2.

Sod2 knockdown using RNA interference
Scramble nontargeting control and Sod2-specific siRNA oligonucleotides were synthesized by Life Technologies/Dharmacon. 5'-CAACAGGCCUUAUUCCACU-3' and 5'-AAGUAAACCAGAUCGUUA-3' sequences were used as siSod2_#1 and siSod2_#2, respectively (Supplementary Fig. S2) and 10 pmol transfected into cells using Lipofectamine RNAiMax (Invitrogen).

Figure 1.
Increased Sod2 mRNA expression is observed in OCCC compared with other ovarian carcinoma histologic subtypes. Two representative datasets from ovarian cancer microarray studies are displayed as box and whisker plots (data obtained through Oncomine.org). A, clear cell (n = 16), serous (n = 24), mucinous (n = 8), endometrioid (n = 29), serous surface papillary (n = 107); one-way ANOVA (P < 0.0002), Tukey posttest. ***, P < 0.0001; **, P < 0.001; *, P < 0.01; *, P < 0.05. B, clear cell (n = 8), serous (n = 41), mucinous (n = 13), endometrioid (n = 37); one-way ANOVA (P < 0.0001), Tukey posttest. ***, P < 0.001 (GSE6008). C, Sod2 mRNA expression was significantly increased in a panel of OCCC lines, listed in Materials and Methods, compared with serous adenocarcinoma cell lines (Affymetrix array; ANOVA Tukey posttest: **, P < 0.05). D, semiquantitative real-time RT-PCR was performed to assess Sod2 mRNA expression in serous ovarian cancer cell lines OVCA433, OVCA429, and OVCA5 and OCCC cell lines ES-2 and TOV-21-G (data expressed relative to OVCA433, which displayed lowest Sod2 expression). E, immunoblot analysis and densitometric quantification of Sod2 protein expression in ovarian cancer cell lines (for D and E: mean ± SEM, n = 3, ANOVA; Tukey posttest. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05).
shRNA with nontargeting scramble sequence or targeting Sod2 (shSod2_#1: 5'-CTGACGGCTGCATCTGTTGGTGTCCAAGG-3', and shSod2_#2: 5'-ACCTGAACGTCACCGAGGAGAAGTCAG-3') in pGFP-V-RS vector (Origene; TG309190) were used to stably transfect ES-2 cells (Fig. 2; Supplementary Fig. S3). The clone expressing shSod2_#1 was used in Figs. 2–7.

Immunoblotting

Protein expression was analyzed by standard Western blotting using antibodies from Cell Signaling Technology (pAkt-s473, Akt, pFAK-Y397, FAK, p-p130cas-Y165, p130cas) or Abcam (Sod2). Primary antibodies were diluted in blocking solution (5% nonfat milk in TBS with 0.1% Tween-20, 1:1,000) and incubated overnight at 4°C. Blots were visualized using Femto and Pico ECL chemiluminescence substrate (Thermo scientific) and imaged using a ChemiDoc MP system (BioRad). Densitometric analysis was performed using ImageJ software (NIH). Each protein band was normalized to the respective GAPDH or β-actin loading control band.

Sod2 zymography

Sod2 activity was analyzed using Sod2 in-gel zymography as previously described (12). Briefly, cell lysates were loaded on nondenaturing acrylamide gels, followed by electrophoresis. Sod2 activity is visualized by the inhibition of nitroblue tetrazolium reduction.

Clonogenicity and cell viability

Single-cell survival clonogenicity assays were performed as previously described (13). Briefly, 100 cells were plated in each well of 6-well plate colonies visualized after 10 days using crystal violet. Viability was assessed by cell counting using trypan blue (1%) staining or crystal violet uptake assays (13).

Chorioallantoic membrane assay

Each chorioallantoic membrane (CAM) was inoculated with 5 × 10^5 ES-2 cells stably expressing either scramble-shRNA-GFP or Sod2-shRNA_#1-GFP that were suspended in 50 μL PBS (with 1 mmol/L MgCl₂, 0.5 mmol/L CaCl₂, 100 U/mL penicillin, and 100 μg/mL streptomycin), essentially as previously described (14). Tumors were allowed to form for 7 days prior to termination of the experiments by sacrificing the chick embryo. Tumors on the CAM were removed and measured. CAM and chick embryo organs (liver and lung) were collected for tumor metastasis analysis by surveying for GFP-labeled cells.

