Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ

Zhen Wang1,2, Peng Liu1,2, Xin Zhou1,2, Tianxiang Wang1, Xu Feng1,2, Yi-Ping Sun1, Yue Xiong1,3, Hai-Xin Yuan1 and Kun-Liang Guan1,4

1Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China
2School of Life Sciences, Fudan University, Shanghai 200032, China
3Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA

Correspondence: Yue Xiong, yxiong@unc.edu; Hai-Xin Yuan, yuanhaixin@fudan.edu.cn; Kun-Liang Guan, kuguan@ucsd.edu

Running title: YAP/TAZ mediates ET-1 induced colorectal tumorigenesis

Key words: endothelin; ETAR; YAP/TAZ; hippo pathway; colon cancer

Competing financial interests

K.L. Guan is a co-founder and has an equity interest in Vivace Therapeutics, Inc. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.

Grant support

This work was supported by the National Natural Science Foundation of China (No. 31570784 to H.X. Yuan; No. 81372198 and 81522033 to D. Ye). Y. Xiong is supported by grants from National Institute of Health (RO1GM067113, RO1CA068377 and RO1CA163834). K.L. Guan is supported by grants from National Institute of Health (CA196878 and GM51586).
Abstract

Endothelin receptor A (ETAR) promotes tumorigenesis by stimulating cell proliferation, migration and survival. However, the mechanism of ETAR in promoting tumor growth is largely unknown. In this study, we demonstrate that ETAR stimulates colon cell proliferation, migration, and tumorigenesis through the activation of YAP/TAZ, two transcription co-activators of the Hippo tumor suppressor pathway. Endothelin-1 (ET-1) treatment induced YAP/TAZ dephosphorylation, nuclear accumulation, and transcriptional activation in multiple colon cancer cells. ETAR stimulation acted via downstream G-protein Gαq/11 and Rho GTPase to suppress the Hippo pathway, thus leading to YAP/TAZ activation, which was required for ETAR-induced tumorigenesis. Overall, these results indicate a critical role of the YAP/TAZ axis in ETAR signaling.
Introduction

The endothelin family consists of a group of 21-amino acid peptides produced primarily in the endothelium, epithelium and smooth muscle cells (1,2). Among the three isoforms of endothelins, endothelin-1 (ET-1) is the most abundant and widely expressed. Extensive studies have revealed a wide range of biological functions of ET-1, including vasoconstriction, cell proliferation and cell migration (3). In addition, ET-1 signaling has been involved in tumorigenesis in multiple tissues (4). It acts as a growth factor in several cancers, including carcinoma of the prostate, ovary, colon, cervix, breast, kidney, lung, central nervous system (CNS) tumors as well as melanoma, Kaposi's sarcoma (KS) and bone metastasis (5,6).

ET-1 signals through plasma membrane-localized endothelin receptor A (ETAR) and endothelin receptor B (ETBR), two classical G-protein coupled receptors. ETAR has been reported to be a primary vasoconstrictor and growth-promoting receptor, whereas ETBR inhibits cell growth and vascular constriction (1,7). Upon activation by ET-1, ETAR contributes to cell proliferation, migration, and survival. It also promotes tumor growth and progression, angiogenesis and metastatic spread (4,5,8). The importance of ETAR in cancer indicates that ETAR specific antagonists (e.g. BQ123, atrasentan and ZD4054) are potential cancer therapeutic drugs. In fact, ETAR activation induces the activity of tumor-related proteinases and subsequently promotes cell migration and cell invasion which could be blocked by BQ123 (9,10).

Consistent with a prominent role of ET-1 in tumorigenesis, several ETAR antagonists have been tested in clinical trials. Atrasentan showed significant positive effects in brief pain inventory, prostate-specific antigen (PSA) progression and bone markers on patients in phase I and phase II trials (11). In a phase III prostate cancer trial, atrasentan treatment showed improvement in the median time to disease progression (TTP) in patients, although the primary endpoint was not achieved (12,13). Atrasentan is also under phase II trials for other types of cancer, including renal, ovarian, non-small cell lung and brain cancers (11). ZD4054 (also known as zibotentan) is a specific ETAR antagonist and has been studied in a multi-center
phase II, randomized, double blind, placebo-controlled trial. Patients that received ZD4054 experienced a 35% reduction in the risk of death, which has showed improved overall survival (14). ZD4054 is being evaluated in hormone-resistant prostate cancer in phase III clinical trials (15,16). Additionally, Bosentan and YM598, two non-selective antagonists for both ETAR and ETBR, have shown promising therapeutic effect on prostate cancer in clinical trials (17).

Previous studies have shown higher expression of ETAR and ET-1 in colon cancer tissue compared to normal tissue (18-20), while ETBR is expressed in a contrary pattern (21). In addition, ETAR expression correlates with liver metastases of colorectal cancers (20,21). ETAR may also promote colon cancer cell survival in response to chemotherapy such as Cisplatin (20). A preclinical study demonstrated that ZD4054 efficiently suppressed colorectal cancer cell growth and progression, indicating its potential role as adjuvant therapy in colorectal cancer (22). However, the molecular mechanism of ETAR in promoting tumor cell survival, growth or metastasis in colorectal cancer is not fully understood.

The Hippo pathway was initially identified to be key player in organ size control in Drosophila and lately found to be important in human cancer (23-26). The core components of mammalian Hippo pathway contain a kinase cascade of MST1/2, MAP4Ks, and LATS1/2, in which MST1/2 or MAP4Ks phosphorylate and activate LATS. This kinase cascade regulates target genes expression by inhibiting its downstream transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). LATS1/2 re-strict the activity of YAP/TAZ by direct phosphorylation (27). Phosphorylated YAP/TAZ are sequestered in the cytoplasm by 14-3-3 binding (28-30). Inhibition of LATS1/2 activity leads to dephosphorylation of YAP/TAZ, which then translocate to the nucleus, bind to the TEA domain family transcription factors (TEAD1-4), and promote the expression of target genes (31,32). Generally, Hippo pathway acts as an important inhibitor of tissue growth and organ size by controlling cell proliferation, apoptosis, and migration in response to a variety of extracellular and intracellular signals, including G-protein coupled receptor (GPCR) signaling (33,34).
ETAR activation by ET-1 has been reported to induce the expression of connective tissue growth factor (CTGF) and Cysteine rich protein 61 (CYR61), two well-defined target genes of the Hippo pathway (35-38), indicating that ET-1 may act upstream of the Hippo-YAP pathway. In this study, we revealed a mechanism of YAP/TAZ activation by ET-1/ETAR and its role in colorectal tumorigenesis.
Materials and Methods

Chemicals

Chemicals that were used in this study: Endothelin-1, BQ123, Tetramethylrhodamine B isothiocyanate-conjugated Phalloidin, and Latrunculin B were purchased from Sigma-Aldrich (St. Louis, MO). GSK429286 and Y27632 were obtained from Selleckchem (Houston, TX). C3 was purchased from Cytoskeleton Inc (Denver, CO). Phos-tag conjugated acrylamide was purchased from Wako chemicals (Tokyo, Japan). DAPI was purchased from Invitrogen (Carlsbad, CA).

Antibodies

Antibodies for YAP (#4912), Phospho-YAP (S127) (#4911) were purchased from Cell Signaling Technology. The Lats1 (A300-477A), Lats2 (A300-479A) antibodies used in immunoprecipitation were from Bethyl Laboratories. TAZ (HPA007415) antibody was obtained from Sigma-Aldrich. Anti-TEF (610922) was purchased from BD Transduction Laboratories. Antibodies for ETAR (SC33535), Gαq/11 (SC392) and CTGF (SC14939) were from Santa Cruz Biotechnology. Anti-β-actin (A00702) was purchased from GenScript. Antibody for Gs was from Abcam. All antibodies were used properly following manufacturer recommended dilutions in immunoblotting and immunofluorescence staining analysis.

Plasmids

Lats2 wild type, Lats2 K/R mutant, myc-Rho-L63 and Rho-GDI-GFP plasmids were described in (39). The shRNA oligos for TAZ (CCGGGCCGTTCTTGTGACAGATTATACTCGAGTTCTTTATCTAGCTTGTCACAAGAAGCCTTTTTG) were annealed following the protocol from Addgene and cloned into pMKO.1 vector. YAP shRNA oligos (CCGGGCCAAGCTTAGATTATAACTCGAGTTCTTTATCTAGCTTGTCACAAGAAGCCTTTTTG) was purchased from Sigma-Aldrich.

Cell Culture and Transfection

HCT116 cells were cultured in McCoy’s 5A medium (Sigma) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 50 μg/ml penicillin/streptomycin. Used in
our current study, HCT116, HEK293T and ZR-75-30 cells were obtained from the ATCC in 2015, where they were characterized by mycoplasma detection, isozyme detection, DNA fingerprinting, and cell vitality detection. SW480, HT29, SW620, SKBR3, MDA-MB-231, MCF7 and Du145 cells were purchased from Cell bank of Chinese academy of sciences in 2014 where these cells were characterized by mycoplasma detection, isozyme detection, DNA fingerprinting, and cell vitality detection. These cells were maintained in DMEM medium (Invitrogen) supplemented with 10% FBS (Gibco) and 50 µg/ml penicillin/streptomycin (P/S). PC3 cells were purchased in 2015 from Cell Center of the Institutes of Biomedical Sciences (IBS), Fudan University, where these cells were characterized by mycoplasma detection, isozyme detection, DNA fingerprinting, and cell vitality detection. PC3 cells were cultured in F12 medium (Sigma) supplemented with 10% FBS (Gibco) and 50 µg/ml penicillin/streptomycin. All cell lines were cultured at 37 °C with 5% CO₂ and immediately stored in liquid nitrogen till using. A new frozen vial of the same batch of cells was restarted every 2 to 3 months. For serum starvation, cells were incubated in DMEM medium, McCoy’s 5A medium or F12 medium respectively. Cells were transfected with plasmid DNA using Lipofectamin2000™ reagent (Invitrogen). siRNAs were transfected into cells following the manufacturer’s instructions for Lipofectamine™ RNAiMAX reagent (Invitrogen).

