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Abstract
Bone metastasis will impact most men with advanced prostate cancer. The vicious cycle of bone degradation

and formation driven by metastatic prostate cells in bone yields factors that drive cancer growth. Mechanistic
insights into this vicious cycle have suggested new therapeutic opportunities, but complex temporal and cellular
interactions in the bonemicroenvironmentmake drug development challenging.We have integrated biologic and
computational approaches to generate a hybrid cellular automatamodel of normal bonematrix homeostasis and
the prostate cancer-bone microenvironment. The model accurately reproduces the basic multicellular unit bone
coupling process, such that introduction of a single prostate cancer cell yields a vicious cycle similar in cellular
composition and pathophysiology tomodels of prostate-to-bonemetastasis. Notably, themodel revealed distinct
phases of osteolytic and osteogenic activity, a critical role for mesenchymal stromal cells in osteogenesis, and
temporal changes in cellular composition. To evaluate the robustness of the model, we assessed the effect of
established bisphosphonate and anti-RANKL therapies on bone metastases. At approximately 100% efficacy,
bisphosphonates inhibited cancer progression while, in contrast with clinical observations in humans, anti-
RANKL therapy fully eradicated metastases. Reducing anti-RANKL yielded clinically similar results, suggesting
that better targeting or dosing could improve patient survival. Our work establishes a computational model that
can be tailored for rapid assessment of experimental therapies and delivery of precisionmedicine to patients with
prostate cancer with bone metastases. Cancer Res; 74(9); 2391–401. �2014 AACR.

Introduction
Prostate cancer frequently metastasizes to bone with

approximately 90% of the men displaying evidence of skeletal
lesions upon autopsy (1). Despite medical advances, prostate
to bone metastases remain incurable with treatments being
mainly palliative (2). Advances in our knowledge of the molec-
ular mechanisms underlying the disease should provide ther-
apeutic opportunities to improve overall survival rates but on a
moremicroenvironmental scale, predicting how putative ther-
apies will impact multiple cellular responses remains a chal-
lenge. However, integrating key biologic findings with the
power of computational modeling offers a unique opportunity
to assess the impact of putative therapies on the progression of
prostate cancer.

Understanding the normal basic multicellular unit (BMU)
bone remodeling process is critical for the generation of a
robust computational model (3). The initiation of the BMU
by local or systemic signals results in retraction of osteo-
blasts from the bone surface and the formation of a canopy.
Local mesenchymal stromal cells (MSC) generate RANKL-
expressing osteoblasts precursors that subsequently facili-
tate osteoclast recruitment, maturation, and bone resorp-
tion. Degradation of the bone results in the release of
sequestered growth factors such as TGF-b that in turn serve
to control the extent of bone degradation and osteoblast
expansion. After osteoclast apoptosis, osteoblasts rebuild
the bone with a portion terminally differentiating into
osteocytes and the remainder reconstituting the bone lining,
ready for the next remodeling cycle.
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Major Findings

* The hybrid cellular automatamodel recapitulates the key
aspects of the physiology of the basicmulticellular unit as
well as the "vicious cycle" of prostate to bone metastases.

* Progression of osteogenic prostate to bone metastases is
critical on osteoclast activity and mesenchymal stromal
cells.

* The computational model also illustrates the temporal
and phasic nature of the metastases.

* The application of clinically used bisphosphonates and
anti-RANKL therapies to the computational model
illustrates the power of the approach in predicting the
efficacy of current and putative therapies.
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Quick Guide to Assumptions and Equations
For our hybrid cellular automata model, we consider six different cell types, including five residents of the BMU: osteoblasts,

osteoclasts, precursor osteoblasts (pOB), precursor osteoclasts (pOC), MSCs, as well as prostate tumor cells, capable of recruiting
MSCs and producing TGF-b (Table 1). Next, we considered the interactions between the key cell types (Fig. 1A) and the
microenvironmental factors that control those interactions, which were defined as follows.

Bone
Bone is one of the richest reservoirs of TGF-b in the human body (700 pg/mg of bone tissue; ref. 10). We have modeled bone

explicitly as static cells that, when resorbed, disappear from the domain and release bone-derived factors (BDF) and TGF-b.

