SUPPLEMENTAL FIGURE 1. In vitro testing of MN-EPPT-siRNA uptake and silencing efficacy in human pancreatic (CAPAN-2) and colorectal (LS-174T) adenocarcinoma cells. (A) Flow cytometry to assess nanodrug uptake. Representative FL2 (Dy547, siRNA) vs. FL4 (Cy5.5, MN) dot plots showing that the cells were labeled with the nanodrug. The cellular co-localization between fluorescence in the two channels indicated stability of the nanodrug. (B) Flow cytometry to assess nanodrug uptake as a function of uMUC-1 positivity. The cellular co-localization between fluorescence in the
FL4 (Cy5.5, MN) and FL1 (FITC, uMUC-1-specific antibody) channels suggested that the nanodrug uptake by the cells is representative of uMUC-1 abundance. (C) qRT-PCR of human pancreatic (CAPAN-2) and colorectal (LS-174T) adenocarcinoma cells incubated with MN-EPPT-siBIRC5 or control probes. There was a significant knock-down of *birc5* mediated by MN-EPPT-siBIRC5 relative to the MN-EPPT-siSCR control (n = 4).
SUPPLEMENTAL FIGURE 2. In vivo tumor uptake of MN-EPPT-siBIRC5 vs. MN-EPPT-siSCR. (A) T2 weighted MR imaging. There was no difference between the levels of tumor-associated signal loss mediated by the two probes. The T2 relaxation times of the two groups were not significantly different (44.3±0.7 vs 43.7±0.8 ms; n = 4). (B) In vivo near-infrared optical imaging. There was no visible difference between the levels of tumor-associated fluorescence mediated by the two probes.