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ABSTRACT

3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a pivotal
role in coupling growth factor receptor signaling to tumor cell prolifera-
tion, survival, and invasion. Protein kinase C (PKC) a, but not Aktl, was
found previously to be downstream of PDK1-mediated transformation of
mammary epithelial cells. To determine the basis for its oncogenic activ-
ity, signal transduction pathways mediated by PDK1 in mammary epi-
thelial cells were investigated. B-Catenin/T-cell factor-dependent pro-
moter activity was markedly activated in PDK1- and PKCa-expressing
cells, but not in Aktl-expressing cells, which resulted in increased levels of
the B-catenin/T-cell factor target genes c-myc and cyclin DI. In contrast,
caveolin-1, of which the transcription is suppressed by c-myc, was down-
regulated in PDK1- and PKCa-expressing, but not in Aktl-expressing
cells. Analysis of 16 breast cancer cell lines established that caveolin-1
expression was either absent or reduced compared with breast epithelial
cells, and that PDK1 was elevated in all of the cell lines. Interestingly, all
of the cell lines known to be invasive expressed caveolin-1 to some degree,
whereas, 5 of 6 cell lines that are not invasive did not express caveolin-1.
Therefore, it appears that a concomitant gain of c-myc function and a loss
or reduction of caveolin-1 are major determinants of PDK1- and PKCa-
mediated mammary oncogenesis.

INTRODUCTION

PDK1? was first identified as a protein-Ser/Thr kinase that linked
phosphatidylinositol 3'-kinase to Akt activation through growth fac-
tor-mediated signaling (1, 2). PDK1 contains an NH,-terminal cata-
lytic domain and a COOH-terminal pleckstrin homology domain (2),
and is responsible for phosphorylating AGC kinases in their activation
domain, a process that is essential for their full catalytic activity (3, 4).
PDKI1 activates a number of AGC kinases, including Akt (5, 6), PKC
(7, 8), serum- and glucocorticoid-induced kinase (9, 10), and riboso-
mal p70S6-kinase (5, 11), implicating PDK1 as a pivotal signaling
molecule in response to growth factors and metabolic effectors.

Akt, the most extensively studied PDK1 substrate, has been impli-
cated in human cancers by promoting proliferation and survival, and
inhibiting apoptosis (12, 13). Aktl is the predominant isoform in most
tissues and is highly expressed in breast cancer cells (14), as well as
in primary breast cancer (15). PKCa also plays a role in tumor
proliferation and survival as demonstrated by the antitumor activity
produced by an antisense cDNA and antisense oligonucleotides (16,
17), as well as its oncogenic activity in mammary epithelial cells (18).

Apart from the similarities between Aktl and PKCa in their pro-
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liferative and antiapoptotic functions, there are also clear differences
in their tumorigenic potential. Aktl was neither transforming in vitro
(18) nor tumorigenic when expressed in the mammary gland of
transgenic mice (19-21), whereas PKCa was highly oncogenic when
overexpressed in mammary epithelial cells (18). Although both Aktl
and PKCa are downstream of PDK1, only PDK1 and PKCa exhibited
transformation activity (18). To define the mechanistic differences
between these protein kinases, they were overexpressed in mammary
epithelial cells, and downstream signaling pathways were analyzed.
The results of this study define for the first time an oncogenic pathway
downstream of PDK1 and PKCea that is associated with increased
c-Myec and cyclin D1 expression through (-catenin activation, as well
as activation of the PKCa promoter and suppression of caveolin-1
expression. These data provide a unique framework for investigating
the regulatory networks associated with PDK1-mediated transfor-
mation.

MATERIALS AND METHODS

Cells and Antibodies. Mouse mammary epithelial cell line COMMA-1D
(obtained from Dr. Robert Dickson, Georgetown University, Washington, DC)
and COMMA-1D cells expressing Aktl, PDK1, PKCea, or vector control (18)
were maintained at 37°C under 5% CO, in IMEM supplemented with 2.5%
fetal bovine serum, 10 ng/ml epidermal growth factor, and 5 ug/ml insulin.
Human breast cancer cell lines MDA-MB-157, BT20, BT549, MCF-7/ADR,
MDA-MB-468, BT474, Hs578T, MCF-7/Ras, MDA-MB-231, MDA-MB-436,
BT483, ZR75-1, SK-Br-3, MCF-7, MDA-MB-435, and T47-D, and human
mammary epithelial cell line MCF-10A were obtained from the Lombardi
Cancer Center Tissue Culture Core Facility. HCT116 cells were obtained from
the American Type Culture Collection (Manassas, VA), and HABSS cells have
been described previously (22). Monoclonal antibodies to cyclin D1, c-Myc,
B-actin, and rabbit anti-caveolin-1 were purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA). Mouse anti-caveolin-1 was obtained from BD
Biosciences Co. (San Diego, CA). Biotinylated goat antirabbit IgG, ABC
reagent, and diaminobenzidine were purchased from Vector Laboratories
(Burlingame, CA).

Plasmids. Plasmids were obtained from the following sources: (3-catenin/
TCF luciferase (TopFlash) from Upstate Biotechnology (Lake Placid, NY),
c-Myc promoter luciferase plasmid pDel-1 from Dr. Burt Volgelstein, Johns
Hopkins University (Baltimore, MD), TK-Renilla-luciferase from Promega
(Madison, WI), PKCa reporter plasmid —1571/+77 as described (23), human
myc-tagged PDKI1 in pCMVS5 from Dr. Dario Alessi, University of Dundee
(Dundee, United Kingdom), human Aktl in pTarget as described (14), and
human c-Myc in the RCAS viral vector from Dr. Yi Li, Memorial Sloan-
Kettering Cancer Center (New York, NY). c-Myc was amplified by PCR and
subcloned into pCR3.1-TA (Invitrogen Corp., Carlsbad, CA) using the forward
and reverse primers, 5'-GCC ACC ATG CCC CTC AAC GTT and 5'-CC TTA
CGC ACA AGA GTT CCG, respectively.

Western Blotting. Total cell lysates from 2 X 10° cells were prepared by
lysing the washed cell pellet directly in Laemmli sample buffer and boiling for
10 min. Caveolin-1 was extracted in lysis buffer containing: 1% Triton X-100,
10 mm Tris-HC1 (pH 7.4), 150 mMm NaCl, 1 mm EDTA, 60 mMm octylglucoside,
and a protease inhibitor mixture (Boehringer-Mannheim Co., Indianapolis, IN)
for 45 min at 4°C. Lysates were clarified by centrifugation at 13,000 X g for
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15 min at 4°C, and mixed with 10X Laemmli sample buffer and boiled.
Lysates were separated by SDS-PAGE in 10% polyacrylamide gels, blotted
onto nitrocellulose, and analyzed by Western blotting with the antibodies
described.

Immunostaining. Cells were seeded on cover slips in a six-well plate
overnight, and fixed with 4% formaldehyde in PBS for 30 min after removing
the medium. Fixed cells were permeabilized with 0.5% Triton X-100 in PBS
for 10 min, blocked in 2% goat serum in PBS for 30 min, and washed three
times in PBS. Slides were stained with rabbit anti-caveolin-1 antibody in
blocking buffer for 1 h, washed three times with PBS, and incubated with
secondary biotinylated goat antirabbit IgG for an additional hour. Antigen was
visualized using ABC Vectastain and diaminobenzidine as substrate. Slides
were counterstained with Harris-modified hematoxylin (Fisher Scientific,
Pittsburgh, PA) and mounted in Permount.