MSCs, pOBs, and osteoblasts
Bone-generating osteoblasts (pOBs) are derived fromMSCs (11). MSCs undergo asymmetrical division and pOBs proliferate in

response to TGF-b, ultimately differentiating into bonematrix-producing osteoblasts, a processmediated by factors such as BMP-
2 (12). In ourmodel, pOBs express RANKL, migrate toward and expand clonally in response to TGF-b, and finally differentiate into
osteoblasts after 14 days. As adult osteoblasts, themodeled cells seek TGF-b and bone. If in contact with bone, they lay down bone
matrix with an active lifespan of 75 days (Fig. 1B).

pOCs and osteoclasts
pOCs are derived from myeloid precursors and, in response to RANKL, undergo cellular fusion to generate mature osteoclasts

(13). Osteoclasts resorb the bone matrix, leading to the release of BDFs and TGF-b (5, 14). We have explicitly modeled these
processes. pOCs are recruited by RANKL from the vasculature and have a lifespan of 2 days. Once on the bone surface, theywill fuse
together, provided that the local levels of RANKL are high, whereas those of TGF-b are low. Aminimum of three pOCs (usually 5 or
more) can fuse to form an osteoclast. Osteoclasts have a lifespan of 14 days, in which their singular function is to resorb bone
thereby releasing TGF-b and BDFs (Fig. 1C). On the basis of the amount of TGF-b present in bone, we have calculated that a
single osteoclast measuring 100 mm in diameter will resorb approximately 10 mm3 of bone per day. Given the density of
bone as 1,500 mg/kg, we estimate that an osteoclast can resorb 1.17 � 10�3 mg/day. With the concentration of TGF-b in
bone being 5 ng/mg, we calculated that a mature osteoclast can generate up to 0.00558 ng of TGF-b per day.

Prostate cancer
On the basis of our empirical as well as published data, we engineered the prostate cancer cells to express TGF-b ligands

and receptors. Importantly, the level of prostate cancer TGF-b (5 � 10�12 pg/day) is approximately 1,000-fold less than that
generated by bone resorbing osteoclasts (5 � 10�9 pg/day). This ensures the reliance of the prostate metastases on TGF-b
released from the bone. In the computational model, we have described the TGF-b–producing prostate cancer metastases as
agents chemoattracted to the BMU, with an ability to recruit MSCs, based on our empirical studies (Fig. 2). Prostate cancer
replication potential is proportional to the availability of BDFs and, if not bathed with these essential factors, prostate cancer
cells will die within 14 days (Fig. 1D). The prostate cancer metastases are the only ones that can destroy the canopy of the
BMU as they grow (Fig. 3B). We have considered that prostate cancer promotes osteoblast differentiation, a phenomenon that
is not noted in lytic lesions (14).

The microenvironment
TGF-b, RANKL, and BDFs are generated by the behaviors and interactions amongst the cellular components and are

characterized by partial differential equations that are subsequently discretized and applied to a grid. TGF-b is produced by
bone destruction (abBi,j) and cancer cells (acCi,j) in proportion to the local TGF-b concentration, with natural decay of the ligand
(sbTb), ensuring the density never exceeds a saturation level, m0. TGF-b has pleiotropic effects on osteoblasts, osteoclasts, and
metastatic prostate cancer cells. Low concentrations of TGF-b stimulate osteoclastogenesis, but high concentrations inhibit the
process, illustrating the biphasic effects of this growth factor even on the same cell type (15, 16). Our group and others have shown
that TGF-b supports tumor survival and growth by activating TGF-b receptors (TbR) on the tumor cell surface (17–19). TGF-b is
governed by the following differential equation:

qTb x; y ; tð Þ
qt

¼ r Db m0 �Mð ÞrTb
� �þ abBi;j þ acCi;j � sbTb

RANKL RL is produced by pOCs, aLOi,j, in proportion to the local RANKL concentration, with natural decay of the ligand, sLRL,
ensuring the density never exceeds the saturation level n0. The concentration of RANKL is determined by:
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In the metastatic prostate cancer-bone microenvironment,
prostate cancer cells perturb the balance of the BMU to
generate a "vicious cycle" via the expression of factors such
as RANKL thereby inducing excessive bone resorption (4). The
release of sequestered growth factors from the bone matrix
such as TGF-b in turn stimulates the survival and growth of the
metastatic prostate cancer cells. Of note, prostate to bone
metastases are also characterized by areas of extensive bone

formation/osteogenesis, a phenomenon that is mediated by
factors such as, endothelins and bonemorphogenetic proteins,
BMP-2 and BMP-4 (5).

