Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer

Gretchen K. Hubbard, Laura N. Mutton, May Khalili, Ryan P. McMullin, Jessica L. Hicks, Daniella Bianchi-Frias, Lucas A. Horn, Ibrahim Kulac, Michael S. Moubarek, Peter S. Nelson, Srinivasan Yegnasubramanian, Angelo M. De Marzo, Charles J. Bieberich

Department of Biological Sciences, University of Maryland, Baltimore County, 100 Hilltop Circle, Baltimore, Maryland, 21250, USA. Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, and The Brady Urological Research Institute, Johns Hopkins University School of Medicine, 1650 Orleans St, Cancer Research Building, Baltimore, Maryland, 21231, USA. Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D4-100, Seattle, Washington, 98109, USA.

These authors contributed equally to this work.

To whom correspondence should be addressed. Email: bieberic@umbc.edu.

RUNNING TITLE: MYC and Pten cooperate to induce prostate cancer

KEYWORDS: MYC, PTEN, mouse model, metastatic prostate cancer, genomic instability

Financial Support: This work was supported by the following grants: DAMD17-98-1-8477 and R21CA105342 to C.J.B.; A Patrick C. Walsh Prostate Cancer Research Fund award to A.M.D. & C.J.B.; A 2013 Movember-Prostate cancer Foundation Challenge Award to A.M.D., S.Y., & C.J.B. A PCF Challenge Grant R01CA183965 and P30CA006973 (NIH/NCI) Commonwealth Foundation Grant to S.Y.

Address Correspondence To:
Charles J. Bieberich, Ph.D.
Department of Biological Sciences
University of Maryland Baltimore County 1000 Hilltop Circle
Baltimore, MD 21250
Phone: (410) 455-3125
Email: bieberic@umbc.edu

Disclosure: The authors declare no conflict of interest.

Word Count: 4,850

Total Number of Figures and Tables: 4
ABSTRACT

Genetic instability, a hallmark feature of human cancers including prostatic adenocarcinomas, is considered a driver of metastasis. Somatic copy number alterations are found in most aggressive primary human prostate cancers, and the overall number of such changes is increased in metastases. Chromosome 10q23 deletions, encompassing PTEN, and amplification of 8q24, harboring MYC, are frequently observed, and the presence of both together portends a high risk of prostate cancer-specific mortality. In extant genetically engineered mouse prostate cancer models (GEMMs), isolated MYC overexpression or targeted Pten loss can each produce early prostate adenocarcinomas, but are not sufficient to induce genetic instability or metastases with high penetrance. While a previous study showed that combining Pten loss with focal MYC overexpression in a small fraction of prostatic epithelial cells exhibits cooperativity in GEMMs, additional targeted Tp53 disruption was required for formation of metastases. We hypothesized that driving combined MYC overexpression and Pten loss using recently characterized Hoxb13 transcriptional control elements that are active in prostate luminal epithelial cells would induce the development of genomic instability and aggressive disease with metastatic potential. Neoplastic lesions that developed with either MYC activation alone (Hoxb13-MYC) or Pten loss alone (Hoxb13-Cre|Pten^{Fl/Fl}) failed to progress beyond PIN and did not harbor genomic copy number alterations. By contrast, mice with both alterations (Hoxb13-MYC|Hoxb13-Cre|Pten^{Fl/Fl} or BMPC) developed lethal adenocarcinoma with distant metastases and widespread genome copy number alterations that were independent of forced disruption of Tp53 and telomere shortening. BMPC cancers lacked neuroendocrine or sarcomatoid differentiation, features uncommon in human disease but common in other models of prostate cancer that metastasize. These data show that combined MYC activation and Pten loss driven by the Hoxb13 regulatory locus synergize to induce genomic instability and aggressive prostate cancer that phenocopies the human disease at the histological and genomic levels.
INTRODUCTION