Luciferase Assay. Cells were seeded in a 24-well plate at a density of
40,000 cells/well overnight. Cells were then transfected with 100 ng TopFlash,
50 ng pDel-1/c-Myc, or 50 ng p[-1571/4+77]PKCa promoter, and 5 ng TK-
Renilla-luciferase (Promega) using either Effectene (Qiagen Inc., Valencia,
CA) or Lipofectamine Plus reagent (Invitrogen Corp.) according to the man-
ufacturer’s instructions. In some experiments, reporter plasmids were cotrans-
fected with 50 ng of pTarget/Aktl, pCMV5/PDK1, pCR3.1/c-Myc, or the
empty vector. Transfection efficiency was monitored by transfection with 100
ng pEGFP-C1 (BD Biosciences, Palo Alto, CA); =50% efficiency was ob-
served in all of the cell lines. Luciferase activity was measured 24 h after
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Fig. 1. B-Catenin/TCF reporter activity in PDK1- and PKCa-expressing cells. A,
vector-, Aktl-, PDK1-, or PKCa-expressing COMMA-1D cells were transfected with a
B-catenin/TCF luciferase plasmid and a Renilla-luciferase plasmid to correct for effi-
ciency, and luciferase activity was measured 24 h later. Each value represents the mean
of three experiments that have been normalized to Renilla-luciferase activity, and is
expressed as activity relative to control cells; bars, =SE. HAB85 cells deficient in a
mutated, activated B-catenin allele and parental HCT116 cells are shown for comparison.
B, cells were transfected with the pDel-1/c-Myc promoter luciferase plasmid, and lucif-
erase activity was measured 24 h later. Each value represents the mean of three experi-
ments, and is expressed as activity relative to control cells. HAB85 and HCT116 cells are
shown for comparison.
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Fig. 2. c-Myc and cyclin D1 levels in PDK1- and PKCa-expressing cells. Cell lysates
were separated by SDS-PAGE, transferred to nitrocellulose, and analyzed by Western
blotting. A, c-Myc levels. Blots were probed with a c-Myc antibody, stripped, and
reprobed with a B-actin antibody. B, cyclin D1 levels. Blots were probed with a cyclin D1
antibody, stripped, and reprobed with a f-actin antibody. Bar graph, relative cyclin D1
levels normalized to B-actin determined by densitometric scanning of B. Results are the
mean of two independent experiments.

Vector

transfection using the Luciferase Assay System (Promega), normalized to
Renilla-luciferase activity, and is expressed as the activity relative to vector-
transfected controls.

RESULTS

One oncogenic pathway suggested to be downstream of PDKI1 is
the B-catenin/TCF pathway. Activation of the Wntl/B-catenin path-
way in the mammary gland is highly oncogenic (24), and GSK-3p,
which suppresses [-catenin function, is inhibited downstream of
PDKI1 (13, 25). To assess the activity of this pathway in our cell lines,
cells were transfected with a TCF-dependent promoter luciferase
plasmid (26). B-Catenin/TCF reporter activity was markedly in-
creased by ~80- and 65-fold, respectively, in PDKI1- and PKCa-
expressing cells, but not in Aktl-expressing cells (Fig. 14). HAB85
cells heterozygous for the wild-type B-catenin allele and deficient in
the mutated, oncogenic allele (22) were included as controls for the
specificity of the assay. 3-Catenin/TCF-dependent activity was mark-
edly suppressed in HABSS cells in comparison with parental HCT116
cells containing the oncogenic allele (Fig. 1A).
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Fig. 3. PKCa promoter activity in PDK1-expressing cells. Cells were cotransfected
with the p[-1571/+77]PKCa promoter luciferase plasmid, and a control, c-Myc, or PDK1
plasmid, and luciferase activity was measured 24 h later. Each value represents the
mean * SEM of three experiments and is expressed as activity relative to control cells.

The B-catenin target, c-Myc (27), which is oncogenic in the mam-
mary gland (28), was next evaluated using a c-Myc promoter reporter
gene (Fig. 1B). c-Myc promoter activity was markedly increased in
PDK1- and PKCa-expressing cells, but not in Aktl-expressing cells;
promoter dependence on [-catenin activation was again absent in
HABSS cells lacking the oncogenic f-catenin allele (Fig. 1B).

To additionally characterize the downstream effectors of the
B-catenin pathway operative in PDK1- and PKCa-expressing cells,
levels of the PB-catenin targets, c-Myc and cyclin D1 (29), were
determined. c-Myc was undetectable in control and Aktl-expressing
cells, but was increased significantly in PDK1- and PKCa-expressing
cells (Fig. 2A4). Levels of cyclin D1 were also much greater in PDK1-
and PKCa-expressing cells than in control or Aktl-expressing cells
(Fig. 2B). Cyclin D2 was not detectable (4), although it has also been
suggested to be the mediator of c-Myc-induced mammary tumorigen-
esis (30).

We found previously that PKCa was up-regulated in PDKI-
expressing cells (18). To determine whether this was linked to c-Myc
expression, a PKCa promoter reporter plasmid (23) that contains
several c-Myc response elements was tested (Fig. 3). Although, PDK1
increased PKCa promoter activity 2.3-fold, coexpression of c-Myc
did not markedly enhance promoter activity, suggesting that addi-
tional transcription factors likely contribute to regulating PKCa tran-
scription downstream to PDK1.