To date, the majority of our knowledge of the mechanisms
driving prostate cancer progression has been garnered by
focusing on the role of individual cancer/host-derived mole-
cules. However, this molecular reductionist approach often
does not take into account the multiple cellular effects of

qRL x; y ; tð Þ
qt

¼ r DL n0 � Nð ÞrRLð Þ þ aLOi;j � sLRL

Factors FB are released by bone destruction, aBBi,j, in proportion to the local factor concentration, with natural decay of the
factors, sBFB, ensuring the density never exceeds the saturation level p0. As such, the dynamics of the bone-related factors are
calculated through:

qFB x; y ; tð Þ
qt

¼ r DB p0 � Pð ÞrFBð Þ þ aBBi;j � sBFB

Periodic boundary conditions were considered only for the left and right sides of the microenvironment, whereas no-flux
boundaries were imposed on the top and bottom of the two dimensional grid.

Table 1. Empirical and published data used to parameterize the computational model

Parameter Value Normalized value Reference

Osteoblast diameter 15 mm 1 px (34)
Osteoclast diameter 50–100 mm 3–5 px (35)
Osteoclast migration speed 100 mm/h 1 px/ts (36)

5 nm/s but can vary
between 30 and 248 mm/h.

(37)

(38)
Osteoblast migration speed 10 mm/h 1/6 px/ts (36)

0.1470 � 0.02 mm/d (39)
Cell-cycle time 24 h 240 ts Estimated
TGF-b diffusion rate 750 mm2/min 0.01 px/ts (40)

2 � 10�9 cm2/s (8)
DPP-10 mm/2 (41)

TGFb half-life 2 min 0.5 ts (42)
2–3 min. Presence of LAP can
extend half-life to 100 min
in plasma.

(43)

TGF-b quantity released by OCL/d 0.00558 ng/d 1 MaxTGF-b/ts Estimated
TGF-b quantity released by tumor cell/d 0.005 pg/d 0.0001 MaxTGF-b/ts Estimated
Rate of bone degradation 10 mm/d 1/240 px/ts (44)

43–1,225 mm3/h for �2 wk (45)
Volume of a resorption pit 78,539 mm3 ¼ 7.58 � 10�14 m3 70 px Assumed from the diameter

of an osteoclast and the
amount of bone resorbed
over a 24-hour period.

Bone formation 0.656 mm/d but up to 0.24 mm/y 1/850 px/ts (45)
1 mm/d (46)

BMU size 2 � 0.5 mm2 200 � 50 px Estimated
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molecular mechanisms being investigated. Mathematical
and computational models are a powerful means with which
to study complex in vivo interactions. Numerous advances
using this approach have identified roles for tumor hetero-
geneity in cancer progression and evolution, accurately
predicting glioma progression and response to disease and,
describing the cellular dynamics of bone remodeling (6). To

understand the simultaneous and multiple interactions
occurring over time in the metastatic prostate cancer bone
microenvironment, we have generated a hybrid cellular
automaton (HCA)-based integrated computational model.
Using this approach, we tested the model's response to
therapies currently used in the clinic to treat prostate to
bone metastases (7–9). We posit that computational models

Figure 1. Developing a model of the prostate tumor bone microenvironment. A, interaction diagram showing the positive (blue) and negative (red) interactions
between cell types (boxes) and factors such as TGF-b, RANKL, and BDFs. B–D, flowchart describing the sequence of steps followed by osteogenic cells (B),
osteolytic cells (C), and prostate cancer cells (D) in the mathematical model. PCa, prostate cancer.
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will be a powerful means with which to test the efficacy of
available or putative therapies for the treatment of prostate
to bone metastases.

Materials and Methods
Mathematical model
Parameters for the HCA model were derived from empirical

and published data (Table 1; ref. 9). The model is composed of a
grid (200 � 50 points) representing 2 � 0.5 mm2 of the bone
microenvironment. A major advantage of the HCA is in its
intimate interconnection with experimental data, where the
model and the experiments inform each other. This increases
the accuracy of the model abstractions and connectivity of the
basic elements, which yields reliable and biologically relevant
emergent behaviors. Tomodel the normal sequence of the BMU
program, we have focused on understanding the role and
behavior of the key regulators of the BMU dynamics. The
principal cellular players, bone, MSCs, precursor osteoblasts
(pOB), osteoblasts, precursor osteoclasts (pOC), andosteoclasts,
have been explicitly modelled as agents in a grid following
specific rule sets in a physical microenvironment (see Quick
guide to assumptions and equations). Collectively, these com-
ponentsfindanatural homeostatic balance that recapitulate the
dynamics of bone remodeling, a homeostasis that can be
perturbed via the introduction of metastatic prostate cancer
cells.