Seahorse XF24 extracellular flux analysis

Oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitocondrial stress tests were measured using the Seahorse XF24 Extracellular Flux Analyzer (Seahorse Biosciences), as described previously (13). Cells were plated at a density of 40,000 cells per well and media replaced with XF media the following day 1 hour prior to the assay. Three measurements of OCR and ECAR were taken at baseline and after each injection of the following mitochondrial stress test compounds: oligomycin (1 μmol/L; complex V inhibitor); FCCP (0.75 μmol/L; proton gradient uncoupler); and antimycin A (1 μmol/L; complex III inhibitor). Basal and maximal respiration were normalized by subtracting nonmitochondrial OCR (i.e., after antimycin A addition). Respiratory reserve capacity was calculated as the difference between maximal and basal OCR.
was derived as the difference between basal and oligomycin A-inhibited OCR. Data were normalized to total protein content in each well.

Wound-healing assay

Cell migration was assessed in serum-free media by wound-healing assays using Ibidi inserts (Martinsried) and quantified after 72 hours. Ibidi inserts were removed from a monolayer of GFP-labeled cells to expose the cell-free wound area. Fluorescent images were taken after 72 hours of migration and overlayed with corresponding images at time 0 hour. Pixels representing GFP-labeled cells were quantified within the wound area using ImageJ and corrected by subtracting any GFP-detected cells in the same area at time 0.

Spheroid attachment assay

Cells were plated at a density of 1,000 cells per well in ultra-low attachment 96-well plates (Corning) and incubated for 5 days. Spheroids were transferred to 24-well plates with or without Collagen I coating. Percentage outgrowth was calculated by...
Reduced Sod2 levels significantly inhibit OCCC cell proliferation in vitro and tumor formation in the CAM model

To further investigate the role of Sod2, we used two OCCC cell lines, ES-2 and TOV-21-G. Sod2 expression was inhibited by shRNA and siRNA transfection, which was demonstrated to lead to a concomitant decrease in Sod2 enzyme activity (Fig. 2A; Supplementary Figs. S2 and S3A). Following Sod2 expression knockdown, ES-2 cell proliferation rate (Fig. 2B; Supplementary Fig. S3B) and clonogenicity (Fig. 2C; Supplementary Fig. S3C) were significantly attenuated. This appeared to be Sod2 concentration-dependent. A 30% reduction in Sod2 levels mediated by stable shRNA transfection reduced clonogenicity by approximately 50% (shSod2_#1), whereas a 70% Sod2 decrease almost completely abrogated the cells’ ability to survive in this assay (shSod2_#2; Supplementary Fig. S3C). Analysis of PARP cleavage and Annexin V staining suggested that the decrease in cell viability observed in cells with 30% Sod2 knockdown is not related to a significant increase in apoptosis (Supplementary Fig. S4). This cell line, referred to as shSod2 in the following figures, was chosen for subsequent studies to achieve pathophysiologically relevant changes in Sod2 expression (rather than complete loss), which also closely reflects Sod2 levels observed in non-OCCC cell lines OVCA433 and OVCA429 (Fig. 1E). The CAM ex ovo model was used to further test the role of Sod2 on ES-2 tumorigenicity. A significant decrease in tumor size and weight was observed in tumors grown from ES-2 cells with reduced Sod2 expression (shSod2; Fig. 2D). In addition, the shRNA-Sod2 tumors exhibited less vascularization than the control groups (Fig. 2D), suggesting that Sod2 may contribute to both proliferation and the recruitment of blood vessels to the tumor.

Sod2 maintains OCCC mitochondrial respiration

We previously demonstrated that OCCC cell lines are highly energetic and depend on both oxidative phosphorylation and glycolysis for their energy needs (13). Given that Sod2 has a primary role in protecting mitochondria from excess O$_{2}^{\cdot-}$, the effect of Sod2 knockdown on mitochondrial respiration was assessed. OCR, representing mitochondrial oxidative phosphorylation, and ECAR, correlating with glycolytic activity, were measured using extracellular flux analysis in both ES-2 and TOV-21-G OCCC cell lines following Sod2 knockdown (13, 16). Stable shRNA-Sod2 decreases in ES-2 and transient siRNA-mediated knockdown of Sod2 in TOV-21-G cells resulted in significant reduction in basal OCR compared with control scramble RNAi–transfected cells (Fig. 3A–D; Supplementary Fig. S5A). Furthermore, respiratory reserve capacity, a measure of the ability of cells to enhance respiration in response to physiologic cues and stress, was significantly inhibited with reduced Sod2 levels (Fig. 3B and D), suggesting that Sod2 plays a major role in maintaining mitochondrial health to support maximal respiration. Although slight, a consistent negative effect on OCR was observed in stable shRNA-Sod2 cells following FCCP treatment (Fig. 3B). A wide range of FCCP concentrations was tested on these cells, but none were able to enhance OCR with Sod2 loss. FCCP can be inhibitory at high concentrations, and it has been speculated that this may be due to a loss in the ability of mitochondria to accumulate respiratory substrates (16). While not tested here, it is possible that sustained Sod2 expression decreases, and concomitant increases in mitochondrial O$_{2}^{\cdot-}$ levels, may exacerbate this FCCP-dependent OCR inhibition, thereby influencing mitochondrial membrane integrity and substrate transport. No significant increases in ECAR were observed between control and shRNA- or siRNA-transfected cells, suggesting that decreases in Sod2 expression do not influence a compensatory shift toward glycolysis (Supplementary Fig. S5B–S5D). The above observations show that both siRNA- and shRNA-mediated decreases in Sod2...
reduced basal OCR and respiratory reserve capacity, indicating that Sod2 is important in maintaining mitochondrial respiration in OCCC.

To assess whether a decrease in Sod2 expression results in compromised $\mathbf{O_2^*}$ scavenging, which may be one of the causes of compromised mitochondrial function, the presence of mitochondrial $\mathbf{O_2^*}$ was evaluated using the mitochondria-targeted redox-sensitive dye MitoSox. As expected, increased oxidation and consequential enhanced fluorescence of MitoSox were observed in the Sod2-knockdown cells compared with controls (Fig. 3E and F). Addition of the Sod2 mimetic porphyrin (MnInBuOE-2-PyP5+), which acts as an $\mathbf{O_2^*}$ scavenger, reduced MitoSox oxidation in both control and shRNA-Sod2 groups (Fig. 3E and F).

Sod2 knockdown attenuates metastasis of cancer cells in the CAM model

We have previously demonstrated that enhanced Sod2 expression is implicated with metastatic progression (7, 8, 17). To investigate the role of Sod2 during OCCC metastasis, the appearance of metastatic lesions of GFP-labeled ES-2 cells was investigated in the CAM tumor model. Single cells and micrometer-sized cellular clusters were highly abundant throughout the membrane in the control group, which could be observed 2 to 3 cm from the tumor (Fig. 4A). In contrast, metastatic spread from shRNA-Sod2 knockdown tumors was limited to the appearance of single cells in the membrane confined to an approximate 1- to 1.5-cm radius from the tumor (Fig. 4A). Furthermore, lung metastases in the chick embryo were observed in 11 of the 12 controls compared with only 5 of 10 embryos in the shRNA-Sod2 group (Fig. 4B). Furthermore, 10 of 12 control tumors metastasized into the liver, whereas only 4 of 10 liver metastases were observed in the shRNA-Sod2 group (Fig. 4B). While clusters of five or more cells were found in the lungs and livers of control groups, only single cells were detected in the Sod2-knockdown group (Fig. 4B).