To additionally delineate the role of c-Myc in PDKI-mediated
oncogenesis, expression of the tumor suppressor caveolin-1 was de-
termined. Caveolin-1 is the principal component of plasma membrane
caveolae that are involved in sequestering several signal transduction
effectors (31, 32). Caveolin-1 functions as a tumor suppressor gene in
breast cancer (33), and its transcription is suppressed by c-Myc (34,
35). In PDK1- and PKCa-expressing cells, caveolin-1 expression was
undetectable, although it remained unchanged in Aktl-expressing
cells (Fig. 4A). Immunostaining for caveolin-1 also indicated clear
differences among control, Aktl-, PKCa-, and PDKI1-expressing
cells, where it was undetectable in the latter two cell lines (Fig. 4B).

To examine the relationship between PDK1 and caveolin-1 expres-
sion, 16 breast cancer cell lines and 1 breast epithelial cell line were
analyzed by Western blotting (Fig. 5A4). Caveolin-1 was either re-
duced or undetectable in most cell lines, and all of the cell lines
expressed 1.4-5-fold higher PDK1 levels in comparison with MCF-
10A cells (Fig. 5B). Interestingly, 7 of 7 cell lines known to be
invasive expressed caveolin-1, whereas 5 of 6 cell lines known not to

be invasive did not express caveolin-1 (Fig. 5B). The invasive status
of 3 cell lines is unknown.

DISCUSSION

PDKI1 and its downstream effector, PKCa (36), were shown pre-
viously to mediate mammary epithelial cell transformation and tu-
morigenesis (18). Aktl, a well-characterized PDK1 substrate, did not
exhibit such activity. The present study now suggests that activation
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Fig. 4. Caveolin-1 expression in PDKI- and PKCa-expressing cells. A, cell lysates
were separated by SDS-PAGE, blotted onto nitrocellulose, and probed with an anti-
caveolin-1 antibody. Blots were stripped and reprobed for -actin. B, cells were fixed and
stained with an anti-caveolin-1 antibody, and antigen was detected by peroxidase staining.
Magnification X400.
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Fig. 5. Caveolin-1 and PDKI1 expression in human breast cancer cell lines. A, cell lysates were separated by SDS-PAGE, blotted onto nitrocellulose, and probed with an
anti-caveolin-1, anti-PDK1, or antiactin antibodies. The values listed below each lane are the level of caveolin-1 or PDK1 normalized to -actin levels relative to MCF-10A cells. B,
PDKI1 and caveolin-1 levels relative to MCF-10A cells. Each point is based on the data in A where PDK1 and caveolin-1 levels in MCF-10A were set to 1.

of B-catenin/TCF and two of its target genes, c-Myc and cyclin DI,
correlate with the oncogenic potential of PDK1 and PKCa in mam-
mary epithelial cells, and that activation of this signaling axis results
in the down-regulation of the tumor suppressor, caveolin-1 (Fig. 6).
These changes appear to explain the lack of oncogenicity of both
wild-type and constitutively active Aktl in the mammary gland,
despite its ability to block apoptosis, increase cyclin D1 levels, and
cause hyperplasia (19-21). However, the lack of Aktl oncogenicity in
the mammary gland may not pertain to all of the Akt isoforms and
target tissues, because expression of lymphocyte-targeted Akt2 caused
lymphomas (37).

c-Myc up-regulation occurred downstream of PDK1 and PKCe, but
not Aktl, and the expression of this oncogene correlated with the
relative oncogenic activity of PDK1 and PKCa in mammary epithelial
cells (18), and the known oncogenic activity of c-Myc in fibroblasts
(38, 39) and the mammary gland (28). However, c-Myc activation did
not appear to explain the up-regulation of PKCa occurring in PDK1-
expressing cells, because it had only a limited effect on PKCa
promoter activity (Fig. 3). This suggests that other transcription fac-
tors (23) or post-translational processes modulated by PDK1 are likely
to be involved.