To generate stable YAP/TAZ knocking-down cells, pMKO-shScramble and pMKO-shTAZ retroviruses, which were produced in HEK293T cells using VSVG and GAG as packaging plasmids, were used to infect HCT116 cells. pLKO-shYAP lentivirus was produced in HEK293T cells using psPAX2 and pMD2.G as packaging plasmids. Stable pools were selected with 1µg/mL puromycin (Amresco) for 5 days. These cells were subsequently infected with the pQCXIH-ETAR retroviruses and screened with 50µg/mL hygromycin B (Amresco) for 5 days. The cells that are resistant to both puromycin and hygromycin B were maintained and used in further experiments.

Immunoblotting

Cells were lysed in SDS sample buffer and denatured by heating on 100 °C for 10
Proteins were separated on 8-10% Bis-Tris polyacrylamide gels. Western images were captured by typhoon FLA 9500 (GE healthcare) or Image Quant LAS4000 mini (GE healthcare).

The phos-tag reagents were purchased from Wako Chemicals. The preparation phos-tag gels containing phos-tag and MnCl₂ have been done properly following the manufacturer’s instructions. On the phos-tag gels, YAP/TAZ protein can be separated into multiple bands directly dependent on the phosphorylation status.

Immunofluorescence Staining

HCT116 cells were seeded in 6-well plates. Cells were washed with PBS (phosphate-buffered saline) and fixed with 4% paraformaldehyde for 30 min at room temperature, washed by PBS, followed by permeabilization with 0.1% TritonX-100 for 5 min at 4 °C. Then cells were incubated with primary antibodies overnight at 4 °C after blocked with 0.5% BSA for 30 min at room temperature. Then cells were washed with PBS for 3 times per 5 min. Alexa Fluor labeled secondary antibodies were used to incubate with cells for 2 h at room temperature. Nucleus and actin filaments were stained with DAPI and Tetramethylrhodamine B isothiocyanate-conjugated Phalloidin respectively. Photos were taken by using an Olympus microscopy with appropriate fluorescence filters.

Kinase Assay

LATS1 kinase assay was described elsewhere (39). Briefly, HCT116 cells were lysed with NP40 lysis buffer (150 mM NaCl, 50 mM Tris at pH 7.5, 0.5% NP40). LATS1 was immunoprecipitated by its specific antibody. The immunoprecipitates were washed three times with lysis buffer, once with wash buffer (40 mM HEPES, 200 mM NaCl) and once with kinase assay buffer (30 mM HEPES, 50 mM potassium acetate, 5 mM MgCl₂). Kinase assay was performed in kinase buffer with 500μM ATP using recombinant GST-YAP as the substrate. Phosphorylation of YAP (Ser127) was detected by the phospho-Ser127 specific antibody.
RNA Interference

Oligonucleotides for knocking down of human G_{aq}, G_{a11}, G_{as}, YAP, TAZ (WWTR1), $TEAD1/3/4$ and $ETAR$ were synthetized by Genepharma company. siRNAs were transfected into cells according to the manufacturer’s instructions of lipofectamin RNAiMAX reagent (Invitrogen, 904203). A non-targeting scrambled siRNA duplex (5’-CCAUUCCGAUCCUGAUCCG-3’) was used as a negative control. The sequences of all siRNAs used in this study were shown below:

- siGNAQ#2: GACACCGAGAATATCCGCTTT
- siGNA11#2: GCTCAAGATCCTCTACAAGTA
- siGNAS#1: GCTTGCTTAGATGGTCAAAT
- siYAP1#1: CCCAGTTAAATGTTCACCAAT
- siYAP1#3: CAGGTGATACTATCAACCAAA
- siWWTR1#2: CAGCCAAATCTCGTGATGAAT
- siWWTR1#3: CCAGGAACAAACGGTGACTTA
- siTEAD1/3/4 #1: ATGATCAACTTCCACCAAG
- siTEAD1/3/4 #2: GATCAACTTCCACCAAGCT
- siETAR#1: CATGGATTACATCGGTATTAA
- siETAR#2: ACAATGACTTTGGCGATTTTC

RNA Isolation, Reverse Transcription, and Real-Time PCR

RNA was isolated using Trizol reagent following the manufacturer’s instructions (Invitrogen). With oligo-dT primers, two to five microgram of RNA was used to reverse transcribed to complementary DNA (cDNA). Diluted cDNA was then proceeded for real-time PCR with gene-specific primers in the presence of SYBR Premix Ex Taq (TaKaRa) by 7500 real-time PCR system (Applied Biosystems). Using β-actin as a housekeeping control. Relative abundance of mRNA which was performed in triplicate was determined. The primer pairs used in this study were below:

- β-actin-F: GCCGACAGGATGCAGAAGGAGATCA
- β-actin-R: AAGCATTTGCGGTGGACGATGGA
CTGF-F: CCAATGACAACGCCTCCTG
CTGF-R: TGGTGCAGCCAGAAAGCTC
CYR61-F: AGCCTCGCATCCTATAACAACC
CYR61-R: TTCTTTTACAAGGCGGACTC
ANKRD1-F: CACTTCTAGCCCACCCTGTGA
ANKRD1-R: CCACAGGTTCCGTAATTGTAT
INHBA-F: TTGCCAACCTCAAATCGTGCT
INHBA-R: CCCACACTTCCTCAGCATCAT
TAZ-F: GGCTGGGAGATGACCTTCAC
TAZ-R: AGGCACTGGTGTGGAACTGAC
YAP-F: CCACAGGCAATGCGGAATATC
YAP-R: GGTGCCACTGTTAAGGAAAGG
EDNRA-F: AACTATTGCCCACACGACT
EDNRA-R: CCCAGCCAGCAGCTAAATCA

Cell migration assay

BD Falcon Cell culture chambers with 8.0 μm pores for 24-well plates were used in this assay. Serum starved HCT116 cells were stimulated with ET-1 or vehicle for 4 h. Cells were then suspended in serum-free DMEM and seeded into chambers at 50000 cells per well. The bottom chamber were filled with DMEM medium supplemented with 5% FBS. After seeding for 24 h, the membranes were fixed in 4% paraformaldehyde and stained with 0.05% crystal violet. Photos were taken by using an Olympus microscope and migrated cells were counted and quantified.

Cell proliferation

Performed in triplicate, 1×10^5 of cells were seeded into 6-well plates and cultured in McCoy’s 5A medium supplemented with 5% FBS and 50 μg/ml penicillin/streptomycin. The cell culture medium was renewed every day. Cells were trypsinized and counted daily by using Countstar IC1000.
Xenograft

Male BALB/c nude mice at the age of 4-5 weeks were purchased from SLAC Laboratory, Shanghai. The HCT116 stable cells were suspended in PBS and injected subcutaneously at 9×10^6 cells per mouse. Mice were sacrificed three weeks after injection. Weight and volume of tumors were measured. The animal experiments were performed according to the approved protocols by Animal Welfare Committee of Shanghai Medical College, Fudan University.
Results

ET-1 activates YAP/TAZ in colon cancer cell lines

To explore the role of YAP/TAZ in mediating ET-1 signaling, we first tested whether ET-1 could activate YAP/TAZ in multiple cancer cell lines. ET-1 treatment in HCT116, a colon cancer cell line, led to the dephosphorylation of YAP/TAZ in a time- and dose-dependent manner (Fig. 1A & 1B), as determined by immunoblotting with a phospho-YAP antibody (S127) and increased migration of YAP/TAZ on phos-tag gels. Similar results were observed in SW480 and HT29 cells, two other colon cancer cell lines (Fig. 1C & Fig. S1A). ET-1 also increased TAZ protein levels because the stability of TAZ is potently regulated by its phosphorylation. However, ET-1 did not affect YAP/TAZ phosphorylation in SW620 colon cancer cells (Fig. S1B). Interestingly, the mRNA expression of ETAR in SW620 is much lower than that in other colon cell lines (Fig. S1C). These data indicate ET-1 induces YAP/TAZ dephosphorylation and this response depends on ETAR expression. In contrast to colon cancer cells, we observed inconspicuous change in YAP/TAZ phosphorylation in response to ET-1 treatment in several other cancer cell lines, including prostate cancer and breast cancer cells (Fig. S2), suggesting ET-1 regulation on YAP/TAZ activity is cell type specific.

Dephosphorylation of YAP/TAZ leads to their translocation from cytoplasm to nucleus to activate target genes expression. We thus detected the localization of YAP and TAZ in response to ET-1 treatment. Consistent with YAP/TAZ dephosphorylation, ET-1 significantly induced YAP and TAZ translocation from cytoplasm to nucleus (Fig. 1D-1G). Collectively, these results show that ET-1 induces activation of YAP/TAZ in ETAR-expressing colon cancer cells.

YAP/TAZ and TEADs mediate the physiological functions of ET-1 in target gene induction

Previous studies have revealed that the activated YAP/TAZ bind to the TEAD transcription factors to promote expression of target genes (31,32). We tested the expression of YAP/TAZ target genes in response to ET-1. ET-1 treatment significantly induced the expression of CTGF, CYR61, ANKRD1 and INHBA (Fig. 2A). Knocking down
of both YAP and TAZ abolished the ET-1-induced expression of these genes (Fig. 2B & 2C), indicating ET-1’s effect on these genes was mediated by YAP/TAZ. Similarly, knocking down of the YAP/TAZ target transcription factor TEAD1/3/4 also abolished CTGF expression upon ET-1 stimulation (Fig. 2D), further confirming the critical role of YAP/TAZ-TEAD transcription activator in the induction of ET-1 inducible genes.

ET-1 activates YAP/TAZ through ETAR and Goq/11

ET-1 signals through ETAR to promote cell proliferation, migration, and survival. We have found that the response of YAP/TAZ to ET-1 correlates with ETAR expression level (Fig. S1C). To test whether ET-1 activates YAP/TAZ depends on ETAR, we used siRNA to knock down ETAR and found that ET-1 treatment could not induce YAP/TAZ dephosphorylation in the ETAR knockdown cells (Fig. 3A). We also pretreated cell with ETAR selective antagonist BQ123 (9,10,40) and observed similar effect that ETAR inhibition prevented YAP/TAZ activation by ET-1 (Fig. 3B). Moreover, BQ123 also blocked YAP nuclear translocation in response to ET-1 (Fig. 3C & 3D), demonstrating that ET-1 activates YAP/TAZ through ETAR.