Prostate cancer represents a growing problem as populations across the globe are aging and its incidence is linked tightly to age. The lifetime risk of being diagnosed with prostate cancer in the US is ~1 in 6, yet death occurs in ~1 in 33 men. Thus, most prostate cancers are not life threatening. Lethality most often results from metastasis of castration resistant disease that spreads to lymph nodes, liver, lungs and bone. Lethal prostate carcinomas tend to have large numbers of genomic alterations, particularly copy number/structural alterations (1-4), consistent with the hypothesis that widespread genomic instability may be required for lethal disease development (5, 6). The mechanism by which genetic instability drives disease progression is likely due to the development of intratumoral heterogeneity of genetic changes (most of which in prostate cancer are copy number changes), which can drive disease progression as a result of an evolutionary process in which variant subclones are selected that have aggressive features (e.g. the ability to form metastatic deposits and to become castration resistant) (7). Therefore, intensive efforts are focused on determining which somatic genome alterations lead to the development of genetic instability, metastasis and castration resistance. The most common genetic alterations include TMPRSS2-ERG gene fusions as well as large-scale copy number changes, with recurrent point mutations and small insertions and deletions occurring less frequently (1-3, 8-11). Frequent copy number alterations include deletions on chromosome 8p involving NKX3-1, amplifications of chromosome 8q24 involving MYC, and deletions of PTEN on chromosome 10q23. Gain of MYC at 8q24 and loss of PTEN are associated with high Gleason score, disease progression and poor clinical outcome (1, 3, 12-21). Further, in a recent study by Liu et al. (1), gain of MYC and loss of PTEN as a combination were the only copy number changes that were associated with a markedly elevated risk of prostate cancer-specific mortality independent of other risk factors, raising the hypothesis that MYC gain and PTEN loss may cooperate to drive genomic instability and lethal disease in human prostate cancer.
Genetically engineered mouse models (GEMMs) that phenocopy all stages of prostate cancer including the development of pre-invasive prostatic intraepithelial neoplasia (PIN) lesions, locally invasive disease, metastatic dissemination to relevant organs and the progression to castration resistance in immune-competent animals, would prove invaluable. Despite two decades of effort to develop mouse prostate cancer models, all extant models have at least one of the following limitations: i) they are driven by alterations in genes not commonly found to be genetically altered in human prostate cancer, or; ii) do not develop widespread metastatic disease, or; iii) develop prominent histological features not commonly found in human prostate cancer (e.g. small cell neuroendocrine or sarcomatoid differentiation); or iv) generally do not develop significant numbers of genomic alterations/genetic instability in the absence of forced telomere dysfunction (22-24). Additionally, since most genetically engineered models of prostate cancer rely on forced androgen driven oncogene expression, these models are limited when exploring the effects of castration/androgen deprivation, since such treatments necessarily result in direct repression of the transgene, which in turn generally leads to growth suppression (22).

Prior studies using GEMMs have shown that in the mouse prostate, loss of both \textit{Pten} alleles, or activation of \textit{MYC}, can each result in PIN and early invasive carcinoma, with a very low penetrance of metastases (22). Kim et al. developed Z-MYC mice, in which a CMV enhancer/beta actin promoter-driven \textit{MYC} gene is expressed in a small fraction of luminal cells upon Probasin/Cre mediated activation (25). The lesions obtained were proliferative but were reported to be histologically normal or arrested at or low grade PIN. Deletion of one or both alleles of \textit{Pten} in Z-MYC mice resulted in acceleration of PIN and early carcinoma development, showing cooperativity between \textit{MYC} and \textit{Pten}, although metastases were not reported (25). In a subsequent study, Z-MYC mice with single copy \textit{Pten} disruption (\textit{Pten}^{fl/+}) on a \textit{Tp53}^{-/-} background resulted in selection for loss of the second \textit{Pten} allele and the development of carcinomas and lymph node metastases (26). These findings further demonstrate cooperatively
Myc and Pten cooperate to induce prostate cancer

between MYC and Pten, although metastases developed only in mice lacking Tp53, distant metastases to other sites were not seen, and genomic instability was not examined (26). Cho et al., (27) used intraprostatic lentiviral infection to inactivate Pten and Tp53 (RapidCaP) and found that distant metastatic lesions exhibited increased Myc expression, which was required for metastatic tumor formation/maintenance. Further, using a similar strategy to activate MYC in the context of low Pten (Ptenhy/−), Cho et al. demonstrated cooperativity between MYC and Pten in the development of local disease spread, although distant metastases were not seen (27). To our knowledge, the only study to date to report widespread metastatic prostate carcinoma and genomic instability was in mice with targeted disruption of both copies of Tp53 and Pten in the setting of forced telomere shortening (6). However, aggressive tumors in these mice with telomere dysfunction have been reported to be largely sarcomatoid, a phenotype lacking in the vast majority of human prostatic cancers (22).

In the present work, we show that human MYC activation and Pten loss driven by androgen-independent Hoxb13 control elements in mouse prostate luminal cells (28) produces genomic instability and highly penetrant metastatic disease in the absence of induced telomere dysfunction or Tp53 loss of function. This model, simulating the highly relevant MYC activation and PTEN loss observed in aggressive human cancers, generates prostate adenocarcinomas that recapitulate many key aspects of the human disease, including widespread metastases to multiple organs such as lymph nodes, liver and lung.

MATERIALS & METHODS

Generation of Hoxb13-Cre and Hoxb13-MYC transgenic mice.

The Cre recombinase coding sequence was PCR-amplified from pTurboCRE (GenBank accession no. AF334827) with the following primers: Forward, 5′-
CGCAGATCTGGCACCCAAGAAGAAGGAAG-3'; Reverse, 5'-CTGCAAGATGGCGATTAGTCTAGATCTGCG -3'. The resulting PCR product was digested with BglII and inserted into BamHI-digested pLZURA-Nkx (29, 30). The SV40 early poly(A) signal present on a 135-bp Xbal fragment was inserted downstream of the CRE open reading frame into an SpeI site to generate pNkx-TCRE. To generate pHoxb13-TCRE, a Smal-Spel fragment containing the coding region of CRE was obtained from pNkx-TCRE and cloned into Smal- and SpeI-digested pLZKAN-Hoxb13. A recombinogenic fragment of pHoxb13-TCRE was released by KpnI-SacII digestion, purified by sucrose fractionation, and recombineered into exon one of the Hoxb13 transcription unit at codon eight within BAC RP23-335O22 as described (28). E. coli strain DY380 transformants selected for Chloramphenicol resistance were confirmed to contain the Cre coding region by RFLP analysis. A correctly recombined Hoxb13-TCRE BAC clone was prepared using Qiagen (Valencia, California) Large-Construct DNA preparation reagents according to the manufacturer's instructions, linearized by with PI-SceI digestion, purified on a 10-40% sucrose gradient and injected into single-cell FVB/N embryos. Potential transgenic founders were screened by Southern blot analyses of genomic tail DNA digested with EcoRI and EcoRV. A 255-bp probe within Hoxb13 exon 1 (+124 bp to +378 bp) was used for Southern blot analyses. Transgenic founder mice were identified by the presence of a 10-kb hybridizing component. PCR-based genotyping of F1 offspring of founders bred to FVB mates was performed to amplify a 286-bp fragment within Cre with the following primers: Forward, 5'-TCGCAAGAACCTGATGGACA-3'; Reverse, 5'-CAGCATTGCTGTCATTGGG-3'. Hoxb13-Cre activity was functionally tested using the R26R allele (31). Heterozygous R26R mice (Jackson Laboratories, Bar Harbor, Maine) were backcrossed to FVB/N and F1 offspring carrying the R26R locus were identified by Southern blot analyses using a lacZ probe on EcoRV digested tail DNA. R26R x FVB F1 mice were interbred to derive an F2 and homozygous R26R offspring were identified by Southern blot analyses. Hoxb13-TCRE founders were bred to homozygous R26R mice and double transgenic mice
offspring were identified by PCR and confirmed by Southern blot analyses as described above.

The Hoxb13-MYC BAC was generated using the same strategy described above for the
Hoxb13-TCRE BAC. The human MYC coding sequence was PCR-amplified from pCMV-Sport6
(Open Biosystems) with the following primers: Forward, 5’-
GCATCCCGGATCCACCCCTCAACGTTAGCTTCACC -3’; Reverse, 5’-
GCGGATCCACTAGTTCTACGCACAAGAGTTCCGTA-3’. The resulting PCR product was
digested with BamHI and inserted into a BamHI-digested vector bearing Hoxb13 homologous
arms for recombineering. The β-globin intron/poly(A) signal present in the pUGH17-1 vector
(32) was PCR amplified and inserted downstream of the MYC open reading to generate
pHoxb13-MYC-BG poly(A). A recombinogenic fragment of pHoxb13-MYC-BG poly(A)
(complete sequence available upon request) was released by KpnI and NheI digestion, purified
by sucrose fractionation, and recombineered into exon one of the Hoxb13 transcription unit at
codon eight within BAC RP23-335O22 as described (28). E. coli strain DY380 transformants
selected for Kanamycin resistance were confirmed to contain the MYC coding region by RFLP
analysis. A correctly recombined Hoxb13-MYC-BG Poly(A) BAC clone was prepared using
Qiagen (Valencia, California) Large-Construct DNA preparation reagents according to the
manufacturer’s instructions, linearized by with PI-SceI digestion, purified on a 10-40% sucrose
gradient and injected into single-cell FVB/N embryos. Potential transgenic founders were
screened by Southern blot analyses of genomic tail DNA digested with EcoRI. A 255-bp probe
within Hoxb13 exon 1 (+124 bp to +378 bp) was used for Southern blot analyses. Transgenic
founder mice were identified by the presence of a 6-kb hybridizing component. PCR-based
genotyping of F1 offspring of founders bred to FVB mates was performed to amplify a 238-bp
fragment within MYC with the following primers: Forward,

5’- TCCAGCGCTTCTCTCCGAGCAGCTTCCTTCGCAGGTATTCAC -3’; Reverse, 5’-
ATGCCTGACCTTCATTGCGCTGAGCTGCTTTTCCAC -3’.
Conditional Pten Knockout Mice

Mice carrying a floxed Pten (PtenFl) conditional allele (33) were purchased from the Jackson Laboratory (Stock Number 004597). The deletion of Pten allele(s) was confirmed using the following primers, which yielded a wild-type product of 240 bp and a floxed allele product of 320 bp. Forward primer 1: 5’-TTGCACAGTATCCTTTTGAAG-3’; Forward Primer 2: 5’-GTCTCTGGTCCTTACTTTCC-3’; Reverse Primer: 5’-ACGAGACTAGTGAGACGTGC-3’. The PCR protocol was followed according to the NCI Mouse Repository.