Sod2 levels modulate cell migration and tumor spheroid outgrowth

Because of the significant abrogation of metastatic spread in response to Sod2 expression decreases, the role of Sod2 on cell migration was further investigated. Cell migration, assessed by wound-healing assays, was significantly inhibited with reduced Sod2 expression in ES-2 cells (Fig. 5A; Supplementary Fig. S6). Furthermore, the ability of cellular spheroid clusters to

Figure 4.
Metastatic spread of ES-2 cells is attenuated with reduced Sod2 expression in the ex ovo CAM tumor model. A, representative images show the location of the primary tumors and micrometastasis of GFP-labeled cells in the membrane (scale bar, 1 mm; CAM tumor study carried out as in Fig. 2). B, reduced Sod2 expression inhibited tumor metastasis into the chick embryo and CAM (shSod2_#1). Quantification of percentage metastasis of tumor cells into CAM, liver, and lung of chick embryo. Representative images show the percentage of tumors with metastatic cancer cells present in the chicken embryo liver and lung (control, $n = 12$; shSod2, $n = 10$).
attach and cells to migrate from the spheroid onto collagen I and uncoated surfaces was also compromised with reduced Sod2 expression (Fig. 5B). Anchorage-independent spheroid formation is a commonly observed phenotype of ovarian cancer cells metastasizing via the transcoelomic route through the intraperitoneal cavity, and these have shown the ability to attach on the peritoneum to form metastatic lesions. These data suggest that Sod2 plays an important role in tumor spheroid metastasis (Fig. 5B). While spheroids of equal size were chosen for this assay, it should be noted that Sod2 knockdown also decreased ES-2 spheroid growth in anchorage independence (data not shown).
To gain mechanistic insights into the signaling pathways that may be altered by Sod2-mediated metastasis, phosphorylation profiles of Akt, p130cas, and focal adhesion kinase (FAK) were investigated. These were chosen on the basis of previous observations of their redox regulation and involvement in tumor cell migration (8, 9, 18, 19). shRNA-Sod2 cells exhibited a 50% decrease in phospho-Akt levels compared with scramble control cells, whereas no appreciable change was observed in phosphorylation of FAK or the focal adhesion adapter protein p130cas (Fig. 5C). The effects on Akt phosphorylation were also dependent on Sod2 concentration, where cells with lower Sod2 expression demonstrated a more striking decrease in Akt phosphorylation.

Figure 6.
H2O2 contributes to OCCC migration. A, steady-state H2O2 levels decrease with reduced Sod2 expression. Steady-state H2O2 levels were derived in ES-2 cells stably transfected with either scramble shRNA control (closed circles) or shRNA targeting Sod2 (open circles), using aminotriazole inhibition of catalase kinetics assays, as described in Materials and Methods. First-order decay curves for catalase inhibition by aminotriazole were used to determine rate constants of inactivation (k; one representative decay curve from three replicate experiments shown). H2O2 concentrations were determined using the equation [H2O2] = k/k1, where k1 is the rate of catalase compound I formation [1.7 × 107 (mol/L)^-1 s^-1]. H2O2 data represent an average of three experiments ± SD. B, there was no change in catalase activity and catalase protein expression between control and shRNA-Sod2 cells. C, H2O2 scavenging by catalase abrogates migration of ES-2 cells, whereas H2O2 can stimulate migration in cells with low Sod2 expression. Migration was analyzed by wound-healing assays using Ibidi inserts and the area covered by cells quantified following 72 hours of migration (normalized to day 0). Scavenging of endogenous H2O2 by catalase significantly reduced the migration of ES-2 scramble-transfected control cells. Recombinant catalase protein (500 units/mL) was added in serum-free media at time 0 and left on cells for 72 hours. Conversely, migration of shSod2 cells was significantly increased with treatment of 5 µmol/L H2O2, whereas this level of H2O2 was toxic to control cells and effects on migration could therefore not be determined (N/D). Data represent one of two independent cellular migration experiments (n = 5, mean ± SEM; ANOVA, Tukey posttest; *, P < 0.05). D, H2O2 can stimulate Akt signaling in OCCC. Dose-dependent increases in phospho-Akt S473 levels were observed by Western blotting following 2 hours of H2O2 treatment with indicated doses in serum-free media.
OCCC cell migration is H2O2-dependent

