Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Therapeutics, Targets, and Chemical Biology

Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydropyrimidine Dehydrogenase Activity

Steven M. Offer, Croix C. Fossum, Natalie J. Wegner, Alexander J. Stuflesser, Gabriel L. Butterfield and Robert B. Diasio
Steven M. Offer
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Croix C. Fossum
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalie J. Wegner
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander J. Stuflesser
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, AustriaAuthors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gabriel L. Butterfield
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert B. Diasio
Authors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, AustriaAuthors' Affiliations: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; and Paracelsus Medical University, Salzburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-13-2482
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme of the uracil catabolic pathway, being critically important for inactivation of the commonly prescribed anti-cancer drug 5-fluorouracil (5-FU). DPD impairment leads to increased exposure to 5-FU and, in turn, increased anabolism of 5-FU to cytotoxic nucleotides, resulting in more severe clinical adverse effects. Numerous variants within the gene coding for DPD, DPYD, have been described, although only a few have been demonstrated to reduce DPD enzyme activity. To identify DPYD variants that alter enzyme function, we expressed 80 protein-coding variants in an isogenic mammalian system and measured their capacities to convert 5-FU to dihydro-fluorouracil, the product of DPD catabolism. The M166V, E828K, K861R, and P1023T variants exhibited significantly higher enzyme activity than wild-type DPD (120%, P = 0.025; 116%, P = 0.049; 130%, P = 0.0077; 138%, P = 0.048, respectively). Consistent with clinical association studies of 5-FU toxicity, the D949V substitution reduced enzyme activity by 41% (P = 0.0031). Enzyme activity was also significantly reduced for 30 additional variants, 19 of which had <25% activity. None of those 30 variants have been previously reported to associate with 5-FU toxicity in clinical association studies, which have been conducted primarily in populations of European ancestry. Using publicly available genotype databases, we confirmed the rarity of these variants in European populations but showed that they are detected at appreciable frequencies in other populations. These data strongly suggest that testing for the reported deficient DPYD variations could dramatically improve predictive genetic tests for 5-FU sensitivity, especially in individuals of non-European descent. Cancer Res; 74(9); 1–10. ©2014 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

  • Received August 30, 2013.
  • Revision received February 28, 2014.
  • Accepted March 6, 2014.
  • ©2014 American Association for Cancer Research.
Next
Back to top

Published OnlineFirst April 14, 2014
doi: 10.1158/0008-5472.CAN-13-2482

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydropyrimidine Dehydrogenase Activity
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydropyrimidine Dehydrogenase Activity
Steven M. Offer, Croix C. Fossum, Natalie J. Wegner, Alexander J. Stuflesser, Gabriel L. Butterfield and Robert B. Diasio
Cancer Res April 14 2014 DOI: 10.1158/0008-5472.CAN-13-2482

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydropyrimidine Dehydrogenase Activity
Steven M. Offer, Croix C. Fossum, Natalie J. Wegner, Alexander J. Stuflesser, Gabriel L. Butterfield and Robert B. Diasio
Cancer Res April 14 2014 DOI: 10.1158/0008-5472.CAN-13-2482
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Targeting MALT1 in CLL
  • H3B-6527 for FGF19-Driven HCC
  • N-myristoyltransferase 1 Promotes Src-Mediated Cancer
Show more Therapeutics, Targets, and Chemical Biology
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement