Abstract
The AKT/TSC/mTOR axis is an important pathway controlling cell growth, survival and proliferation in response to extracellular cues. Recently, it was reported that AKT activity fluctuates across the cell cycle. However, it remains unclear whether downstream targets of AKT are also regulated by the cell cycle. Here we report that mTORC1 activity inversely correlates with AKT activity during the cell cycle. Mechanistically, Plk1 phosphorylation of TSC1 at S467 and S578 interfered with TSC1/TSC2 binding, destabilized TSC1, promoted dissociation of the TSC complex from the lysosome, and eventually led to mTORC1 activation. Tumors derived from cancer cells expressing the TSC1-S467E/S578E mutant exhibited greater sensitivity to rapamycin than those expressing WT TSC1. Collectively, our data support a model in which Plk1, instead of AKT, regulates the TSC/mTORC1 pathway during mitosis, eventually regulating the efficacy of rapamycin.
- Received October 3, 2017.
- Revision received February 13, 2018.
- Accepted March 15, 2018.
- Copyright ©2018, American Association for Cancer Research.
Log in using your username and password
Purchase Short Term Access
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.