ET-1 activates several trimeric G proteins, including Goq/11 and Gos, to initiate intracellular signaling pathways (1). To determine which Gα proteins are involved in YAP/TAZ regulation, Goq/11 or Gos was silenced by siRNAs in HCT116 cells. Knocking down of Goq/11 strongly blocked YAP/TAZ dephosphorylation in response to ET-1, while knockdown of Gos had little effect on ET-1-induced YAP/TAZ dephosphorylation (Fig. 3E). Consistently, ET-1-induced YAP nuclear accumulation in cells transfected with control or Gos siRNA, but not Goq/11 siRNA (Fig. 3F & 3G). Taken together, we conclude that ET-1 signals through Goq/11 to activate YAP/TAZ.

ET-1 acts through LATS, Rho/ROCK and actin cytoskeleton to activate YAP/TAZ

LATS1/2 are the major responsible upstream kinases for YAP/TAZ phosphorylation and nuclear-cytoplasmic shuttling. To investigate whether LATS1/2 is involved in YAP/TAZ regulation by ET-1, we measured the kinase activity of LATS1 immunopurified from control or ET-1 treated cells. As shown in Fig. 4A, ET-1
treatment markedly reduced LATS1 kinase activity, which was coincident with YAP/TAZ dephosphorylation. Consistently, overexpression of wild type LATS2, but not the kinase-dead mutant of LATS2, completely blocked the effect of ET-1 on YAP/TAZ phosphorylation (Fig. 4B). These data suggest that ET-1 decreases YAP/TAZ phosphorylation mainly by inhibiting the LATS kinase activity.

Rho GTPase and actin cytoskeleton organization have been demonstrated to be key mediators of mechanical cues, GPCR ligands, and cell attachment in regulating the Hippo pathway (41-43). We therefore tested if Rho GTPase is involved in YAP/TAZ activation by ET-1. Consistent with previous findings, overexpression of Rho-L63, a constitutively-active mutant of Rho, significantly activated YAP/TAZ in the absence of ET-1 treatment (Fig. 4C). On the other hand, expression of Rho GDP dissociation inhibitor (Rho-GDI), which binds to Rho GTPase and inhibits GTPase cycling, completely blocked ET-1-induced YAP/TAZ dephosphorylation (Fig. 4C). Similarly, pretreatment of cells with botulinum toxin C3, a specific inhibitor of Rho GTPases, also blocked YAP/TAZ activation by ET-1 (Fig. 4D). We also found that pretreatment with GSK429286 and Y27632, two inhibitors of Rho-associated protein kinase (ROCK), also strongly suppressed ETAR-induced YAP/TAZ dephosphorylation (Fig. 4E) and nuclear translocation (Fig. S3A).

The Rho/ROCK pathway potently modulates actin cytoskeleton dynamics, particularly stress fiber formation, in response to various GPCR agonists (39). We therefore examined whether cytoskeletal reorganization contributes to YAP/TAZ activation in response to ET-1 stimulation. Treatment with latrunculin B (Lat B), an F-actin destabilizing reagent, blocked ET-1 induced YAP/TAZ dephosphorylation (Fig. 4F) and nuclear accumulation (Fig. S3B). Taken together, the above data support a model that ET-1 acts through Rho/ROCK and actin cytoskeleton to regulate the Hippo pathway, leading to YAP/TAZ activation.

ET-1 promotes cell migration, proliferation, and tumor growth through YAP/TAZ

It has been reported ETAR plays a role in the growth and progression of colorectal cancer (18,20,44). YAP/TAZ are also known to promote cell proliferation.
and migration (39,45). Since YAP/TAZ activities are significantly elevated upon ET-1 treatment in colon cancer cells, we investigated the role of YAP/TAZ in ET-1 regulated cellular functions. Consistent with previously reported observations (3,44), ET-1 treatment promoted the migration of HCT116 cells as determined by the transwell cell migration assay. Notably, this effect was largely abolished by YAP/TAZ knockdown (Fig. 5A & B), suggesting an essential role of YAP/TAZ in mediating the ET-1-induced colon cancer cell migration. We then tested the role of ETAR-YAP/TAZ signaling in cell proliferation. Several stable cell lines, including ETAR overexpression, YAP/TAZ knockdown, and combination of ETAR overexpression and YAP/TAZ knockdown, were established in HCT116 cells (Fig. 5C). Our results showed that ectopic expression of ETAR enhanced cell proliferation, while knockdown of YAP/TAZ significantly blocked the cell growth promoting effect of ETAR (Fig. 5D). These observations indicate that YAP/TAZ play a critical role in ETAR-induced cell growth.