Mating Scheme

Hemizygous Hoxb13-Cre+/c mice were mated to the PtenFl/Fl mice to generate the genotype Hoxb13-Cre+/c|PtenFl/+. These mice were interbred to generate mice with the Hoxb13-Cre+/c|PtenFl/Fl genotype. Hoxb13-MYC mice were then mated to Hoxb13-Cre+/c|PtenFl/Fl mice to generate offspring heterozygous for all three alleles (Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/+). These mice were then interbred to generate triple transgenic mice which were Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/Fl which are referred to as BMPC mice in the manuscript. Cohorts of triple transgenic males for analyses were derived from crosses of varying genotypes, including Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/+ males mated with Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/Fl females, in addition to Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/Fl by Hoxb13-MYC+/c|Hoxb13-Cre+/c|PtenFl/Fl crosses.

Tissue Analysis
Control and tumor tissues were dissected and fixed in 10% neutral-buffered formalin for 48 hours at room temperature and then transferred to phosphate buffered saline at four degrees Celsius until submission. Samples were processed, paraffin-embedded, sectioned, and stained with hematoxylin and eosin (H&E) according to standard protocols. Immunohistochemical analysis was performed on tissue sections using antibodies which include: MYC (Rabbit Monoclonal, Clone EP121, Epitomics, Burlingame, California, 1:600), Pten (Rabbit Monoclonal, Clone D4.3, Cell Signaling Technology, Danvers, Massachusetts, 1:200), Ki67 (Rabbit Polyclonal, NCL-Ki67p, Leica Biosystems, Buffalo Grove, IL, 1:3000), Nkx3.1(34) (Rabbit Polyclonal, 1:6000), CK18 (Rabbit Polyclonal, Novus Biologicals, NB100-91814, Littleton, Colorado, 1:8000), AR (Rabbit Polyclonal, Santa Cruz Biotechnology, sc-816, Dallas, Texas, 1:400), chromogranin A (Rabbit Polyclonal, Novus Biologicals, NB120-15160, Littleton, CO, 1:8000), FoxA1 (Rabbit Polyclonal, Santa Cruz, sc-6553, HNF-3 alpha/beta, Dallas, TX, 1:400), FoxA2 (Rabbit Polyclonal, Abcam, HNF-3 Beta, Cambridge, Massachusetts, 1:400), p63 (Mouse Monoclonal, Clone 4A4, Neomarkers, Fremont, California, 1:600), p-AKT (Rabbit Monoclonal, Cell Signaling Technology, Ser473 D9E, 1:100), p-S6 (Rabbit Monoclonal, Cell Signaling Technology, Ser235/236 D57.2.2E; 1:4000).

Array CGH copy number analysis and associated bioinformatics

For four BMPC mice, tail, primary prostate cancer, and metastatic tumor tissues were obtained and DNA was extracted using the Qiagen AllPrep DNA/RNA/Protein mini kit. Mouse male reference DNA (Jackson Labs) was used as a common reference for all samples. Similarly, tail and prostate DNA were prepared from three Hoxb13-MYC\(^{+/-}\) and three Hoxb13-Cre\(^{+/-}\)\mid Pten\(^{\text{FL/FL}}\) mice. For Hoxb13-MYC\(^{+/-}\) mice, the ventral lobes, which develops the most extensive PIN lesions, were used that were between 10 and 13 weeks of age and similarly for the Hoxb13-
Cre+/−|PtenFl/Fl mice, the anterior lobe was used from mice that were between 17 and 20 weeks of age. Array CGH was performed with SurePrint G3 Mouse CGH 4x180K Microarrays essentially as recommended by the manufacturer (Agilent Technologies). Briefly, 1.5 μg of genomic DNA was digested for 2 hours at 37\degree C with 1 unit/mL of Alul and Rsal restriction endonucleases (Invitrogen). The reaction was terminated by incubating at 65\degree C for 20 minutes. Digested DNA was subsequently labeled with Cy3 dye (for experimental samples: tail DNA, primary prostate cancer DNA, or metastatic prostate cancer DNA samples) or with Cy5 for the reference male DNA. Each Cy3 labeled sample was combined with the Cy5 labeled reference DNA and diluted in aCGH buffer and mouse Cot-1 DNA (Invitrogen). These combined labeled DNA samples were hybridized on the Mouse CGH 4x180K microarrays in a hybridization rotator at 20 rpm for 40 hours at 65\degree C before being washed in Oligo aCGH Wash buffers according to the manufacturer’s instructions (Agilent). aCGH slides were scanned on an Agilent DNA Microarray Scanner at a resolution of 2 μm. The resulting Agilent Feature Extraction data was analyzed using Partek Genomics Suite v. 6.6 software (Partek). The Cy5/Cy3 logratio data were imported from the feature extraction file, transformed to log base 2 and multiplied by -1 to generate log2ratio(Cy3/Cy5). To facilitate identification of somatic copy number alterations in the cancer DNA not present in the tail DNA, the logratio data from the tail DNA for each mouse was subtracted from the matched primary and metastatic cancer logratio data. The resulting baseline subtracted logratio data were subjected to copy number detection using the genomic segmentation pipeline under default settings. All significantly altered regions with false discovery rate of 0.05 were identified for each sample. The Partek copy number pipeline was used under default conditions to summarize regions of copy number alterations across samples, annotate with overlapping genes, and carry out gene ontology gene set enrichment analysis on genes overlapping with regions showing gains or losses in any sample. Enriched gene ontology terms with FDR = 0.05 were identified.
RESULTS