Immunofluorescence and quantitation
Human prostate to bone metastases samples (5 mm),

provided by Dr. Robert Vessella (University of Washington,
Seattle, WA), were rehydrated and blocked before the
addition of phospho-specific anti-Smad2 (1:200 dilution;
Millipore) and pan anti-cytokeratin (1:200 dilution; Sigma)
and appropriate immunoglobulin G (IgG) controls. Tissue
sections were incubated overnight at 4�C. Subsequently,
species-specific secondary AlexaFluor 568 and AlexaFluor

488-conjugated antibodies (1: 1000 dilution for one hour at
room temperature; Invitrogen) were added for imaging by
microscopy. For semiquantitative analysis, regional images
were segmented on the basis of the intensity of staining
using Definions Tissue Studio (TS).

Migration
Osteoblast (MC3T3) and MSC migration was assessed

using a modified Boyden Chamber assay. Cells (5 � 105)
were seeded in the upper chamber and their migration to
TGF-b rich PAIII conditioned media in the presence of a
TGF-b inhibitor (1D11; Genzyme) or isotype control (13C4)
at a concentration of 5 mg/mL was measured over a 5-hour
period at 37�C. Migrated cells were stained with hematoxylin
and air dried. The number of migrated cells was counted in
three random �20 fields for each condition. All experiments
were performed in triplicate.

Intratibial ProstateModel of osteogenesis, histology, and
TRAcP staining

All animal experiments were done with University of South
Florida (Tampa, FL) Institutional Animal Care and Use Com-
mittee approval (CCL; #R3886). PAIII luciferase expressing cells
were injected (1 � 105 in 10 mL volume) into the tibia of
anesthetized immunocompromisedmice (recombinase activat-
ing gene-2 null; RAG-2�/�; ref. 20). Tumor growth was imaged
using bioluminescence imaging and quantitated with IVIS
Living Image software. After 2 weeks, tumor-bearing tibias were
excised, soft tissue removed and processed for histology and
histomorphometry as we have previously described (19, 21).

For cell culture and statistical methods, please see Supple-
mentary Materials and Methods.

Results
Key for the generation of the BMU was the incorporation of

major cellular players namely the prostate cancer metastases,

Figure 2. TGF-b expression in
human prostate to bone
metastases. A, patient samples
(N ¼ 9) were stained for pSMAD2
(red), pan-cytokeratin (green) with
nuclear contrast (DAPI). Dashed
inset is magnified in panel on right.
B, the intensity of pSMAD2 staining
in patient samples was assessed
using Definiens Tissue Studio
software. C and D, TGF-b
significantly enhances themigration
of MSCs and MC3T3 osteoblast
precursors. Representative low
power objective (�20) filters
illustrating MSC (C) and MC3T3 (D)
migration to prostate cancer
conditioned media (PAIII CM) in the
presence of a TGF-b blocking
antibody (1D11) or IgG control
(13C4). Serum-free media (SFM)
was used as a baseline control for
migration. Asterisks denotes
statistical significance (P < 0.05).
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MSCs, pOBs, osteoblasts, pOCs, and osteoclasts. Furthermore,
based on the literature, RANKL, TGFb, and BDFs were con-
sidered main mediators driving the cellular interactions (14).
Although RANKL has been well characterized in the context of
prostate to bonemetastases, few studies have explored the role
of TGF-b signaling in this setting. Therefore, we initially
examined the activity of TGF-b signaling in prostate to bone
metastases in human specimens. Using phosphorylated
SMAD2 (pSMAD2) as a readout for TGF-b receptor activity,
our results indicated that TGF-b signaling is active in human
prostate to bone metastases (Fig. 2A). Quantitative analysis
revealed that in the human specimens, TGF-b signaling was
highest in the prostate cancer cells but we also observed strong
staining in stromal cells, including osteoblasts (Fig. 2B). We
also examined the effects of TGF-b on the proliferation and
migration of the cellular components of the vicious cycle
including prostate cancer cells, osteoclast precursors, and
osteoblast precursors, including MSCs. Of note, we observed
that TGF-b significantly impacted the migration of MSCs and
the osteoblast precursor cell line, MC3T3-E1, suggesting a role
of the growth factor in the recruitment of cells that could
impact prostate cancer-induced osteogenesis (Fig. 2C and D).