To gain more pathological insight of ET-1 signaling in colon tumorigenesis, we analyzed the expression level of ETAR in various cancer types in the TCGA database (Fig. S4A). Renal clear cell carcinoma, thymoma, and esophageal carcinomas show higher expression levels of ETAR than their corresponding normal tissues. Among the tissues analyzed, colon cancer samples show a significant upregulation of ETAR expression compared to normal colon tissues (Fig. 6A). The TCGA data is consistent with our results that most colon cancer cell lines express high levels of ETAR mRNA (Fig. S1C). In contrast, no significance difference of ETAR expression is observed between breast cancer or liver cancer samples and their corresponding normal tissue samples, while prostate cancer samples show a decrease of ETAR expression compared to normal tissues (Fig. 6A). Thus, the expression of ETAR appears to be cancer type dependent. To further elucidate the function of YAP/TAZ in mediating ET-1 signaling in tumor growth, we used a xenograft model to investigate if YAP/TAZ is required for ET-1-induced colon tumor growth. Injection of HCT116 cells with ETAR overexpression into nude mice generated tumors that were bigger than tumors from the control cell injection, indicating a tumor promoting function of ETAR (Fig. 6B & 6C). Notably, knocking down of YAP/TAZ in ETAR overexpressed cells dramatically
suppressed tumor growth (Fig. 6B & 6C). In summary, our observations support a model that YAP/TAZ act as downstream targets of ET-1 and play an important role in mediating the tumor-promoting function of ET-1.
Discussion

Previous studies have reported a role of ET-1 in the growth and progression of a wide range of cancers such as prostate, ovarian, renal, pulmonary, colorectal, cervical, breast carcinoma, brain tumors, melanoma, Kaposi's sarcoma, as well as tumor metastases (7,9,46-48). ET-1 executes its biological functions mainly through ETAR, which has been proved to promote tumor growth and progression. In this study, we demonstrate the Hippo pathway serves as an important downstream module of ET-1 signaling, particularly in cell growth and tumorigenesis. We also uncover a mechanism of ET-1 in promoting colon cancer through activating the YAP/TAZ transcription co-activators. Activated ETAR couples to Gαq/11 to trigger the activation of Rho GTPase and ROCK kinase, which modulate actin cytoskeleton to inhibit LATS1/2 kinases, resulting in YAP/TAZ dephosphorylation and activation. Activated YAP/TAZ induce expressions of downstream target genes and contribute to cell proliferation and migration. ETAR overexpression, which is elevated in colon cancer samples (Figure 6A), promotes tumor growth in vivo, while YAP/TAZ knockdown largely suppresses this effect. Our study reinforces the notion that ET-1-ETAR-YAP/TAZ axis is important for colon cancer, and thus indicating YAP/TAZ as potential therapeutic targets for cancers with high ETAR expression.

Endothelin was first identified as a vasconstrictor for its elevated expression in several forms of pulmonary vascular diseases (49,50). It is involved in the pathogenesis of hypertension and vascular diseases. Endothelin receptor antagonism has emerged as an important therapeutic strategy in pulmonary arterial hypertension (PAH). Of all endothelin peptides, ET-1 appears to play the most prominent role in vascular control. Intriguingly, YAP/TAZ are also implicated in other pathophysiological conditions, such as tissue regeneration after injury. It has been demonstrated that YAP/TAZ are activated in vascular smooth muscle cells (VSMCs) by the thromboxane A2 receptor, which is important for VSMC proliferation and migration (51). Other groups have discovered YAP/TAZ function as a bridge between dysregulation of vascular stiffness and cellular metabolism (52). Based on our findings, one may speculate that YAP/TAZ signaling axis also takes part in ET-1
functions in vascular physiology and diseases.

The importance of ET axis in cancer cell growth and migration naturally leads to a notion of ETAR antagonism being a potential anti-tumor therapy. Several ETAR antagonists, such as atrasentan and ZD4054, have been broadly investigated in clinical trials and the results support a potential role of ET-1 signaling in promoting cancer. We propose that high expression levels of ETAR functions at least in part through activating YAP/TAZ to promote tumor growth. Thus our findings suggest that targeting the Hippo pathway components, particularly YAP/TAZ, might be a possible approach for treating high ETAR expressing cancer. Notably, a small molecule verteporfin (trade name Visudyne) has been shown to efficiently inhibit YAP dependent tumor growth (53,54). Thus verteporfin could be tested for colon cancers with high expression of ETAR as a proof of concept. As ETAR antagonists have shown varied effects in a number of cancer types, further knowledge of the mechanisms and molecular aspects of ETAR signaling in cell growth promotion is essential to understand the therapeutic value of endothelin receptor antagonism.
Acknowledgment

We thank Professor Qun-Ying Lei, Dan Ye and the members of the Fudan MCB laboratory for support throughout the course of this study.
References

36. Recchia AG, Filice E, Pellegrino D, Dobrina A, Cerra MC, Maggiolini M. Endothelin-1 induces
connective tissue growth factor expression in cardiomyocytes. J Mol Cell Cardiol 2009;46:352-9

42. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014;15:642-56

44. Daher Z, Noel J, Clraig A. Endothelin-1 promotes migration of endothelial cells through the activation of ARF6 and the regulation of FAK activity. Cell Signal 2008;20:2256-65