Sod2 is the primary enzyme involved in converting O2^− to H2O2 within the mitochondria. While it serves as a protective mechanism to maintain mitochondrial function (Fig. 3) by removal of damaging O2^−, a shift toward increasing levels of H2O2 has also been observed in response to enhanced Sod2 expression (8, 10, 18, 20, 21). Because of its relative stability and ease in traversing cellular membranes, H2O2 can mediate redox signaling, including events that drive migration (9). To test whether Sod2 changes the steady-state H2O2 levels in OCCC, we assessed intracellular H2O2 status in control and shRNA-Sod2 ES-2 cells using a biochemical assay on the basis of the irreversible inhibition of catalase by aminotriazole (15, 17). Steady-state levels of H2O2 were reduced approximately by 50% in Sod2-knockdown cells compared with controls (Fig. 6A), whereas baseline catalase activity and protein expression were comparable (Fig. 6B).

To test whether OCCC cell migration is H2O2-dependent, wound-healing assays were carried out in the presence of catalase, which catalyzes the conversion of H2O2 to H2O and O2. As previously demonstrated, exogenous application of recombinant catalase resulted in accumulation of catalase within ES-2 cells (Supplementary Fig. S7; ref. 9). Catalase significantly reduced the migration of both control and shRNA-Sod2 cells, suggesting that H2O2 is a promoter of ES-2 cell migration (Fig. 6C). Conversely, treatment with low levels of H2O2 (5 μmol/L) significantly reversed the slow migration of shRNA-Sod2 cells (Fig. 6C). Furthermore, 5- and 50-μmol/L H2O2 treatment was able to increase phospho-Akt levels (Fig. 6D), while catalase expression abrogated Akt phosphorylation (Supplementary Fig. S8), suggesting that this may be an important redox-dependent signaling pathway in OCCC.

It was noted that ES-2 control cells were not able to tolerate long-term exposure to low-dose H2O2 during migration assays (Fig. 6C). To examine this further, cell viability was assessed in response to H2O2. A significant reduction in cell survival in response to H2O2 was observed in the control group compared with cells with decreased Sod2 expression (Fig. 7A). This suggests that a higher intracellular steady-state H2O2 milieu in OCCC predisposes cells to enhanced killing by additional exposure to low-level exogenous H2O2. The above data imply that high Sod2 expression provides several advantages to OCCC by protecting mitochondrial function through scavenging of O2^− and driving H2O2-dependent migration. While these attributes are advantageous for OCCC survival and metastatic progression, this enhanced intracellular steady-state H2O2 level presents a double-edged sword, as these cells are consequently more susceptible to H2O2 toxicity (Fig. 7B).

Discussion

Although the five different EOC histologic subtypes share the same primary tumor location on the ovaries, it is now evident that these are distinct diseases with vastly different tissue origins and genetic and epigenetic profiles (2, 11). In the present study, we show that Sod2 is highly expressed in OCCC compared with other EOC histologic subtypes and that this mitochondrial antioxidant plays a significant role in OCCC tumorigenicity and metastasis.

Intracellular ROS are maintained within a narrow range tightly regulated by the balance of the rate of ROS production and ROS scavenging/detoxifying by antioxidant enzymes. This balance is often disrupted in the context of cancer, due to high ROS production as a consequence of changes in metabolism or the tumor environment (e.g., hypoxia) and the resulting changes in antioxidant expression. Because the mitochondrial respiratory chain is the major site of O2^− generation within cells, Sod2 plays an important role in maintaining cellular ROS balance. On the basis of the above findings, Sod2 appears to play a dual role in enhancing OCCC tumorigenicity, first, by protecting cells from mitochondrial O2^− damage, and second, by shifting the steady-state ROS balance toward H2O2.