FVB/N mice carrying a recombineered transgene (35) allowing Hoxb13-driven MYC overexpression in the prostate epithelium (Hoxb13-MYC mice) developed PIN lesions that were characterized by marked nuclear and nucleolar enlargement within cells that maintained a columnar cellular polarity (Supplementary Fig. S1), similar to changes seen in Hi-MYC and Lo-MYC mice and to changes seen in human high grade PIN (36, 37). MYC overexpression was observed in luminal epithelial cell nuclei (Supplementary Fig. S2C). Further phenotypic analyses showed robust androgen receptor (AR) and keratin 18 expression (CK18) in the atypical luminal cells, and positive Pten staining in all epithelial cells (Supplementary Fig. S2). To disrupt Pten alleles within the prostate, Pten^{Fl/Fl} mice (Jackson Laboratories) (38) were crossed to FVB/N transgenic mice with Hoxb13-driven Cre recombinase expression (Hoxb13-Cre^{Fl/Fl} mice). Prostate lobes of Hoxb13-MYC and Hoxb13-Cre^{Fl/Fl} Pten^{Fl/Fl} mice were dissected at multiple time points and only PIN lesions, with no invasive carcinomas, were present up to one year of age.

We next generated compound mutant mice with Hoxb13-driven overexpression of MYC and with Hoxb13-mediated conditional disruption of Pten alleles (Hoxb13-MYC⁺|Hoxb13-Cre⁺|Pten^{Fl/Fl} mice), referred to as BMPC mice. Cohorts of BMPC males were necropsied at various intervals from 4 weeks onward (Supplementary Tables 1-2). For controls, Hoxb13-MYC⁺|Hoxb13-Cre⁺|Pten^{Fl/+} males as well as wild-type FVB/N males were used. All BMPC mice developed PIN lesions in all 4 prostate lobes by 4-8 weeks. Immunohistochemical analysis confirmed overexpression of MYC and variable loss of Pten in PIN cells, which also phenocopied human PIN for strong positive staining for AR and Foxa1, with variable loss of Nkx3.1 (Fig. 1; Supplementary Figs. S3 and S4). MYC staining occurred in virtually all cells that showed morphological PIN by H&E staining, yet Pten loss appeared quite heterogeneous (Fig 1c, Supplementary Fig. S4), despite Cre expression being driven by the same Hoxb13
regulatory elements. This focal loss of Pten is reminiscent of human prostate cancer in that primary tumors often lose PTEN as a subclonal process subsequent to TMPRSS2-ERG gene fusion events (39). Increased staining for p-AKT and p-S6 ribosomal protein were evident in areas of Pten loss (Supplementary Fig. S4) in PIN lesions and this pattern was similar in large invasive and metastatic lesions (not shown). Stromal invasion was first evident at 12-14 weeks (Supplementary Fig. S5) and as early as sixteen weeks, large invasive adenocarcinoma lesions involving multiple prostate lobes were present (Fig. 2). Tumor cells in invasive lesions contained markedly enlarged nucleoli and nuclei (unlike small cell neuroendocrine carcinomas) and showed more pleomorphism than their intraepithelial counterparts (Fig. 1K and 3Aa,e). While there was occasional acinar/glandular formation, these tumors generally resembled very high-grade primary prostatic adenocarcinomas in humans (Gleason score 5+5=10). Also like their human counterparts, invasive prostatic carcinomas lacked basal cells as shown by the absence of staining for p63 and keratin 5 (CK5) (not shown). Further, invasive carcinomas remained positive for CK18 and FoxA1 (not shown), but were either negative for neuroendocrine markers (chromogranin A, FoxA2) or showed only variable, occasional tumor cell staining (<1%) (Supplementary Fig. S6). All overtly invasive lesions, typically showing very high volume disease, were negative for AR (Fig. 1N). Among animals 16 weeks of age or older, 97% (31/32) developed gross metastases to pelvic lymph nodes (Fig. 2A). Grossly visible and microscopic metastases were also common to liver (Fig. 3Aa-d), and lung, and one mouse had a single bone metastasis in a thoracic vertebra (Fig. 3Ae-h) (Supplementary Table 2). Tumor cells within metastatic lesions were similar to invasive primary lesions in that they were strongly positive for MYC (Fig. 3Ac,g), completely negative for Pten protein (Fig. 3Ad,h), positive for CK18 (Fig. 3Ab,f) and Foxa1 (not shown), and negative or focally positive for neuroendocrine markers including chromagranin A, and Foxa2 (Supplementary Fig. S6). They were also negative for nuclear AR and basal cell markers (CK5 and p63; data not shown). All BMPC mice (N=32) reached criteria for euthanasia by 40 weeks (Fig. 3B). By contrast, none of the control
Hoxb13-MYC⁻⁻⁻{-}
and hormone signaling pathways, while genes within regions of copy number loss were enriched for cytokine/chemokine signaling, immune system, and development/differentiation pathways (Supplementary Figure 7); these pathway categories are often altered at a genetic or epigenetic level in human prostate cancers (2, 40). Representative CNAs from chromosome 8, including a large deletion encompassing a smaller region of putative homozygous loss in both the primary and metastasis lesions from one mouse, is shown in Fig. 4B. Clustering of copy number data revealed that primary and metastatic tumors from the same mouse were more similar to each other than they were to tumors from other mice (Fig 4B, dendrogram), suggesting that the primary and metastatic lesions within mice had clonal evolutionary relationships, similar to those observed for human prostate cancer (40-42). In contrast, CNA analyses of Hoxb13-MYC+/− and Hoxb13-Cre+/−|PtenFl/Fl mice with PIN lesions revealed no copy number alterations. No correlations were identified between the number of copy number alterations and the extent or location of metastases.