54. Michels S, Schmidt-Erfurth U. Photodynamic therapy with verteporfin: a new treatment in...
Figure Legends

Figure 1. ET-1 activates YAP/TAZ in colon cancer cell lines

(A & B) ET-1 activates YAP/TAZ in HCT116 cells. ET-1 induces the dephosphorylation of YAP/TAZ in time- and dose-dependent manners. HCT116 cells were serum-starved for 14h and stimulated with ET-1 for the duration (A) or dose (B) indicated. Immunoblotting were performed with indicated antibodies. Phos-tag gels were used for assessment of YAP and TAZ phosphorylation status. (C) ET-1 activates YAP/TAZ in SW480 and HT29 cells. The two cell lines were serum-starved for 14h and were treated with ET-1 for the dose indicated for 1h. Immunoblotting were performed with indicated antibodies. (D) ET-1 promotes YAP translocation from cytoplasm to nucleus. HCT116 cells were serum-starved for 14h and stimulated with 100 nM of ET-1 for 1h. Endogenous YAP (green) and nuclei (blue) were stained with specific antibody and DAPI, respectively. Scale bar: 20 μm. (E) Quantifications of YAP subcellular localization from at least 100 randomly selected cells in (D). C, cytoplasm; N, nucleus. (F) ET-1 induces TAZ translocation from cytoplasm to nucleus. HCT116 cells were serum-starved for 14h and stimulated with 100 nM of ET-1 for 1h. HCT116 cells were serum-starved for 14h and stimulated with 100 nM of ET-1 for 1h. Endogenous TAZ (green) and nuclei (blue) were stained with specific antibody and DAPI, respectively. Scale bar: 20 μm. (G) Quantifications of TAZ subcellular localization from at least 100 randomly selected cells in (F). C, cytoplasm; N, nucleus.

Figure 2. YAP/TAZ and TEAD mediate the physiological functions of ET-1 in target gene induction

(A) ET-1 induces expression of YAP/TAZ target genes. HCT116 cells were serum-starved for 14 h and stimulated with 100 nM of ET-1 for 3 h. The mRNA levels of CTGF, CYR61, ANKRD1 and INHBA were quantified by Real-time PCR. Data are represented as mean ± SD. (B) YAP/TAZ are required for ET-1 to induce downstream gene expression. HCT116 cells were transfected with control or YAP/TAZ siRNAs. After 48 h, HCT116 cells were serum-starved for 14h and stimulated with 100 nM of ET-1. Protein levels of CTGF and the knockdown efficiency of YAP/TAZ were
determined by immunoblotting. (C) YAP/TAZ are required for ET-1 to induce downstream gene expression. HCT116 cells were transfected with control or YAP/TAZ siRNAs. After 48 h, HCT116 cells were serum-starved for 14h and stimulated with 100 nM of ET-1 for 3h. The mRNA levels of indicated target genes were measured by Real-time PCR. Datas are represented as mean ± SD. (D) TEAD is indispensable for ET-1 to induce target gene expression. HCT116 cells were transfected with control or TEAD1/3/4 siRNAs. Serum-starved cells were treated with 100 nM of ET-1. Protein levels of CTGF and the knockdown efficiency of TEAD1 were determined by immunoblotting.

Figure 3. ET-1 stimulation activates YAP/TAZ through ETAR and Gαq/11

(A) ET-1 activates YAP/TAZ through ETAR. HCT116 cells were transfected with control or ETAR siRNAs. Serum-starved cells were treated with 100 nM of ET-1 for 1 h. YAP/TAZ and knockdown efficiency of ETAR were determined by immunoblotting. (B) BQ123 blocks ET-1-induced YAP/TAZ activation. Serum-starved HCT116 cells were pre-treated with 2 μM of BQ123 for 4 h, and then were treated with 100 nM of ET-1 for indicated time. Protein levels of CTGF and YAP/TAZ were determined by immunoblotting. (C) BQ123 blocks YAP nuclear localization induced by ET-1 stimulation. HCT116 cells were pre-treated with 2 μM of BQ123 for 4 h. Serum-starved cells were treated with 100 nM of ET-1 for 1 h. Immunofluorescence staining was performed for endogenous YAP (green) and nuclei (DAPI, blue). Scale bar: 20 μm. (D) Quantifications of YAP subcellular localization from at least 100 randomly selected cells in (C). C, cytoplasm; N, nucleus. (E) ET-1 signals through Gαq/11 to induce YAP/TAZ activation. HCT116 cells were transiently transfected with control, Gαq/11, or Gαs siRNAs. Serum-starved cells were treated with 100 nM of ET-1 for 1 h. YAP/TAZ and knockdown efficiency of Gαq/11 and Gαs were determined by immunoblotting. (F) ET-1 stimulation induces YAP/TAZ nuclear localization through Gαq/11. HCT116 cells were transiently transfected with control, Gαq/11 or Gαs siRNAs. Serum-starved cells were treated with 100 nM of ET-1. Endogenous YAP (green) and nuclei (blue) were stained with specific antibody and DAPI, respectively. Scale bar: 20
μm. (G) Quantifications of YAP subcellular localization from at least 100 randomly selected cells in (F). C, cytoplasm; N, nucleus.