We recently demonstrated that a distinguishing feature of OCCC is their unique metabolic phenotype. Compared with serous adenocarcinoma cells, OCCC cell lines were significantly more energetic, displaying both very high levels of mitochondrial oxidative phosphorylation and glycolytic flux (13). Our data suggest that Sod2 is intricately involved in maintaining this high rate of oxygen consumption, potentially by preserving mitochondrial function as a consequence of O2^− scavenging (Fig. 3). By preventing mitochondrial electron transport chain complex damage mediated by O2^− or secondary products, Sod2 likely supports the high rate of OCCC proliferation, clonogenicity, and tumor growth. The results of the present study suggest that inhibiting mitochondrial antioxidant defenses may provide an alternative strategy to therapeutically target OCCC.

In addition to scavenging O2^− and maintaining mitochondrial health for optimal cell proliferation, we believe that Sod2 has another role in promoting the aggressiveness of OCCC, by shifting steady-state H2O2 levels and driving prometastatic behavior (Figs. 4–6). It has been previously shown that high expression of Sod2 is associated with metastatic progression (8, 10, 17, 20–23) and that dependence of cancer cell migration is related to cellular H2O2 production (9, 19, 24, 25). For example, we have...
shown that steady-state increases in H$_2$O$_2$ can lead to induction of the FAK pathway and migration of metastatic bladder cancer cells and cells with enforced Sod2 expression (9, 19). This effect was mediated by oxidation-dependent inhibition of the phosphatase PTPN12, leading to enhanced phosphorylation of p130cas and Rac1 activation. In addition, work from the Melendez group has shown that Sod2 expression significantly contributes to the expression of the matrix-degrading enzyme MMP-1 in an H$_2$O$_2$-dependent manner (21) and that the Sod2/H$_2$O$_2$-dependent inhibition of the dual-lipid protein tyrosine phosphatase PTEN enhances Akt/GSK3β/VEGF-dependent angiogenesis (18), both processes contributing significantly to metastasis. Our present data suggest that Sod2 may similarly contribute to metastatic progression of OCCC by activating Akt signaling (Figs. 5 and 6). In addition to its prosurvival function, Akt has been shown to influence metastasis and cell migration by regulating cytoskeletal rearrangement, prometastatic cell signaling, and gene transcription (26). These results are of specific importance to OCCC, which, unlike other ovarian cancer histologic subtypes, has been characterized by high-frequency Akt pathway activation. Seventy percent of early- and 68% of late-stage OCCC cases have been shown to display phospho-Akt (S473) staining (27). About 38% of OCCC cases show PTEN loss (28) and 40% of cases PI3K activating mutations (29). Our data imply that Sod2-dependent Akt phosphorylation may also contribute to high activation of Akt signaling in OCCC. Because Akt phosphorylation was highly susceptible to H$_2$O$_2$ treatment, it suggests that this signaling pathway is redox-regulated in OCCC, with a plausible mechanism for this being the oxidation of PTEN (18).

Although an increase in Sod2 should theoretically not result in higher levels of H$_2$O$_2$ production based on the enzyme’s kinetic properties (30), a number of studies have demonstrated increases in H$_2$O$_2$ levels that correlate with Sod2 expression (18, 31). For example, it has been proposed that Sod2 in the mitochondria may alter the flux of O$_2^-$ from some quinone/semiquinone/hydroquinone triads, such as coenzyme Q, thereby driving the reaction into the direction of O$_2^-$ production, potentially leading to enhanced localized dismutation to H$_2$O$_2$ by Sod2 (31, 34). Alternatively, inhibition of cystochrome c oxidase by nitric oxide, arising as a consequence of Sod2 expression, may influence the reduction state of the ETC and drive O$_2^-$ and H$_2$O$_2$ production (35). Our observation that Sod2 knockdown also decreases H$_2$O$_2$ levels suggests that Sod2 is involved in regulating H$_2$O$_2$ balance within cells, and this may contribute to H$_2$O$_2$-mediated redox signaling.