Activation of the TCF coactivator, B-catenin, is associated with
transformation in many tissues (40, 41). This is particularly striking in

the mammary gland where expression of a constitutively active
B-catenin transgene resulted in rapid tumorigenesis and elevated cy-
clin D1 expression (42). In the present study, it is less clear how
elevated cyclin D1 levels found in PDK1- and PKCa-expressing cells
relate to transformation, because Aktl also increased cyclin D1 levels,
albeit to a lesser extent. Because Aktl expression in the mammary
gland was not tumorigenic (19), and the phenotype of mouse mam-
mary tumor virus-cyclin D1 mice is not strongly tumorigenic (43), the
contribution of cyclin D1 to transformation may be more quantitative
than qualitative or require a secondary event such as tumor suppressor
down-regulation. More than 50% of human breast cancers overex-
press cyclin D1 (44, 45), and cyclin D1 is required for Neu- and
Ras-mediated transformation, but not for c-Myc- and Wntl-induced
mammary tumorigenesis (30). Although, Aktl has a key role in cell
survival (13, 14, 46) and induces cyclin D1 expression in the mam-
mary gland (19), its lack of oncogenicity (18) suggests that cyclin D1
may be necessary but insufficient for transformation through the
PDK1 signaling pathway.

Although the pB-catenin/c-Myc pathway activates a number of
proto-oncogenes (47, 48), c-Myc also serves to down-regulate the
tumor suppressor, caveolin-1, by inhibiting initiator element function
in the caveolin-1 promoter (34, 35). This was readily apparent in
PDKI1- and PKCa-expressing cells where caveolin-1 was absent, and
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Fig. 6. PDK1 transformation pathway in mammary epithelial cells. Growth factor
receptor (GFR) stimulation activates phosphatidylinositol 3'-kinase to generate phosphati-
dylinositol-3,4,5-trisphosphate, which recruits PDK1 to the plasma membrane. PDK1
phosphorylates Aktl and PKCa at T308 and T496, respectively, to prime catalytic
activity. PDK up-regulates PKCa expression and activates the B-catenin pathway; it is
uncertain whether PDK1 directly activates B-catenin. B-Catenin activates cyclin D1 and
c-Myc transcription, and c-Myc suppresses caveolin-1 transcription. Increased c-Myc
activity and loss of caveolin-1 lead to transformation. Solid bold arrow, marked activa-
tion; solid arrow, activation; dashed arrow, weak activation; blunt line, inhibition.

correlated inversely with c-Myc and PDK1 expression. Caveolin-1
has been proposed to function as a scaffolding protein to bind and
sequester signaling molecules such as PKCa, c-Src, eNOS, and G
proteins in caveolar membrane rafts, where their activity is inhibited
(31, 49). The suppressor effect of caveolin-1 on malignant transfor-
mation has been illustrated by its ability to reverse H-Ras- and v-Abl-
induced transformation in fibroblasts (50), as well as the tumorige-
nicity of MCF-7 breast cancer cells (51). In the present study, cell
morphology was also markedly changed in PDK1- and PKCa-
expressing cells, which suggests changes in the actin cytoskeleton,
such as those observed in 3T3 cells expressing an oncogenic caveo-
lin-1 mutant (33). Thus, loss of caveolin-1 expression by PDK1 and
PKCa likely plays a key role in their ability to mediate mammary
epithelial cell transformation.

The low levels or absence of caveolin-1 and the high expression of
PDKI1 in all 16 of the breast cancer cell lines examined is of great
interest, because it implies a functional link between these proteins. A
tumor suppressor role for caveolin-1 is suggested by its absence in
mammary tumors in mouse mammary tumor virus-c-Myc, -Neu, -Src,
and -Ha-Ras transgenic mice (52), as well as the presence of a
transforming P132L caveolin-1 mutation in 16% of highly aggressive
scirrhous breast cancers (33). However, studies in primary prostate
and pancreatic cancer indicate just the converse, i.e., that positive
caveolin-1 expression is associated with tumor progression and poor
clinical outcome (53, 54). Our results identified a subset of breast
cancer cell lines that have been characterized previously as invasive
(55-57), and that express caveolin-1 and PDK1. The association of
caveolin-1 mRNA expression with invasiveness in MDA-MB-435,
BT549, MDA-MB-231, and Hs578T cells was also noted previously
(58). The reappearance of caveolin-1 in drug-resistant MCF-7/ADR
cells (59), and its association with P-glycoprotein (60), indeed sug-

gests a role for caveolin-1 in pleiotropic drug resistance and tumor
progression.

In summary, the present study demonstrates that PDK1 and PKCa,
but not Aktl, results in activation of S-catenin-mediated c-Myc and
cyclin D1 expression that is associated with the down-regulation of
caveolin-1. The concomitant gain of c-Myc function and loss of
caveolin-1 function suggest they are major determinants of PDK1-
and PKCoa-mediated mammary oncogenesis.
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