Although late-stage human prostate adenocarcinomas frequently show loss of heterozygosity at the Tp53 locus, copy number variation at the mouse Tp53 locus was not observed in BMPC tumors. To explore the possibility that point mutation of the Tp53 gene may have occurred, exons 3-8 (data not shown) were PCR-amplified and sequenced from tumor DNA extracted from the same cases. No mutations were observed.

DISCUSSION

Here we show that conditional activation of MYC along with loss of Pten in mouse prostatic luminal epithelial cells, simulating the genetic activation of MYC and loss of PTEN observed in aggressive human prostate cancers, creates the full spectrum of prostate cancer initiation and progression in a manner that strongly phenocopies human prostate cancer. This disease progression appears to occur through the induction of genomic instability evidenced by widespread CNAs, similar to human prostate cancer progression. Thus, while activation of MYC...
alone or disruption of Pten alone result in very early disease, the combination of these two events synergize in creating profound changes leading to highly aggressive disease that progresses from PIN precursor lesions, to invasive adenocarcinoma, to metastatic adenocarcinoma, and ultimately castration resistant metastatic adenocarcinoma. Since these primary tumors develop highly prevalent CNAs, and neither alteration alone results in significant numbers of CNAs (36, 43), we show the first evidence in vivo that the combination of Pten loss and MYC activation in prostatic luminal cells is sufficient to induce the acquisition and tolerance of genetic instability, independent of forced telomere dysfunction or loss/mutation of Tp53. MYC overexpression is known to induce genetic instability (44), and our results suggest that PTEN serves to repress this process in prostate cells. Recent findings indicating that PTEN is required for DNA repair and that loss of PTEN can result in high levels of DNA damage in cells that simultaneously repress apoptosis due to increased PI3K signaling, are consistent with this hypothesis (45). Future studies are required to address this question directly. It is interesting to note that a subset of the copy number alterations detected in the BMPC tumors overlap with regions of known copy number variants in mouse strains. These alterations are likely to be additional somatic alterations at these regions even beyond the baseline CNV state in the mouse strain, since we controlled for the constitutional copy number state with the tail DNA. In addition, the single gene models did not show these similar copy number alterations, suggesting that these regions were not simply identified due to undercorrection.

Several previous attempts have been made to model Pten loss or PI3K pathway activation in combination with MYC overexpression. Prostate-epithelial restricted co-expression of human AKT1 and MYC leads to accelerated disease progression, stromal changes, and immune cell infiltration but does not affect metastasis (46). In addition, conditional Pten loss in the Hi-MYC background gave rise to large primary tumors (46), although metastatic lesions were not reported upon. Highly focal epithelial MYC expression (Z-MYC mice) combined with
conditional Pten loss also fostered the appearance of more aggressive pathology with increased proliferation and development of early invasive carcinomas apparently without affecting metastasis (25, 26). When combined with loss of one allele of Tp53, Z-MYC/Pten mice developed adenocarcinoma that metastasized to lymph nodes (26). Given the well-documented dose-dependent biological effects of MYC overexpression (47), we submit that the lethal phenotype that invariably develops in the BMPC mice is likely a consequence of a higher level or broader expression of MYC throughout the prostatic epithelium driven by Hoxb13 regulatory elements in our system, at least as compared to the Z-MYC model. Interestingly, Kim et al. (25) speculated that increased MYC expression could lead to genetic instability, and the data reported here provide evidence that this is indeed the case.