While Sod2 appears to contribute to H$_2$O$_2$-mediated metastatic progression, an enhanced steady-state H$_2$O$_2$ milieu may also present a disadvantage to OCCC cells. Our data suggest that cells with high Sod2 levels and concomitant increases in intracellular H$_2$O$_2$ are more susceptible to exogenous sources of redox stress (Fig. 7A). This likely puts cells closer to the cytotoxic threshold of H$_2$O$_2$, which is reached once cells are further challenged by exogenous ROS. Interestingly, OCCC cells do not appear to have enhanced expression of catalase to provide additional scavenging of excess H$_2$O$_2$ (Fig. 6A). While sublethal levels of H$_2$O$_2$ have been shown to contribute to redox signaling, high levels of H$_2$O$_2$ can elicit tumor cell death by a number of pathways, including apoptosis, protein/DNA damage, and mitochondrial dysfunction (36–38). Furthermore, it was recently reported that H$_2$O$_2$ exposure of tumor cells with enforced Sod2 expression can result in Sod2 peroxidase activity, leading to mitochondrial damage and dysfunction (39). An increased H$_2$O$_2$ steady-state has been observed in a number of cancer cells (17, 40–42) and lends credence to the idea that this higher H$_2$O$_2$ threshold may be exploited therapeutically. In this regard, the use of high-dose ascorbic acid, which is oxidized within tumor cells to produce H$_2$O$_2$, has recently been revisited for use in cancer treatment (43–45) and has shown promise in early clinical trials in advanced-stage cancers (46, 47). Ascorbate and concomitant H$_2$O$_2$-mediated DNA damage and apoptosis were shown to enhance ovarian cancer cell death and increase chemosensitivity (48). While that study was not focused on OCCC, this type of treatment may be of particular benefit to this histologic subtype given the high expression of Sod2. It is important to highlight that cancer cells with enhanced Sod2 expression may respond differently to ROS-producing agents, depending on both the type and cellular location of the ROS/reactive nitrogen species generated. For instance, Sod2 may enhance scavenging of O$_2^-$ and therefore provide chemoresistance benefits to the tumor cells in response to these ROS. Conversely, while an increase in steady-state H$_2$O$_2$ facilitates redox signaling beneficial to the cancer cells, this higher threshold may facilitate H$_2$O$_2$-mediated OCCC cell death in response to further insult by exogenous sources of H$_2$O$_2$. Understanding the complex interaction of antioxidants and ROS in OCCC is therefore of importance and may provide novel therapeutic avenues to pursue for this histologic subtype of ovarian cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: L.P.M.P. Hemachandra, D.-H. Shin, L.M. Uusitalo, N. Hempel
Development of methodology: L.P.M.P. Hemachandra, N. Hempel
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.P.M.P. Hemachandra, U. Dier, J.N. Juliano, L.M. Uusitalo, S.K. Murphy
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L.P.M.P. Hemachandra, D.-H. Shin, N. Hempel
Writing, review, and/or revision of the manuscript: L.P.M.P. Hemachandra, D.-H. Shin, N. Hempel
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D.-H. Shin, S.A. Engelberth
Study supervision: N. Hempel

Acknowledgments

The ortho tetra(N-n-butylphenyl)porphyrin (MnTnBuOE-2-PypF5+) was generously provided by Dr. Ines Batinic-Haberle (Duke University). The authors thank Dr. J. Andres Melendez (SINy Poly) for helpful discussions and Dr. Nate Cady for use of his microscope. They appreciate the help of Jeffery Richards for assistance with spheroid assays.

Grant Support

This work was supported by NIH/NCI grant R00CA143229.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 23, 2014; revised July 27, 2015; accepted August 19, 2015; published OnlineFirst September 10, 2015.
References

Published OnlineFirst September 10, 2015; DOI: 10.1158/0008-5472.CAN-14-3799

Downloaded from cancerreres.aacjrournals.org on April 12, 2017. © 2015 American Association for Cancer Research.

Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma

L.P. Madhubhani P. Hemachandra, Dong-Hui Shin, Usawadee Dier, et al.

Cancer Res Published OnlineFirst September 10, 2015.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-3799

Supplementary Material Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2015/09/10/0008-5472.CAN-14-3799.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.