On the basis of these empirical data and the literature, we
parameterized aHCAcomputationalmodel of the homeostatic
BMU (Fig. 3A and Supplementary Fig. S1 and Movie 1). On the
basis of multiple simulations (N ¼ 25) of the computational
model, we observed little variation in each population cell
number. In some instances (N ¼ 2), the BMU failed to initiate,
in part, due to spatial and cytokine gradient differences
between the different simulations (data not shown) but, we

expect that persistent remodeling initiation stimuli would
eventually lead to the formation of the BMU in vivo. We also
observed that in a subset of BMU simulations (N ¼ 2),
simultaneous osteoclast fusion resulted in two sites of resorp-
tion. However, the generation of BDFs by the osteoclasts
sufficiently increased osteoblast numbers and returned the
BMU to baseline (data not shown). Importantly, the typical
interactions between the different elements of the computa-
tional model result in a homeostatic BMU. It is important to
note that each of the cells behave as autonomous agents and
possess the inherent ability to respond to the surrounding
environment independently.

Next, we introduced a single metastatic prostate cancer
cell expressing TGF-b ligand and receptors into the BMU.
Interestingly, we observed that in many of the simulations
(N ¼ 18 of 25), the metastases failed to generate a lesion. We
anticipate that the introduction of prostate cancer emboli
would significantly enhance the "take rate." This "take rate"
result emphasizes the stochastic nature of the model and
reflects the in vivo reality where not every metastatic cancer
cell that successfully invades a BMU would result in a viable
lesion. In the simulations where lesions were initiated (N¼ 7
of 25), we observed that after 10 days, the presence of the
prostate cancer cells resulted in the integrity of the canopy
being compromised and a resultant increase in osteoclast
recruitment and maturation (Fig. 3B). Over time, the pros-
tate cancer cells expanded, resulting in MSC infiltration and
osteoblast-mediated bone formation ultimately recapitulat-
ing the "vicious cycle" paradigm (Fig. 3B and Supplementary
Fig. S2 and Movie 2).

Figure 3. Simulation runs from the BMUmodel of the bonemodeling unit (BMU) and themetastatic prostate cancer bonemicroenvironment (prostate cancer-
BME). A, canopy formation in response to local/systemic stimuli (day 0). Initial osteoid degradation by retracting osteoblasts can result in the release of
TGF-b that stimulates pOB expansion subsequent to asymmetric division by MSCs. Scale bar, 250 mm. pOBs recruit pOCs in a RANKL-dependent manner
(day 2). As they fuse, the pOCs become fully differentiated osteoclasts that start resorbing bone. Inset illustrates bone resorption in the BMU. Scale bar,
100 mm. Upon osteoclast apoptosis, pOBs differentiate into adult osteoblasts and begin the apposition phase (day 40). Osteoblasts rebuild bone over
the course of 3 months and undergo terminal differentiation into osteocytes during the process (day 100). B, the introduction of a TGF-b ligand and
receptor expressingmetastatic prostate cancer cell perturbs BMUhomeostasis (day 0). Inset highlights tumor–bone interaction. Scale bars, 250 and 100 mm,
respectively. The BMU canopy is compromised at day 40 and uncontrolled bone turnover results in the enhanced recruitment of MSCs and pOCs that
establishes a vicious cycle (day 100–200).
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Analysis of the computational prostate cancer-bone micro-
environment at day 240 revealed striking histologic similarities
to an in vivo model of the osteogenic/osteolytic prostate to
bone metastasis environment (Fig. 4A and B). We noted that
the number of prostate cancer cells varied amongst simula-
tions (8,625 � 4,580; N ¼ 5) but in general, the growth rate
predicted by the computational model was comparable with
the growth rate of the prostate cancer cells in vivo (Supple-
mentary Fig. S3). We also noted similar proportions of stromal
cell populations at the computational and biologic study
endpoints (Fig. 4C andD). In the computationalmodel, distinct
phases of cell activitywere observed. For example, the numbers
of adult osteoblasts increased over time but notable plateaus
before increases in cell number existed (Fig. 4C). These pla-
teaus in adult osteoblasts corresponded with dips in the pOB
and pOC precursor population. MSC numbers, however, grad-
ually increased over time and in general, paralleled increases in
cancer cell number. In fact, the model predicts that MSCs are
crucial for the progression of the metastases because relaxing
the probability of recruitment greatly impacts the growth of

the metastases (Supplementary Fig. S4). Furthermore, we
observed that osteoclasts were critical for cancer progression
in the model with numbers changing over time from zero to 12
(Fig. 4E). Although the in vivo model output has a similar
number of osteoclasts per field (Fig. 4D and F) at the study
endpoint, the phasic nature of osteoclast involvement is not
apparent.