It is of interest that other studies that have obtained macroscopic metastatic disease in mice by disruption of both copies of Pten have reported that disease progression required loss of both copies of Tp53 (27, 48). Thus, the current study, in which we used mice that were wild type for Tp53, and found no evidence of Tp53 alterations in aggressive lesions from BMPC mice, demonstrates the novel finding that in the setting of MYC overexpression and Pten loss, emergence of aggressive distant metastatic disease can occur without Tp53 loss.

Invasive and metastatic lesions in BMPC mice do not express AR, yet also do not develop neuroendocrine nor sarcomatoid differentiation. Logothetis and colleagues have described highly aggressive prostate cancers that lack AR both with and without overt neuroendocrine features (49), and it is expected that these phenotypes will increase as androgen suppression/AR inhibitor therapies continue to improve and are used in combination. Thus, in addition to providing a model to test novel therapeutics, including those based on immunotherapies, the BMPC model provides a robust system to dissect the molecular bases underlying the evolution of AR-loss in non-neuroendocrine tumors, as well as AR-independent mechanisms of disease progression and growth.
Although the AR-negative phenotype of advanced cancers in BMPC mice does not reflect the AR status of the majority of late-stage human cancers, it is also not completely unexpected. It is well established that conditional loss of Pten in the mouse prostate impairs mouse AR (mAR) signaling in the cancers that develop (50). Reduced mAR expression at both the mRNA and protein levels has been reported, and this diminution can be partially reversed by PI3K pathway inhibition (51). Given that mAR is known to be positively autoregulated in the mouse prostate, the reduction of AR is not, a priori, surprising (52). In human prostate cancer cases with PTEN loss, human AR (hAR) expression typically persists. Although some in vitro evidence suggests that PTEN loss may lead to AR stabilization or transcriptional activation (53, 54), transcriptomic analyses of prostate cancer cases clearly demonstrate that androgen-responsive gene signaling is profoundly diminished when PTEN is lost (50, 51). We speculate that the differences in AR expression in mice versus human prostate epithelial cells in the context of PTEN loss may be related to evolutionary divergence in the extent of AR gene autoregulation between primates and rodents. The mAR gene may require a higher degree of auto-stimulation to maintain transcriptional activity than human AR, and resulting in a threshold-based on/off switch that follows second order kinetics. In contrast, the hAR gene may respond in a linear fashion, wherein a reduction in auto-stimulation would result in reduced transcriptional output but not extinction of expression. Metastatic lesions obtained in RapidCaP mice also do not express AR (27).

The strong parallels with the spectrum of human prostate cancer initiation and progression in this model are likely a result of several important design features in the model. First, this genetically engineered model is driven by concurrent activation of MYC and loss of Pten, the combination of which have been strongly associated with human prostate cancer aggressiveness (1). Second, MYC activation and Pten loss were driven by Hoxb13 regulatory elements, allowing androgen receptor independent genetic modulation. Avoidance of androgen
Myc and Pten cooperate to induce prostate cancer

receptor dependent control elements (e.g. the commonly used probasin or the derivative ARR2 elements) likely allowed development of castration resistant disease. In humans, the HOXB13G84E allele has recently been demonstrated to be highly associated with increased Prostate cancer risk (55-57). Given this, it seems likely that it is expressed in a population of cells that contribute directly to disease development. In mice, Hoxb13 transcriptional activity is present broadly within the secretory epithelium and in a subset of basal cells in all prostate lobes (28). Interestingly, the tumors that developed in the BMPC animals had a luminal phenotype, and loss of Pten was confined to luminal cells in PIN lesions (Supplementary Fig. 3), analogous to human disease. Another potential advantage of the Hoxb13 regulatory elements for driving prostate expression of MYC and loss of Pten is that we have not observed any leakiness of expression of Hoxb13-based reporter genes, MYC overexpression or Pten loss in any of these animals, whereas leakiness of the rat probasin promoter into stromal elements has been observed (58). This feature should facilitate the study of relevant cancer-stromal interactions since the genetic modulations would not occur in the stromal cells of the BMPC model. These design features have allowed us to avoid the pitfalls of other recently developed prostate cancer GEMMs, including the common occurrence of sarcomatoid or overt neuroendocrine differentiation, lack of progression through early and advanced stages of human prostate cancer in tractable time scales, and/or lack of development of genetic instability (22, 59, 60). These features should facilitate the use of this model to study prostate cancer initiation and disease progression, study mechanisms underlying the cooperativity and synergy of MYC activation and PTEN loss in the development of genomic instability and aggressive human prostate cancers, and test relevant prostate cancer therapeutic strategies in an immunocompetent model.
REFERENCES