Figure 4. ET-1 acts through LATS, Rho/ROCK and actin cytoskeleton to activate YAP/TAZ

(A) ET-1 treatment decreases LATS1 activity. HCT116 cells were serum-starved for 14 h and stimulated with 100 nM of ET-1 for 1 h. LATS1 was immunoprecipitated and in vitro Kinase assay was performed using GST-YAP as a substrate. Phosphorylation of GST-YAP by LATS1 was determined by phospho-YAP antibody. (B) Ectopic expression of LATS2 blocks ET-1 induced YAP/TAZ activation. HCT116 cells were transiently transfected with control, LATS2 wild-type (WT) or kinase dead mutant (K/R). Serum-starved cells were treated with 100 nM of ET-1 for 1 h. Phosphorylation and protein levels of YAP/TAZ were determined by immunoblotting. (C) Rho GTPase is involved in YAP/TAZ activation by ET-1. HCT116 cells were transiently transfected with control, Myc-Rho-L63 or Rho-GDI-GFP mutant. Serum-starved cells were treated with 100 nM of ET-1 for 1 h. Phosphorylation and protein levels of YAP/TAZ were determined by immunoblotting. (D) Inactivation of Rho GTPase prevents YAP/TAZ dephosphorylation by ET-1 stimulation. Serum-starved HCT116 cells were pre-treated with C3 for 4 h, followed by treatment with 100 nM of ET-1 for 1 h. Phosphorylation and protein levels of YAP/TAZ were determined by immunoblotting. (E) ROCK is required for ETAR-induced YAP/TAZ activation. Serum-starved HCT116 cells were pre-treated with GSK429286 (0.5 μM) or Y27632 (1 μM) for 4 h, followed by treatment with 100 nM of ET-1 for 1h. Phosphorylation and protein levels of YAP/TAZ were determined by immunoblotting. (F) Disruption of actin cytoskeleton blocks ET-induced YAP/TAZ activation. Serum-starved HCT116 cells were pre-treated with latrunculin B (Lat B) (1 μg/ml) for 4 h, followed by treatment with 100 nM of ET-1 for 1 h. Phosphorylation and protein levels of YAP/TAZ were determined by immunoblotting.

Figure 5. ETAR promotes cell migration and cell proliferation through YAP/TAZ
(A) Loss of YAP/TAZ impairs ETAR-induced cell migration. HCT116 cells were transfected with siRNAs targeting YAP and TAZ. After 48 h, cells were serum starved for 14h and stimulated with ET-1 for 4 h. Cell migration was determined by transwell cell migration assay as described in the Methods. Cells were stained by crystal violet (left panels) and quantified (right panels). The p value <0.001 was calculated by student’s t-test and shown. Data are represented as mean ± SD. (B) Verification of YAP/TAZ knockdown in HCT116 cells. Cells were transfected and treated in parallel as that in A. Protein levels of YAP/TAZ was determined by immunoblotting. (C) Establishment of HCT116 stable cells with ETAR overexpression, YAP/TAZ knockdown or the combination of both. Expressions of ETAR and YAP/TAZ were determined by immunoblotting. (D) YAP/TAZ mediate ETAR-induced cell proliferation. Growth of HCT116 stable cells described in (C) was determined by cell growth assay. Stable cells were cultured in triplicate in McCoy’s 5A medium supplemented with 5% FBS. Cells were counted daily by Countstar IC1000. The stars labeled at day 5 indicate p value < 0.01 between groups of shCtr+ETAR and shCtr+Vec or shYAP/TAZ+ETAR. The p value was calculated by paired student’s t-test and shown. Error bars represent cell numbers ± SD from triplicate experiments.

Figure 6. ETAR promotes xenograft tumor growth through YAP/TAZ

(A) ETAR is overexpressed in colon carcinoma samples. BRCA (Breast Carcinoma); COAD (Colon adenocarcinoma); LIHC (Liver Hepatocellular Carcinoma); PRAD (Prostate Adenocarcinoma). Log2 mRNA expression from RNA Seq V2 RSEM was downloaded from TCGA data portal shown by log2 RSEM. The p value was calculated by Wilcoxon test. The corresponding p value was shown. (B) YAP/TAZ are required for ETAR to promote tumor growth in a xenograft mouse model. Xenograft was performed in male nude mice using cells described in Fig. 5C. Three weeks after injection, mice were sacrificed and tumors were separated and photographed. (C) Tumor weight was measured for indicated groups. The p value <0.001 was calculated by student’s t-test and shown.
Figure 1. Stimulation of ETAR activates YAP/TAZ
Figure 2. YAP/TAZ and TEAD mediate the physiological functions of ETAR activation in target gene induction.
Figure 3. ETAR stimulation activates YAP/TAZ through ETAR and Gαq/11.
Figure 4. ETAR acts through LATS, Rho/ROCK, actin cytoskeleton to stimulate YAP/TAZ
Figure 5. ETAR promotes cell migration and cell proliferation through YAP/TAZ
Figure 6. ETAR promotes tumor growth through YAP/TAZ
Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ

Zhen Wang, Peng Liu, Xin Zhou, et al.

Cancer Res Published OnlineFirst March 1, 2017.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-16-3229

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2017/09/29/0008-5472.CAN-16-3229.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.