To test the applicability of the model in treating pro-
state to bone metastases, we applied two standard-of-care
treatments, namely, a bisphosphonate and an anti-RANKL
inhibitor, that induce osteoclast apoptosis during resorption
and inhibit osteoclastogenesis, respectively. To mimic the
clinical scenario, we applied the bisphosphonate at a time
where metastases had established (day 80), although it
should be noted that therapies could be applied at any
juncture to the model (Fig. 5A and B and D; N ¼ 5 simu-
lations per group). During bisphosphonate treatment, osteo-
clasts still formed but typically died within 24 hours of
initiating bone resorption (Fig. 5B, bottom). However, resid-
ual bone resorption during bisphosphonate therapy was

Figure 4. Computational and
biologic model output
comparisons of the prostate
cancer-bone microenvironment.
A and B, the computational output
(A) of the prostate cancer-bone
microenvironment is similar to that
of an in vivo prostate cancer to
bone metastasis model (B).
Dashed line in B represents the
tumor-pathologic bone interface.
C, temporal changes in cell
population in the computational
model. D, analysis of cell
populations (prostate cancer cells,
bone rimming cuboidal
osteoblasts, and TRAcP-positive
osteoclasts) and bone volume in
biologic model endpoint. E and F,
computational model outputs
reveal the fluctuation of osteoclast
numbers over time (E), numbers
that correlate with the numbers of
TRAcP osteoclasts (arrows) in
similar sized fields in vivo (F).
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sufficient to sustain the metastases with the number
of cancer cells on average at the final time point being
7,138 � 2,343 (n ¼ 5) compared with nontreated control of
8,624 � 4,580 (n ¼ 5; P > 0.05). Interestingly, the applica-
tion of an anti-RANKL inhibitor halted cancer growth with
no cancer cells detectable after 20 days of administration
(Fig. 5C and D; P < 0.05). These data suggest that treatment
with anti-RANKL inhibitors should be curative in the clinical
setting. However, in clinical trials with anti-RANKL inhibi-
tors such as Xgeva, there is a slight but not significant
increase in survival of patients on the therapy compared
with bisphosphonates (2). In our simulations, we found that
reducing the efficacy of the anti-RANKL inhibitor from 100%
to 40% resulted in an output of cancer cells (3,157 � 3,037;
N ¼ 5) that was comparable with that of the bisphospho-
nate-treated group (7,138 � 2,343 cancer cells; N ¼ 5; Fig. 5B
and Supplementary Fig. S5). These data suggest that im-
proved efficacy of anti-RANKL delivery into the prostate
cancer bone microenvironment could be curative.

Discussion
In the current study, we have generated a faithful compu-

tational model of the BMU. It is important to note that the
homeostatic behavior is not hardcoded but emerges from the
interactions between the different primary cell types of the
bone in response to TGF-b, RANKL, and BDFs. Furthermore,
informed by experimental evidence, the introduction of a

simulated TGF-b ligand and receptor expressing prostate
cancer cell into the BMU resulted in a vicious cycle that yielded
mixed osteogenic/osteolytic lesions over clinically relevant
periods of time. Key findings arising from the computational
model include: (i) the ability to assess temporal changes in
cellular populations and dissect complex dynamics that are
difficult to determine in vivo, (ii) the phasic osteolytic/osteo-
genic nature of the metastases, (iii) the application of clinically
used therapies such as bisphosphonates and anti-RANKL ther-
apies illustrate the usefulness of the model in predicting the
efficacy of targeted inhibitors, and (iv) the impact of inhibitors
at varying doses on the progression of prostate to bone
metastases.

In our study, we selected the BMU as the primary target for
metastatic prostate cancer cells inwhich to establish and grow.
This is logical because reports have shown that high rates of
bone turnover correlate with poorer prognoses for patients
with prostate cancer and that the metastases can utilize many
of the bioavailable factors present in the remodeling environ-
ment (22–24). On the basis of this rationale, we introduced a
single metastatic prostate cancer cell into the BMU that over
time recapitulated the vicious cycle paradigm. The "histologic"
output of the computational model at the endpoint was
remarkably similar both in morphology and in cellular popu-
lation proportion to an in vivo model used by our group to
studymixed prostate to bonemetastases. In contrast, however,
the computational model illustrates that the cellular

Figure 5. Application of therapies
to the computational model of the
metastatic prostate cancer bone
microenvironment. A–C, the
impact of standard-of-care
therapies on the host
microenvironment cell numbers in
prostate to bone metastases was
assessed in simulations where
no therapy was applied (control; A),
bisphosphonates at a dosing of 4
mg/5 mL i.v. (bisphosphonate; B)
or RANKL targeted therapy
(Anti-RANKL; C) at a dose of 120
mg/1.7 mL i.v. was applied at
approximately 80 days
postmetastasis (Rx On). D and E,
the impact of placebo control and
standard-of-care therapies on
tumor volume (D) and bone volume
(E) over time.
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population in the prostate cancer-bone microenvironment is
dynamic and changes occur both exponentially (tumor
growth) and in phases (osteoclast, osteoblasts). For example,
our model illustrates that osteoclast numbers rarely exceed a
total of 20 out of approximately 2� 104 cells per computational
field of view (Fig. 4C and E). Reports have shown that high
levels of TGF-b can hinder osteoclastogenesis therefore, lim-
iting the number of osteoclasts that can form in the tumor-
bone microenvironment even in the presence of RANKL-pro-
ducing osteoblast precursors (25). In fact, our results show that
osteoclast-mediated bone resorption is critical for the induc-
tion of the osteogenicmetastases, an observation that supports
the use of anti-RANKL therapies in men with osteogenic
prostate to bone metastases.
In a number of model iterations, we observed that the

recruitment of MSCs to the prostate cancer-bone microenvi-
ronment was essential for the generation of osteoblast pre-
cursors and the development of osteogenic lesions. Our in vitro
data also show that TGF-b contributes toMSCs and osteoblast
precursor migration therefore, providing a means through
which these cell types can be recruited to areas of prostate
to bonemetastases and contribute to their progression (Fig. 2).
Although the role of MSCs in the prostate cancer-bone micro-
environment has not been explicitly explored thus far, our
model predicts an important role for this cell type in tumor
growth. It is important to note that we did not consider the
trans-differentiation of prostate cancer cells into osteoblasts,
but "osteomimicry" is a distinct possibility that could also be
integrated into future iterations of the model (26).
The ability to dissect changes in cellular composition in the

computational model provides key insights into how the
cancer cells, MSCs, osteoblast precursors, osteoblasts, osteo-
clast precursors, and osteoclasts are interacting with each
other over a clinically relevant period of more than 200 days.
In vivo models are typically analyzed at endpoint or at pre-
determined time steps to assess cancer growth and changes in
themicroenvironment in control and test groups. For example,
the MDA-MB-231 progression in bone is often measured at
weekly time points (27). The computational model generated
in this study clearly illustrates that a number of the host
microenvironment components, notably the mature osteo-
clasts and osteoblasts, undergo phases of activity and rest
(Figs. 3 and 4). This level of resolution is not available in
biologic models but demonstrates that the time points or
endpoints chosen for in vivomodels are a "snapshot" that may
not be truly reflective of what has, or is about to happen in the
tumor-bone microenvironment. Knowledge of the dynamic
changes occurring over time in the computational cancer
bone-microenvironment could lead to a better understanding
of when to apply inhibitors or what happens to the cell
populations over time once inhibitors have been applied.
Bisphosphonates and more recently anti-RANKL therapies

are used as treatment strategies to protect patients with
prostate to bonemetastases from skeletal-related events (SRE).
Studies have shown that bisphosphonates can extend the
average time to SRE for patients, and anti-RANKL–based
therapies are significantly better than bisphosphonates in
extending that time to first SRE (2, 28). However, neither

treatment increases overall survival. We applied these inhibi-
tors to our computational model. Assuming an efficacy of
100%, application of a bisphosphonate after a period in which
the metastasis is actively growing (day 80) demonstrated an
impact on osteoclast activity and on tumor growth. This time
point was chosen based on the prostate metastases being
established and actively growing but therapeutics could be
applied at any juncture, a useful feature to study the response
of multiple bone metastases at various stages of progression.
Subsequent to the application of bisphosphonates to themodel
at day 80, we observed that osteoclasts still formed and that the
residual production of TGF-b and BDFs was sufficient to
sustain tumor growth, albeit to a lesser extent compared with
the nontreatment control arm (Fig. 5). Significantly, we also
assumed that the dosing of bisphosphonates was at 100%
efficacy over the course of the therapy, but, in reality, there
aremost likely changes in concentrations. Gradients in therapy
concentration can be accounted for and pharmacokinetics can
be explicitly simulated in the computational model and it will
be interesting to determine the impact of dosing gradients on
the behavior of the cell populations over time in the compu-
tational microenvironment.

Application of an anti-RANKL inhibitor, again at a presumed
efficacy of 100%, significantly impacted the prostate tumor-
bone microenvironment by preventing osteoclast formation,
and subsequently, tumor growth. The model therefore, pre-
dicts that anti-RANKL inhibitors should be curative in the
clinical setting. However, the clinical reality is that anti-RANKL
inhibitors do not significantly extend overall survival in men
with metastatic prostate cancer (2). Interestingly, reducing the
efficiency of the anti-RANKL therapy to 40% closely mimics
that of the bisphosphonate treatment and suggests that
increasing doses or better targeting of the anti-RANKL inhi-
bitors to the bone could enhance the efficacy of the drug
provided that there are no or minimal increases in noted side
effects such as osteonecrosis of the jaw or cataract formation
(Supplementary Fig. S3). Clinically, the dosage and frequency of
administration of anti-RANKL therapy such as Xgeva are based
on trials that demonstrated the optimal balance of efficacy, as
determined by a more than 70% decrease in urine N-terminal
collagen fragments (NTX), and tolerability was 120 mg subcu-
taneously delivered every 4weeks (29). It is possible that higher
doses may prove more efficient in significantly enhancing
overall survival in patients with prostate to bone metastases
as suggested by the computational model but this increase
in dose may be outweighed by increased risks of side effects.
A major advantage of the computational model is the
application of combination or putative therapies to study
cellular behavior in the prostate bone-microenvironment
over time. For example, our results highlight the role of
active TGF-b signaling in the cancer and host cells of human
prostate to bone metastases and in the migration of MSCs
and osteoblasts (Fig. 2). This observation is in keeping with
other studies and underscores the key role TGF-b signaling
plays in the bone microenvironment in regards to promoting
the progression of prostate to bone metastases. The compu-
tational model could therefore easily test the efficacy of
TGF-b inhibitors applied to the prostate cancer-bone
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microenvironment and predictions used to inform preclin-
ical and ultimately clinical trials.

There are a number of caveats to the computational model
described herein. Quantitative predictions from computation-
al models are typically dependent on the information used to
parameterize it. The key values used to parameterize the
computational model presented in this paper are based on
TGF-b and RANKL. The flexibility of the model ensures that
ranges in the concentration and balance of other factors and
cells that can impact the BMU in the normal and disease
setting can be easily integrated. Enhancing these qualities will
improve the accuracy of the generated predictions, but our
existing model is already quite robust to changes in the
parameterization (Supplementary Fig. S4). Although our mod-
el is relatively sophisticated, simpler less computationally
intensive mathematical models have a number of advantages
in that they are easier to understand and analyze. Furthermore,
having fewer parameters, they are amenable to the fitting of
existing experimental data using techniques such as approx-
imate Bayesian computation (ABC). Fitting extant experimen-
tal data to mathematical models has been used successfully to
drive amodel to closely represent a set of observations in cases
such as imatinib response in patientswith leukemia (30). These
approaches can also provide exact results when sufficient
summaries are used (31). Simpler mathematical models are
usually preferable, especially when values for biologic para-
meters are largely unknown (32, 33). In this case, a more
complexmodelwas necessary to capture the bone homeostasis
emerging from the interactions between MSCs, osteoclasts,
osteoblasts, pOCs, and pOBs. The existence of reliable empir-
ical datamade it possible to properly parameterize suchmodel.
This has allowed us to elucidate the mechanisms involved in
the vicious cycle of prostate to bonemetastases. One drawback
of more complex computational models is that they are
computationally intensive and therefore, limiting the ability
to perform large numbers of simulations that statistically can
explore the robustness of each of the chosen parameters.
However, in multiple simulations (N ¼ 25), we have ensured
that the plausible plasticity of these parameters fall within the
currently accepted biologic empirical values. As such, we have
focused on investigating changes on the parameters that may
vary experimentally; especially molecules such as RANKL and
TGF-b that are difficult to measure in vivo that have yielded
interesting insights (Fig. 5 and Supplementary Materials and
Methods). Follow-up experiments will use increased numbers

of simulations to enhance statistical analysis and use new
biologic parameters being empirically determined to improve
the accuracy of the model predictions.

In conclusion, using empirical and published data, we have
generated a hybrid discreet model of the BMU and shown that
the introduction of single activemetastatic prostate cancer cell
into the BMU is sufficient to generate osteogenic lesions that
are similar in pathophysiology to those in an animal model of
the disease. Furthermore, the application of existing clinical
therapies to the computational model underscores the value of
this new approach for testing the impact of combining avail-
able therapies or putative targeted therapies for the treatment
of prostate to bone metastases. Clinically, the versatility of the
equations used to build the computational model ensures that
it can be quickly individualized and be a powerful tool for the
delivery of precision medicine to better treat and cure men
with prostate to bone metastases.
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