Myc and Pten cooperate to induce prostate cancer

Myc and Pten cooperate to induce prostate cancer

FIGURE LEGENDS

Figure 1. Morphology and phenotype of PIN lesions (ventral lobe shown here) and primary tumors in BMPC mice. Cohorts of BMPC males were necropsied at various intervals. By 4 weeks of age CribPIN/CIS (corresponding to high grade PIN or mPIN 4) lesions were observed in all prostate lobes (n=3 of 3 mice at each time point). PIN lesions were characterized by marked nuclear and nucleolar enlargement and overall loss of cell polarity that generally filled most or all of the lumens with cribriform or solid structures, at times with central necrosis (hematoxylin and eosin [H&E] stained lesions in a and f). PIN lesions were most prevalent and extensive in the ventral lobe and anterior lobes as compared to the dorsal and lateral lobes. IHC staining revealed robust MYC nuclear staining in all PIN (b, g) lesions and heterogeneous loss of Pten (c, h). PIN cells within prostatic ducts in these compound mutant mice had more severe nuclear pleomorphism than mice overexpressing MYC alone, and much more than mice with Pten loss alone. AR protein expression was robust in all PIN acini (d, i), and down-regulation of the tumor suppressor Nkx3.1 was evident to varying degrees; (e) shows reduction, and (j) shows near total loss of Nkx3.1. By 14 weeks, the extent of involvement of all lobes by CribPIN/CIS increased, and stromal thickening as well as chronic inflammation were apparent (f–j). At 14 weeks, overexpression of MYC and loss of Pten by IHC was similar to that seen at 4 weeks, although there was a progressive increase in the neoplastic PIN cells that lacked Pten staining. AR expression began to show variable diminution in intensity seen starting by 14 weeks (i), and was lost by 16 weeks and after (n). Overtly invasive adenocarcinoma lesions (k–0) showed more marked nuclear pleomorphism and nucleolar enlargement than pre-invasive lesions. Invasive lesions retained high levels of MYC expression (l), were completely negative for Pten (m; tumor cells are negative and intervening stromal cells are strongly positive), AR (n) and Nkx3.1 (o). Original magnification 200X (a–k, n,o); 100X (l,m).
Figure 2. Gross anatomy of tumors and timeline of disease in BMPC mice. (a) Gross appearance of primary prostatic tumor and pelvic lymph node metastasis from a BMPC mouse at 24 weeks of age. Note that primary tumor is encasing much of the genitourinary tract, although primary tumors generally did not invade directly through the bladder wall and never invaded into the rectum. Ruler is in centimeters. (b) Overall timeline and phenotypic features of BMPC mice.

Figure 3. MYC expression combined with Pten loss leads to metastatic adenocarcinomas and markedly reduced survival. (a) Morphology and phenotype of metastatic lesions in BMPC mice. Note abundant cytoplasm and enlarged prominent nucleoli in tumor cells in liver. Also note strong positive staining for cytokeratin and MYC in liver (c) and bone metastasis (g) and complete absence of Pten staining in tumor cells (d, h). Arrows indicate tumor cells in bone and arrowheads indicate resident bone marrow cells (e). Original magnifications 200X (a–d) and 100X (e–h). (b) Survival curve shows the aggressive nature of the combination of MYC overexpression and Pten loss in the BMPC mice.

Figure 4. Primary and metastatic prostate cancer lesions from BMPC mice can develop large-scale somatic copy number alterations. a) Histogram showing number of cancer lesions harboring the indicated regions of somatic copy number gains and losses. Red regions indicate gains, and blue regions indicate losses. b) A magnified view of representative somatic copy number alterations within chromosome 8. The chromosomal ideogram is shown at the top. For each mouse, the smoothed copy number logratio is plotted across the chromosome. Light blue arrows indicate regions of statistically significant single copy number loss determined. Dark blue arrows indicate regions of high copy number loss with logratio < −1.2, likely representing homozygous deletion. Purple arrow indicates a region of statistically significant amplification. The dendrogram shows results of unsupervised...
Myc and Pten cooperate to induce prostate cancer

hierarchical clustering of the copy number data.
Fig. 2

a

- Seminal Vesicle
- Lymph Nodes
- Bladder

b

- Weeks

- PIN, AR(+), Nkx3.1(+/-), Pten(+/-), MYC(+)
- PIN, AR(+), Nkx3.1(+/-), Pten(+/-), MYC(+), Chronic inflammation
- PIN, microinvasive adenocarcinoma, AR(+/-), Nkx3.1(+/-), Pten(+/-), MYC(+)
- Invasive adenocarcinoma, AR(-), Nkx3.1(-), Pten(-), MYC(+), ~97% penetrance to lymph node
- Invasive adenocarcinoma, ~97% penetrance to lymph node, metastases to liver (75%), lung (~60%), and bone (n=1)
Fig. 3

a

 Liver Metastasis Bone Metastasis

H&E CK18 H&E CK18

MYC Pten MYC Pten

b

Percent survival

Time (weeks)

B - MYC / Pten (F1/F1) B - MYC / Pten (F1/+)
Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer

Gretchen K Hubbard, Laura N Mutton, May Khalili, et al.

Cancer Res Published OnlineFirst November 10, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-3280

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2015/11/10/0008-5472.CAN-14-3280.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2015/11/10/0008-5472.CAN-14-3280. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.